期刊文献+
共找到250,476篇文章
< 1 2 250 >
每页显示 20 50 100
The Relationships between the Short Video Addiction,Self-Regulated Learning,and Learning Well-Being of Chinese Undergraduate Students 被引量:2
1
作者 Jian-Hong Ye Yuting Cui +1 位作者 Li Wang Jhen-Ni Ye 《International Journal of Mental Health Promotion》 2024年第10期805-815,共11页
Background:With the global popularity of short videos,particularly among young people,short video addiction has become a worrying phenomenon that poses significant risks to individual health and adaptability.Self-regu... Background:With the global popularity of short videos,particularly among young people,short video addiction has become a worrying phenomenon that poses significant risks to individual health and adaptability.Self-regulated learning(SRL)strategies are key factors in predicting learning outcomes.This study,based on the SRL theory,uses short video addiction as the independent variable,SRL strategies as the mediating variable,and learning well-being as the outcome variable,aiming to reveal the relationships among short video addiction,self-regulated learning,and learning well-being among Chinese college students.Methods:Using a cross-sectional study design and applying the snowball sampling technique,an online survey was administered to Chinese undergraduate students.A total of 706 valid questionnaires were collected,with an effective response rate of 85.7%.The average age of the participants was 20.5 years.Results:The results of structural equation modeling indicate that 7 hypotheses were supported.Short video addiction was negatively correlated with self-regulated learning strategies(preparatory,performance,and appraisal strategy),while SRL strategies were positively correlated with learning well-being.Additionally,short video addiction had a mediating effect on learning well-being through the three types of SRL strategies.The three types of SRL strategies explained 39%of the variance in learning well-being.Conclusion:Previous research has typically focused on the impact of self-regulated learning strategies on media addiction or problematic media use.This study,based on the SRL model,highlights the negative issues caused by short video addiction and emphasizes the importance of cultivating self-regulation abilities and media literacy.Short video addiction stems from failures in trait self-regulation,which naturally impairs the ability to effectively engage in self-regulation during the learning process.This study confirms and underscores that the SRL model can serve as an effective theoretical framework for helping students prevent short video addiction,engage in high-quality learning,and consequently enhance their learning well-being. 展开更多
关键词 Appraisal strategy learning well-being performance strategy preparatory strategy self-regulated learning strategies short videos
在线阅读 下载PDF
The Model of Speaking in Teaching Indonesian to Foreign Speakers Based on Self-Regulated Learning and Anxiety Reduction Approaches
2
作者 Endry Boeriswati 《Sino-US English Teaching》 2012年第5期1154-1163,共10页
Model for spoken is expected to overcome difficulties in teaching and learning Indonesian language for foreign speakers. Language anxiety is the anxiety that arises when a person learns foreign language. Foreign Langu... Model for spoken is expected to overcome difficulties in teaching and learning Indonesian language for foreign speakers. Language anxiety is the anxiety that arises when a person learns foreign language. Foreign Language Anxiety (anxiety to learn a foreign language) is of concern or negative emotional reactions that arise when studying or using foreign language. Self-regulated learning is an active and constructive process undertaken by learners in setting goals for their learning and trying to monitor, regulate, and control of cognition, motivation, and behavior, then everything is directed and driven by purpose and adapted to the context and environment. The research method used is an R and D (research and development) method with a sample of foreign speakers of Chinese. Variables that receive interference are the ability to speak in Indonesian, while the variables used to interfere with the self-regulated learning and language anxiety as a variable controller. Intrapersonal factors become barriers that cause stuttering speech limited due to the mastering subject content. On the basis of that, this speaking model applies the principle of self-regulated learning in the learning process, using a communicative and contextual approach. This model intended for foreign speakers who learn Indonesian language outside of Indonesia, so to bring the atmosphere mandated in sociolinguistic built through media and relevant teaching methods. 展开更多
关键词 Indonesian for Foreign Foreign Language Anxiety self-regulated learning
在线阅读 下载PDF
The Nature and Use of Technology-Based Self-Regulated Learning Strategies Among EFL Students
3
作者 AN Zhujun 《Sino-US English Teaching》 2024年第11期506-514,共9页
This study explored the nature and use of technology-based self-regulated learning(SRL)strategies among the Chinese university students.A total of 20 undergraduate students in China's Mainland were invited to part... This study explored the nature and use of technology-based self-regulated learning(SRL)strategies among the Chinese university students.A total of 20 undergraduate students in China's Mainland were invited to participate in a focus group interview.The students reported using four types of technology-based SRL strategies including cognitive,meta-cognitive,social behavioral,and motivational regulation strategies.Among the strategies,technology-based vocabulary learning was reported to be a dominant strategy by the students.This study opens a new window to understanding how English as a foreign language(EFL)students utilize different strategies to learn English in technology-based learning context. 展开更多
关键词 self-regulated learning technology-based SRL strategies EFL students language learning
在线阅读 下载PDF
The Effectiveness of Self-regulated Learning Strategies on Chinese College Students' English Learning
4
作者 张晓雁 李安玲 《海外英语》 2011年第10X期127-128,共2页
The purpose of this paper is to argue the effectiveness of self-regulated learning in English education in Chinese college classroom instruction. A study is given to show whether the introduction of self-regulated lea... The purpose of this paper is to argue the effectiveness of self-regulated learning in English education in Chinese college classroom instruction. A study is given to show whether the introduction of self-regulated learning can help improve Chinese college students' English learning, and help them perform better in the National English test-CET-4 (College English Test Level-4,). 展开更多
关键词 self-regulated learning GOAL-SETTING self-instructional strategies motivation self-efficacy EXPERIENTIAL GROUP and control GROUP
在线阅读 下载PDF
Using Classroom Assessment to Promote Self-Regulated Learning and the Factors Influencing Its(In)Effectiveness 被引量:1
5
作者 ZHANG Wenxiao 《Frontiers of Education in China》 2017年第2期261-295,共35页
The present study adopts a mixed method design to investigate the effect of seven classroom assessment(CA)features on student self-regulated learning(SRL)and further explored factors that influenced the effect.Twelve ... The present study adopts a mixed method design to investigate the effect of seven classroom assessment(CA)features on student self-regulated learning(SRL)and further explored factors that influenced the effect.Twelve teachers and their students(valid data points tallying 630)from three Chinese high schools participated in the study.Structural equational modelling results showed that the CA features had varied impacts.Specifically,self-assessment most effectively enhanced SRL,followed by teacher instruction and structured guidance,then teacher feedback;assessment task and student choice had mixed impacts.Peer-assessment and CA environment reduced SRL.Five influencing factors were revealed through both teacher and student interviews,namely,student engagement with the assessment task,student dependence on authority,prospective gains in the gaokao,intractable motivation and learning approach,and student-teacher relationship.The research has practical implications for SRL promotion. 展开更多
关键词 Chinese high school classroom assessment influencing factor self-regulated learning
原文传递
Effects of Intervention on Self-Regulated Learning for Second Language Learners
6
作者 于璐 罗文倬 Felicia Lincoln 《Chinese Journal of Applied Linguistics》 SCIE 2017年第3期233-260,349,共29页
The study investigated the effects of an intervention program on self-regulated learning designed for second language learners. One hundred and twenty participants who were sophomore English majors at a university in ... The study investigated the effects of an intervention program on self-regulated learning designed for second language learners. One hundred and twenty participants who were sophomore English majors at a university in China were randomly assigned to either the treatment or the control group. The intervention was composed of six weekly two-hour training sessions that focus on five main variables of self-regulatory processes: goal setting, self-efficacy, time and study environment management, language learning strategies, and attribution. The evaluation of the effectiveness of the intervention included mukiple outcome variables, which were grouped into three categories: students' motivational beliefs, students' strategy use, and students' academic performance. The results of the immediate training effects on goal setting, self-efficacy, attribution, time and study environment management, memory strategy, compensation strategy, metacognitive strategy and second language proficiency confirmed that academic self-regulation is a trainable student characteristic and self-regulation training can be used effectively in a second language classroom setting. The feature of the current study design allows for systematically examining and evaluating both motivational variables and learning strategies in the context of second language learning. 展开更多
关键词 self-regulated learning second language learning learning strategies second language proficiency
原文传递
A Qualitative Examination of Classroom Assessment in Chinese High Schools from the Perspective of Self-Regulated Learning
7
作者 ZHANG Wenxiao LI Yanqing 《Frontiers of Education in China》 2019年第3期387-421,共35页
The present study is set in the context of ongoing educational reform that advocates fostering self-regulated learners and using assessment to improve learning.Drawing on existent research on classroom assessment(CA)a... The present study is set in the context of ongoing educational reform that advocates fostering self-regulated learners and using assessment to improve learning.Drawing on existent research on classroom assessment(CA)and self-regulated learning(SRL),the authors have formulated a conceptual framework outlining the CA features that promote SRL among students.Guided by this framework,the 12 high school teachers’CA practice was scrutinized to find out to what extent their CA was pro-SRL.Based on interview data and classroom observation,gaps were found in Chinese high school teachers’CA.First,CA tasks are primarily low-level closed-end problems,with rare exceptions.Second,students are not allowed much autonomy in CA.Third,self-assessment practice is mostly self-grading.Fourth,peer-assessment is uncommon and mainly involves simply marking peers’work.Fifth,teacher feedback is focused on task and process levels;regulation-level feedback is less common.Sixth,despite teachers’encouragement,most students feel threatened by CA. 展开更多
关键词 classroom assessment(CA) self-regulated learning(SRL) assessment for learning formative assessment(FA) Chinese high schools
原文传递
A Chinese Learner and Her Self-Regulated Learning:An Autoethnography
8
作者 JIANG Heng 《Frontiers of Education in China》 2015年第1期132-152,共21页
In this paper,I use an autoethnographical approach,coupled with existing research literature on Chinese learners and learning,to reflect upon my own experiences as a junior high school student in order to explore how ... In this paper,I use an autoethnographical approach,coupled with existing research literature on Chinese learners and learning,to reflect upon my own experiences as a junior high school student in order to explore how Chinese students perceive their learning,and how they establish and justify their own sense of self-regulation in learning.It is found there is a hybrid of nuanced cultural meanings underneath the self-regulated learning experiences in the Chinese context. 展开更多
关键词 self-regulated learning Chinese learner autoethnography
原文传递
Predicting lymph node metastasis in colorectal cancer using caselevel multiple instance learning
9
作者 Ling-Feng Zou Xuan-Bing Wang +4 位作者 Jing-Wen Li Xin Ouyang Yi-Ying Luo Yan Luo Cheng-Long Wang 《World Journal of Gastroenterology》 2026年第1期110-125,共16页
BACKGROUND The accurate prediction of lymph node metastasis(LNM)is crucial for managing locally advanced(T3/T4)colorectal cancer(CRC).However,both traditional histopathology and standard slide-level deep learning ofte... BACKGROUND The accurate prediction of lymph node metastasis(LNM)is crucial for managing locally advanced(T3/T4)colorectal cancer(CRC).However,both traditional histopathology and standard slide-level deep learning often fail to capture the sparse and diagnostically critical features of metastatic potential.AIM To develop and validate a case-level multiple-instance learning(MIL)framework mimicking a pathologist's comprehensive review and improve T3/T4 CRC LNM prediction.METHODS The whole-slide images of 130 patients with T3/T4 CRC were retrospectively collected.A case-level MIL framework utilising the CONCH v1.5 and UNI2-h deep learning models was trained on features from all haematoxylin and eosinstained primary tumour slides for each patient.These pathological features were subsequently integrated with clinical data,and model performance was evaluated using the area under the curve(AUC).RESULTS The case-level framework demonstrated superior LNM prediction over slide-level training,with the CONCH v1.5 model achieving a mean AUC(±SD)of 0.899±0.033 vs 0.814±0.083,respectively.Integrating pathology features with clinical data further enhanced performance,yielding a top model with a mean AUC of 0.904±0.047,in sharp contrast to a clinical-only model(mean AUC 0.584±0.084).Crucially,a pathologist’s review confirmed that the model-identified high-attention regions correspond to known high-risk histopathological features.CONCLUSION A case-level MIL framework provides a superior approach for predicting LNM in advanced CRC.This method shows promise for risk stratification and therapy decisions,requiring further validation. 展开更多
关键词 Colorectal cancer Lymph node metastasis Deep learning Multiple instance learning HISTOPATHOLOGY
暂未订购
RankXLAN:An explainable ensemble-based machine learning framework for biomarker detection,therapeutic target identification,and classification using transcriptomic and epigenomic stomach cancer data
10
作者 Kasmika Borah Himanish Shekhar Das +1 位作者 Mudassir Khan Saurav Mallik 《Medical Data Mining》 2026年第1期13-31,共19页
Background:Stomach cancer(SC)is one of the most lethal malignancies worldwide due to late-stage diagnosis and limited treatment.The transcriptomic,epigenomic,and proteomic,etc.,omics datasets generated by high-through... Background:Stomach cancer(SC)is one of the most lethal malignancies worldwide due to late-stage diagnosis and limited treatment.The transcriptomic,epigenomic,and proteomic,etc.,omics datasets generated by high-throughput sequencing technology have become prominent in biomedical research,and they reveal molecular aspects of cancer diagnosis and therapy.Despite the development of advanced sequencing technology,the presence of high-dimensionality in multi-omics data makes it challenging to interpret the data.Methods:In this study,we introduce RankXLAN,an explainable ensemble-based multi-omics framework that integrates feature selection(FS),ensemble learning,bioinformatics,and in-silico validation for robust biomarker detection,potential therapeutic drug-repurposing candidates’identification,and classification of SC.To enhance the interpretability of the model,we incorporated explainable artificial intelligence(SHapley Additive exPlanations analysis),as well as accuracy,precision,F1-score,recall,cross-validation,specificity,likelihood ratio(LR)+,LR−,and Youden index results.Results:The experimental results showed that the top four FS algorithms achieved improved results when applied to the ensemble learning classification model.The proposed ensemble model produced an area under the curve(AUC)score of 0.994 for gene expression,0.97 for methylation,and 0.96 for miRNA expression data.Through the integration of bioinformatics and ML approach of the transcriptomic and epigenomic multi-omics dataset,we identified potential marker genes,namely,UBE2D2,HPCAL4,IGHA1,DPT,and FN3K.In-silico molecular docking revealed a strong binding affinity between ANKRD13C and the FDA-approved drug Everolimus(binding affinity−10.1 kcal/mol),identifying ANKRD13C as a potential therapeutic drug-repurposing target for SC.Conclusion:The proposed framework RankXLAN outperforms other existing frameworks for serum biomarker identification,therapeutic target identification,and SC classification with multi-omics datasets. 展开更多
关键词 stomach cancer BIOINFORMATICS ensemble learning classifier BIOMARKER targets
在线阅读 下载PDF
Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring
11
作者 Kusum Sharma Kousik Bhunia +5 位作者 Subhajit Chatterjee Muthukumar Perumalsamy Anandhan Ayyappan Saj Theophilus Bhatti Yung‑Cheol Byun Sang-Jae Kim 《Nano-Micro Letters》 2026年第2期644-663,共20页
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,... Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech. 展开更多
关键词 Wearable ORGANOGEL Deep learning Pressure sensor Bio-mechanical motion
在线阅读 下载PDF
Artificial intelligence and machine learning-driven advancements in gastrointestinal cancer:Paving the way for precision medicine
12
作者 Chahat Suri Yashwant K Ratre +2 位作者 Babita Pande LVKS Bhaskar Henu K Verma 《World Journal of Gastroenterology》 2026年第1期14-36,共23页
Gastrointestinal(GI)cancers remain a leading cause of cancer-related morbidity and mortality worldwide.Artificial intelligence(AI),particularly machine learning and deep learning(DL),has shown promise in enhancing can... Gastrointestinal(GI)cancers remain a leading cause of cancer-related morbidity and mortality worldwide.Artificial intelligence(AI),particularly machine learning and deep learning(DL),has shown promise in enhancing cancer detection,diagnosis,and prognostication.A narrative review of literature published from January 2015 to march 2025 was conducted using PubMed,Web of Science,and Scopus.Search terms included"gastrointestinal cancer","artificial intelligence","machine learning","deep learning","radiomics","multimodal detection"and"predictive modeling".Studies were included if they focused on clinically relevant AI applications in GI oncology.AI algorithms for GI cancer detection have achieved high performance across imaging modalities,with endoscopic DL systems reporting accuracies of 85%-97%for polyp detection and segmentation.Radiomics-based models have predicted molecular biomarkers such as programmed cell death ligand 2 expression with area under the curves up to 0.92.Large language models applied to radiology reports demonstrated diagnostic accuracy comparable to junior radiologists(78.9%vs 80.0%),though without incremental value when combined with human interpretation.Multimodal AI approaches integrating imaging,pathology,and clinical data show emerging potential for precision oncology.AI in GI oncology has reached clinically relevant accuracy levels in multiple diagnostic tasks,with multimodal approaches and predictive biomarker modeling offering new opportunities for personalized care.However,broader validation,integration into clinical workflows,and attention to ethical,legal,and social implications remain critical for widespread adoption. 展开更多
关键词 Artificial intelligence Gastrointestinal cancer Precision medicine Multimodal detection Machine learning
在线阅读 下载PDF
Evaluation of Reinforcement Learning-Based Adaptive Modulation in Shallow Sea Acoustic Communication
13
作者 Yifan Qiu Xiaoyu Yang +1 位作者 Feng Tong Dongsheng Chen 《哈尔滨工程大学学报(英文版)》 2026年第1期292-299,共8页
While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance re... While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance remains underexplored in field investigations.To evaluate the practical applicability of this emerging technique in adverse shallow sea channels,a field experiment was conducted using three communication modes:orthogonal frequency division multiplexing(OFDM),M-ary frequency-shift keying(MFSK),and direct sequence spread spectrum(DSSS)for reinforcement learning-driven adaptive modulation.Specifically,a Q-learning method is used to select the optimal modulation mode according to the channel quality quantified by signal-to-noise ratio,multipath spread length,and Doppler frequency offset.Experimental results demonstrate that the reinforcement learning-based adaptive modulation scheme outperformed fixed threshold detection in terms of total throughput and average bit error rate,surpassing conventional adaptive modulation strategies. 展开更多
关键词 Adaptive modulation Shallow sea underwater acoustic modulation Reinforcement learning
在线阅读 下载PDF
Enhanced semi-supervised learning for top gas flow state classification to optimize emission and production in blast ironmaking furnaces
14
作者 Song Liu Qiqi Li +3 位作者 Qing Ye Zhiwei Zhao Dianyu E Shibo Kuang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期204-216,共13页
Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate ... Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate this challenge,we present an enhanced semi-supervised learning approach based on the Mean Teacher framework,incorporating a novel feature loss module to maximize classification performance with limited labeled samples.The model studies show that the proposed model surpasses both the baseline Mean Teacher model and fully supervised method in accuracy.Specifically,for datasets with 20%,30%,and 40%label ratios,using a single training iteration,the model yields accuracies of 78.61%,82.21%,and 85.2%,respectively,while multiple-cycle training iterations achieves 82.09%,81.97%,and 81.59%,respectively.Furthermore,scenario-specific training schemes are introduced to support diverse deployment need.These findings highlight the potential of the proposed technique in minimizing labeling requirements and advancing intelligent blast furnace diagnostics. 展开更多
关键词 blast furnace gas flow state semi-supervised learning mean teacher feature loss
在线阅读 下载PDF
A novel deep learning-based framework for forecasting
15
作者 Congqi Cao Ze Sun +2 位作者 Lanshu Hu Liujie Pan Yanning Zhang 《Atmospheric and Oceanic Science Letters》 2026年第1期22-26,共5页
Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep... Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep learning to medium-range regional weather forecasting with limited data remains a significant challenge.In this work,three key solutions are proposed:(1)motivated by the need to improve model performance in data-scarce regional forecasting scenarios,the authors innovatively apply semantic segmentation models,to better capture spatiotemporal features and improve prediction accuracy;(2)recognizing the challenge of overfitting and the inability of traditional noise-based data augmentation methods to effectively enhance model robustness,a novel learnable Gaussian noise mechanism is introduced that allows the model to adaptively optimize perturbations for different locations,ensuring more effective learning;and(3)to address the issue of error accumulation in autoregressive prediction,as well as the challenge of learning difficulty and the lack of intermediate data utilization in one-shot prediction,the authors propose a cascade prediction approach that effectively resolves these problems while significantly improving model forecasting performance.The method achieves a competitive result in The East China Regional AI Medium Range Weather Forecasting Competition.Ablation experiments further validate the effectiveness of each component,highlighting their contributions to enhancing prediction performance. 展开更多
关键词 Weather forecasting Deep learning Semantic segmentation models learnable Gaussian noise Cascade prediction
在线阅读 下载PDF
Automated Pipe Defect Identification in Underwater Robot Imagery with Deep Learning
16
作者 Mansour Taheri Andani Farhad Ameri 《哈尔滨工程大学学报(英文版)》 2026年第1期197-215,共19页
Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challeng... Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challenge due to factors such as light scattering,absorption,restricted visibility,and ambient noise.The advancement of deep learning has introduced powerful techniques for processing large amounts of unstructured and imperfect data collected from underwater environments.This study evaluated the efficacy of the You Only Look Once(YOLO)algorithm,a real-time object detection and localization model based on convolutional neural networks,in identifying and classifying various types of pipeline defects in underwater settings.YOLOv8,the latest evolution in the YOLO family,integrates advanced capabilities,such as anchor-free detection,a cross-stage partial network backbone for efficient feature extraction,and a feature pyramid network+path aggregation network neck for robust multi-scale object detection,which make it particularly well-suited for complex underwater environments.Due to the lack of suitable open-access datasets for underwater pipeline defects,a custom dataset was captured using a remotely operated vehicle in a controlled environment.This application has the following assets available for use.Extensive experimentation demonstrated that YOLOv8 X-Large consistently outperformed other models in terms of pipe defect detection and classification and achieved a strong balance between precision and recall in identifying pipeline cracks,rust,corners,defective welds,flanges,tapes,and holes.This research establishes the baseline performance of YOLOv8 for underwater defect detection and showcases its potential to enhance the reliability and efficiency of pipeline inspection tasks in challenging underwater environments. 展开更多
关键词 YOLO8 Underwater robot Object detection Underwater pipelines Remotely operated vehicle Deep learning
在线阅读 下载PDF
Machine learning approaches to early detection of delayed wound healing following gastric cancer surgery
17
作者 Duygu Kirkik Huseyin Murat Ozadenc Sevgi Kalkanli Tas 《World Journal of Gastrointestinal Oncology》 2026年第1期287-290,共4页
Delayed wound healing following radical gastrectomy remains an important yet underappreciated complication that prolongs hospitalization,increases costs,and undermines patient recovery.In An et al’s recent study,the ... Delayed wound healing following radical gastrectomy remains an important yet underappreciated complication that prolongs hospitalization,increases costs,and undermines patient recovery.In An et al’s recent study,the authors present a machine learning-based risk prediction approach using routinely available clinical and laboratory parameters.Among the evaluated algorithms,a decision tree model demonstrated excellent discrimination,achieving an area under the curve of 0.951 in the validation set and notably identifying all true cases of delayed wound healing at the Youden index threshold.The inclusion of variables such as drainage duration,preoperative white blood cell and neutrophil counts,alongside age and sex,highlights the pragmatic appeal of the model for early postoperative monitoring.Nevertheless,several aspects warrant critical reflection,including the reliance on a postoperative variable(drainage duration),internal validation only,and certain reporting inconsistencies.This letter underscores both the promise and the limitations of adopting interpretable machine learning models in perioperative care.We advocate for transparent reporting,external validation,and careful consideration of clinically actionable timepoints before integration into practice.Ultimately,this work represents a valuable step toward precision risk stratification in gastric cancer surgery,and sets the stage for multicenter,prospective evaluations. 展开更多
关键词 Gastric cancer Radical gastrectomy Delayed wound healing Machine learning Decision tree Risk prediction
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部