期刊文献+
共找到112,149篇文章
< 1 2 250 >
每页显示 20 50 100
Correction to Solvent-Resistant Wearable Triboelectric Nanogenerator for Energy-Harvesting and Self-Powered Sensors
1
《Energy & Environmental Materials》 2025年第3期327-327,共1页
Yongtao Yu,Yuelin Yu et al.Solvent-Resistant Wearable Triboelectric Nanogenerator for Energy-Harvesting and Self-Powered Sensors.Energy Environ.Mater.2024,7,e12700.On page 4 of this article,the first paragraph of 2.4,... Yongtao Yu,Yuelin Yu et al.Solvent-Resistant Wearable Triboelectric Nanogenerator for Energy-Harvesting and Self-Powered Sensors.Energy Environ.Mater.2024,7,e12700.On page 4 of this article,the first paragraph of 2.4,line 14(PDF version,same below),there is a spelling mistake of“sui,”.It should be changed to“suitable”.The denominator“dt”in the Equation(3)should be changed to“dt”. 展开更多
关键词 WEARABLE self powered sensors triboelectric nanogenerator solvent resistant energy harvesting
在线阅读 下载PDF
Characteristic Study of Self-Powered Sensors Based on Native Protein Composite Film 被引量:1
2
作者 Jiehui Xue Huijing Xiang +3 位作者 Yanrong Zhang Jun Yang Xia Cao Zhonglin Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期222-228,共7页
Flexible electronic sensors composed of flexible film and conductive materials play an increasingly important role in wearable and internet information transmission.It has received more and more attention and made som... Flexible electronic sensors composed of flexible film and conductive materials play an increasingly important role in wearable and internet information transmission.It has received more and more attention and made some progress over the decades.However,it is still a great challenge to prepare biocompatible and highly transparent conductive films.Egg white is a pure natural protein-rich material.Hydroxypropylmethyl cellulose has a good compatibility and high transparency,which is an ideal material for flexible sensors.Here,we overcome the problem of poor mechanical flexibility and electrical conductivity of protein,and develop a high transparency and good flexibility hydroxypropylmethyl cellulose/egg white protein composite membrane-based triboelectric nanogenerator('X'-TENG).The experimental results show that the flexible pressure sensor based on'X'-TENG has a high sensitivity,fast response speed,and low detection limit.It can even be used as a touch/pressure sensing artificial electronic skin.It can also be made into an intelligent waffle keyboard for recording and tracking users of the keyboard.Our strategy may provide a new way to easily build flexible electronic sensors and move toward practical applications. 展开更多
关键词 flexible sensors intelligent sensing natural protein-rich material triboelectric nanogenerators
在线阅读 下载PDF
Solvent-Resistant Wearable Triboelectric Nanogenerator for Energy-Harvesting and Self-Powered Sensors
3
作者 Yongtao Yu Yuelin Yu +7 位作者 Hongyi Wu Tianshuo Gao Yi Zhang Jiajia Wu Jiawei Yan Jian Shi Hideaki Morikawa Chunhong Zhu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期376-386,共11页
Wearable triboelectric nanogenerators(TENGs)have attracted attention owing to their ability to harvest energy from the surrounding environment without maintenance.Herein,polyetherimide-Al_(2)O_(3)(PAl)and polyvinylide... Wearable triboelectric nanogenerators(TENGs)have attracted attention owing to their ability to harvest energy from the surrounding environment without maintenance.Herein,polyetherimide-Al_(2)O_(3)(PAl)and polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP,PH)nanofiber membranes were used as tribo-positive and tribo-negative materials,respectively.Phytic acid-doped polyaniline(PANI)/cotton fabric(PPCF)and ethylenediamine(EDA)-crosslinked PAl(EPAl)nanofiber membranes were used as triboelectrode and triboencapsulation materials,respectively.The result showed that when the PAl-PH-based TENG was shaped as a circle with a radius of 1 cm,under the pressure of 50 N,and the frequency of 0.5 Hz,the open-circuit voltage(V_(oc))and short-circuit current(I_(sc))reached the highest value of 66.6 V and-93.4 to 110.1 nA,respectively.Moreover,the PH-based TENG could be used as a fabric sensor to detect fabric composition and as a sensor-inductive switch for light bulbs or beeping warning devices.When the PAl-PH-based TENG was shaped as a 5×5 cm^(2)rectangle,a 33 pF capacitor could be charged to 15 V in 28 s.Interestingly,compared to PAl nanofiber membranes,EPAl nanofiber membranes exhibited good dyeing properties and excellent solvent resistance.The PPCF exhibited<5%resistance change after washing,bending,and stretching. 展开更多
关键词 energy-harvesting power supply sensorS solvent-resistant wearable triboelectric nanogenerator
在线阅读 下载PDF
Rational design of self-powered sensors with polymer nanocomposites for human–machine interaction 被引量:1
4
作者 Hailong HU Fan ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第11期155-177,共23页
Smart sensors are becoming one of the necessities for connecting and detecting surrounding stimuli with tremendous convenience, especially when exploiting a single powerful sensor with multifunctionality. To successfu... Smart sensors are becoming one of the necessities for connecting and detecting surrounding stimuli with tremendous convenience, especially when exploiting a single powerful sensor with multifunctionality. To successfully accomplish the design of a self-powered sensor, serving power is becoming a critical issue because of its continuously consumed energy required by electronics. A variety of nanogenerators aiming for the rational design of self-powered system are reviewed and compared, followed by their recent advances with polymer nanocomposites for self-powered sensors. More importantly, the proposed conceptual design of a self-powered unit/device with triboelectric nanogenerator has been emphasized to eventually realize the practical activities towards multiple detections and human–machine interaction. Finally, challenges and new prospects of rational design of self-powered polymer composite sensors in achieving human–machine interaction/interface are discussed. 展开更多
关键词 Analytical modelling Electronic devices INTERFACE NANOCOMPOSITES self-powered sensors
原文传递
Superflexible and Lead-Free Piezoelectric Nanogenerator as a Highly Sensitive Self-Powered Sensor for Human Motion Monitoring 被引量:5
5
作者 Di Yu Zhipeng Zheng +3 位作者 Jiadong Liu Hongyuan Xiao Geng Huangfu Yiping Guo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第8期28-39,共12页
For traditional piezoelectric sensors based on poled ceramics,a low curie tem-perature(T_(c))is a fatal flaw due to the depolarization phenomenon.However,in this study,we find the low T_(c) would be a benefit for flex... For traditional piezoelectric sensors based on poled ceramics,a low curie tem-perature(T_(c))is a fatal flaw due to the depolarization phenomenon.However,in this study,we find the low T_(c) would be a benefit for flex-ible piezoelectric sensors because small alterations of force trig-ger large changes in polarization.BaTi_(0.88)Sn_(0.12)O_(3)(BTS)with high piezoelectric coefficient and low T_(c) close to human body temperature is taken as an example for materials of this kind.Continuous piezo-electric BTS films were deposited on the flexible glass fiber fabrics(GFF),self-powered sensors based on the ultra-thin,superflexible,and polarization-free BTS-GFF/PVDF composite piezoelectric films are used for human motion sensing.In the low force region(1-9 N),the sensors have the outstanding performance with voltage sensitivity of 1.23 V N^(−1) and current sensitivity of 41.0 nA N^(−1).The BTS-GFF/PVDF sensors can be used to detect the tiny forces of falling water drops,finger joint motion,tiny surface deformation,and fatigue driving with high sensitivity.This work provides a new paradigm for the preparation of superflexible,highly sensitive and wearable self-powered piezoelectric sensors,and this kind of sensors will have a broad application prospect in the fields of medical rehabilitation,human motion monitoring,and intelligent robot. 展开更多
关键词 Superflexible Piezoelectric sensors Curie temperature Human motion sensing
在线阅读 下载PDF
Thermoelectric generator and temperature sensor based on polyamide doped n-type single-walled nanotubes toward self-powered wearable electronics
6
作者 Jiye Xiao Zhen Zhang +6 位作者 Zhixiong Liao Jinzhen Huang Dongxia Xian Runhao Zhu Shichao Wang Chunmei Gao Lei Wang 《Journal of Materials Science & Technology》 2025年第4期246-254,共9页
Due to its ability to convert body heat into electricity,organic thermoelectric material is considered a promising and smart maintenance-free power source to charge wearable electronics.However,developing flexible n-t... Due to its ability to convert body heat into electricity,organic thermoelectric material is considered a promising and smart maintenance-free power source to charge wearable electronics.However,developing flexible n-type organic thermoelectric materials and wearable p/n junction thermoelectric devices remains challenging.In this work,two insulated polyamides(PA6 and PA66)that have been widely used as fiber materials are employed as novel dopants for converting p-type single-walled carbon nanotubes(SWCNTs)to n-type thermoelectric materials.Because of the electron transferability of the amide group,polyamide-doped SWCNTs exhibit excellent thermopower values as large as-56.0μV K^(-1) for PA66,and-54.5μV K^(-1) for PA6.Thermoelectric devices with five p/n junctions connected in series are fabricated.The testing device produces a thermoelectric voltage of 43.1 mV and generates 1.85μW thermoelectric power under temperature gradients of approximately 80 K.Furthermore,they display charming capability for temperature recognition and monitoring human activities as sensors.These promising results suggest that the flexible polyamide-doped SWCNT composites herein have high application potential as wearable thermoelectric electronics. 展开更多
关键词 N-type thermoelectric material self-powered sensors Composites Single-walled carbon nanotubes Wearable electronics
原文传递
An editable yarn-based flexible supercapacitor and integrated self-powered sensor
7
作者 Qiancheng Ma Zhaofa Zhang +2 位作者 Lin Li Dongyang Zhang Wei Tian 《Science China Materials》 2025年第4期1117-1128,共12页
The rapid development of supercapacitors and wearable devices has allowed the construction of integrated self-powered wearable devices.However,most current research focuses on increasing supercapacitor capacity and th... The rapid development of supercapacitors and wearable devices has allowed the construction of integrated self-powered wearable devices.However,most current research focuses on increasing supercapacitor capacity and the sensitivity of sensors,overlooking the self-powered and integration of one single device.In this study,the editable,flexible yarn-based supercapacitor(FYSC)and an integrated self-powered wearable sensor(SPWS)were constructed based on one yarn.The FYSC demonstrated adjustable capacitive behaviors by controlling the electrode reduction degree,electrode spaces,and integration.The supercapacitors exhibit a high specific capacitance of 1.82 F cm^(-3),92.57%capacity retention after 5000 cycles,and stable performance under static and dynamic strain conditions.Additionally,the integrated SPWSs demonstrated the accuracy and sensitivity in discriminating bending magnitudes.The SPWSs further present the accuracy and stability in recognizing human physiological activities(joint motions of finger,wrist,knee,and elbow,respiration,and handwriting).The proposed strategy offers a practical approach to developing energy storage systems with customizable functionality.More importantly,the self-powered devices realized the integration of supercapacitors and sensors would facilitate the seamless integration of 1D functional yarns into wearable electronics. 展开更多
关键词 yarn-based supercapacitor editable capacitive behavior functional yarn self-powered sensor
原文传递
A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification
8
作者 Qinghong Pan Huafang Zhang +5 位作者 Qiaoling Liu Donghong Huang Da-Peng Yang Tianjia Jiang Shuyang Sun Xiangrong Chen 《Chinese Chemical Letters》 2025年第1期539-544,共6页
Quantitative determination of tetracycline(TC)in environment and foods is of great importance,as excessive residues might have negative effects on human health and environmental risks.Herein,a selfpowered molecularly ... Quantitative determination of tetracycline(TC)in environment and foods is of great importance,as excessive residues might have negative effects on human health and environmental risks.Herein,a selfpowered molecularly imprinted photoelectrochemical(PEC)sensor based on the Zn O/C photoanode and the Fe-doped CuBi_(2)O_(4)(CBFO)photocathode is developed for the sensitive detection of TC.The photocathodic current can be amplified by the efficient electron transfer caused by the Fermi energy level gap between the photoanode and photocathode.Furthermore,molecularly imprinted polymers(MIPs)at photocathode can selectivity identify the TC templates and thus improve the specificity.Under the optimal conditions,the sensor has a linear range of 10^(-2)-1.0×10^(5) nmol/L,and a limit of detection(LOD)of 0.007 nmol/L(S/N=3).More crucially,the milk sample detection is carried out using the as-prepared sensor,and the outcome is satisfactory.The research gives us a novel sensing platform for quick and accurate antibiotic(like TC)in environment and food monitoring. 展开更多
关键词 self-powered photoelectrochemical sensor Molecularly imprinted polymer Fe-doped CuBi_(2)O_(4) Tetracycline detection
原文传递
Self-powered flexible sensors:from fundamental mechanisms toward diverse applications
9
作者 Jingjing Chen Jiangshan Zhang +6 位作者 Nuo Xu Mengmeng Chen Ju-Hyuck Lee Yu Wang Qijun Sun Baolin Liu Zhixian Gao 《International Journal of Extreme Manufacturing》 2025年第1期308-336,共29页
Today,energy is essential for every aspect of human life,including clothing,food,housing and transportation.However,traditional energy resources are insufficient to meet our modern needs.Self-powered sensing devices e... Today,energy is essential for every aspect of human life,including clothing,food,housing and transportation.However,traditional energy resources are insufficient to meet our modern needs.Self-powered sensing devices emerge as promising alternatives,offering sustained operation without relying on external power sources.Leveraging advancements in materials and manufacturing research,these devices can autonomously harvest energy from various sources.In this review,we focus on the current landscape of self-powered wearable sensors,providing a concise overview of energy harvesting technologies,conversion mechanisms,structural or material innovations,and energy storage platforms.Then,we present experimental advances in different energy sources,showing their underlying mechanisms,and the potential for energy acquisition.Furthermore,we discuss the applications of self-powered flexible sensors in diverse fields such as medicine,sports,and food.Despite significant progress in this field,widespread commercialization will necessitate enhanced sensor detection abilities,improved design factors for adaptable devices,and a balance between sensitivity and standardization. 展开更多
关键词 self-powered energy harvesting APPLICATIONS flexible sensing
在线阅读 下载PDF
Flexible piezoelectric polymer composites with magnetic-fieldoriented BNNS and imprinted micropillars for self-powered sensors
10
作者 Chaojie Xin Hu Zhao +6 位作者 Xiaoming Chen Chao Shi Duo Ma Qihang Song Quanyi Zhao Jie Zhang Chunhui Wang 《National Science Open》 2025年第2期4-16,共13页
Improving the response of sensors is often hindered by inadequate molding effects and complex manufacturing processes. Here, combining a simple magnetic-field-orientation and nano-imprinting process, a micropillar arr... Improving the response of sensors is often hindered by inadequate molding effects and complex manufacturing processes. Here, combining a simple magnetic-field-orientation and nano-imprinting process, a micropillar arrayed sensor was successfully fabricated, meanwhile, the boron nitride nanosheets (BNNS) were oriented in the polymer matrix. Due to the strain confinement effect, the outputted voltage of m-BNNS/PDMS composite film (SABNNS) demonstrated an improvement of 115.5% compared to the film sample with randomly dispersed nanoparticles. And the device showed a high sensitivity and rapid response capability to human motion. Furthermore, the oriented arrangement of m-BNNS and the enlarged heat dis-sipation area of the micropillar array contribute to the optimized thermal conductivity of the device. 展开更多
关键词 BNNS magnetic-field-orientation NANOIMPRINT piezoelectric sensor
原文传递
Manufacturing strategies for highly sensitive and self-powered piezoelectric and triboelectric tactile sensors
11
作者 Hyosik Park Gerald Selasie Gbadam +2 位作者 Simiao Niu Hanjun Ryu Ju-Hyuck Lee 《International Journal of Extreme Manufacturing》 2025年第1期151-172,共22页
Piezoelectric and triboelectric effects are of growing interest for facilitating high-sensitivity and self-powered tactile sensor applications.The working principles of piezoelectric and triboelectric nanogenerators p... Piezoelectric and triboelectric effects are of growing interest for facilitating high-sensitivity and self-powered tactile sensor applications.The working principles of piezoelectric and triboelectric nanogenerators provide strategies for enhancing output voltage signals to achieve high sensitivity.Increasing the piezoelectric constant and surface triboelectric charge density are key factors in this enhancement.Methods such as annealing processes,doping techniques,grain orientation controls,crystallinity controls,and composite structures can effectively enhance the piezoelectric constant.For increasing triboelectric output,surface plasma treatment,charge injection,microstructuring,control of dielectric constant,and structural modification are effective methods.The fabrication methods present significant opportunities in tactile sensor applications.This review article summarizes the overall piezoelectric and triboelectric fabrication processes from materials to device aspects.It highlights applications in pressure,touch,bending,texture,distance,and material recognition sensors.The conclusion section addresses challenges and research opportunities,such as limited flexibility,stretchability,decoupling from multi-stimuli,multifunctional sensors,and data processing. 展开更多
关键词 triboelectric PIEZOELECTRIC tactile sensor MANUFACTURING COMPOSITE
在线阅读 下载PDF
A Multifunctional Hydrogel with Multimodal Self-Powered Sensing Capability and Stable Direct Current Output for Outdoor Plant Monitoring Systems 被引量:2
12
作者 Xinge Guo Luwei Wang +1 位作者 Zhenyang Jin Chengkuo Lee 《Nano-Micro Letters》 2025年第4期1-24,共24页
Smart farming with outdoor monitoring systems is critical to address food shortages and sustainability challenges.These systems facilitate informed decisions that enhance efficiency in broader environmental management... Smart farming with outdoor monitoring systems is critical to address food shortages and sustainability challenges.These systems facilitate informed decisions that enhance efficiency in broader environmental management.Existing outdoor systems equipped with energy harvesters and self-powered sensors often struggle with fluctuating energy sources,low durability under harsh conditions,non-transparent or non-biocompatible materials,and complex structures.Herein,a multifunctional hydrogel is developed,which can fulfill all the above requirements and build selfsustainable outdoor monitoring systems solely by it.It can serve as a stable energy harvester that continuously generates direct current output with an average power density of 1.9 W m^(-3)for nearly 60 days of operation in normal environments(24℃,60%RH),with an energy density of around 1.36×10^(7)J m^(-3).It also shows good self-recoverability in severe environments(45℃,30%RH)in nearly 40 days of continuous operation.Moreover,this hydrogel enables noninvasive and self-powered monitoring of leaf relative water content,providing critical data on evaluating plant health,previously obtainable only through invasive or high-power consumption methods.Its potential extends to acting as other self-powered environmental sensors.This multifunctional hydrogel enables self-sustainable outdoor systems with scalable and low-cost production,paving the way for future agriculture. 展开更多
关键词 self-powered sensor HYDROGEL Energy harvester Outdoor farming Self-sustainable IoT
在线阅读 下载PDF
Development of Nylon/Fe_(3)O_(4) Nanocomposite Triboelectric Nanogenerators for Self-Powered Transmission Line Monitoring Applications
13
作者 Orkhan Gulahmadov Mustafa B.Muradov +5 位作者 Lala Gahramanli Aynura Karimova Sevinj Mammadyarova Stefano Belluci Ali Musayev Jiseok Kim 《Energy & Environmental Materials》 2025年第3期295-302,共8页
This study explores how the performance of triboelectric nanogenerators can be enhanced by incorporating Fe_(3)O_(4) nanoparticles into nylon films using a spray coating technique.Five triboelectric nanogenerator prot... This study explores how the performance of triboelectric nanogenerators can be enhanced by incorporating Fe_(3)O_(4) nanoparticles into nylon films using a spray coating technique.Five triboelectric nanogenerator prototypes were created:one with regular nylon and four with nylon/Fe_(3)O_(4) nanocomposites featuring varying nanoparticle densities.The electrical output,measured by open-circuit voltage and short-circuit current,showed significant improvements in the nanocomposite-based triboelectric nanogenerators compared to the nylon-only triboelectric nanogenerator.When a weak magnetic field was applied during nanocomposite preparation,the maximum voltage and current reached 56.3 V and 4.62μA,respectively.Further analysis revealed that the magnetic field during the drying process aligned the magnetic domains,boosting output efficiency.These findings demonstrate the potential of Fe_(3)O_(4) nanoparticles to enhance electrostatic and magnetic interactions in triboelectric nanogenerators,leading to improved energy-harvesting performance.This approach presents a promising strategy for developing high-performance triboelectric nanogenerators for sustainable energy and sensor applications. 展开更多
关键词 Fe_(3)O_(4)nanoparticles nanocomposite materials NYLON self-powered sensor triboelectric nanogenerator
在线阅读 下载PDF
Self-powered sensor based on compressible ionic gel electrolyte for simultaneous determination of temperature and pressure 被引量:2
14
作者 Junjie Zou Yanan Ma +9 位作者 Chenxu Liu Yimei Xie Xingyao Dai Xinhui Li Shuxuan Li Shaohui Peng Yang Yue Shuo Wang Ce-Wen Nan Xin Zhang 《InfoMat》 SCIE CSCD 2024年第7期62-75,共14页
The simultaneous detection of multiple stimuli,such as pressure and temperature,has long been a persistent challenge for developing electronic skin(eskin)to emulate the functionality of human skin.Meanwhile,the demand... The simultaneous detection of multiple stimuli,such as pressure and temperature,has long been a persistent challenge for developing electronic skin(eskin)to emulate the functionality of human skin.Meanwhile,the demand for integrated power supply units is an additional pressing concern to achieve its lightweightness and flexibility.Herein,we propose a self-powered dual temperature–pressure(SPDM)sensor,which utilizes a compressible ionic gel electrolyte driven by the potential difference between MXene and Al electrodes.The SPDM sensor exhibits a rapid and timely response to changes in pressure-induced deformation,while exhibiting a slow and hysteretic response to temperature variations.These distinct response characteristics enable the differentiation of current signals generated by different stimuli through machine learning,resulting in an impressive accuracy rate of 99.1%.Furthermore,the developed SPDM sensor exhibits a wide pressure detection range of 0–800 kPa and a broad temperature detection range of 5–75C,encompassing the environmental conditions encountered in daily human life.The dual-mode coupled strategy by machine learning provides an effective approach for temperature and pressure detection and discrimination,showcasing its potential applications in wearable electronics,intelligent robots,human–machine interactions,and so on. 展开更多
关键词 e-skin gel electrolyte machine learning self-powered dual-mode sensor
原文传递
Charge carrier management via semiconducting matrix for efficient self-powered quantum dot infrared photodetectors 被引量:1
15
作者 Jianfeng Ding Xinying Liu +3 位作者 Yueyue Gao Chen Dong Gentian Yue Furui Tan 《Journal of Semiconductors》 2025年第3期74-81,共8页
Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-po... Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-powered QD devices is still limited by their unfavorable charge carrier dynamics due to their intrinsically discrete charge carrier transport process. Herein, we strategically constructed semiconducting matrix in QD film to achieve efficient charge transfer and extraction.The p-type semiconducting CuSCN was selected as energy-aligned matrix to match the n-type colloidal PbS QDs that was used as proof-of-concept. Note that the PbS QD/CuSCN matrix not only enables efficient charge carrier separation and transfer at nano-interfaces but also provides continuous charge carrier transport pathways that are different from the hoping process in neat QD film, resulting in improved charge mobility and derived collection efficiency. As a result, the target structure delivers high specific detectivity of 4.38 × 10^(12)Jones and responsivity of 782 mA/W at 808 nm, which is superior than that of the PbS QD-only photodetector(4.66 × 10^(11)Jones and 338 mA/W). This work provides a new structure candidate for efficient colloidal QD based optoelectronic devices. 展开更多
关键词 quantum dot semiconducting matrix ligand exchange self-powered photodetectors
在线阅读 下载PDF
A self-powered Ag/β-Ga_(2)O_(3) photodetector with broadband response from 200 to 980 nm based on the photovoltaic and pyro-phototronic effects 被引量:1
16
作者 Xiongxin Luo Yueming Zhang +5 位作者 Lindong Liu Andy Berbille Kaixuan Wang Gaosi Han Laipan Zhu Zhong Lin Wang 《Journal of Materials Science & Technology》 2025年第3期125-134,共10页
β-Ga_(2)O_(3),as one of the important 4th generation semiconductors,is widely used in solar-blind ultraviolet(UV)detectors with a short detection range of 200-280 nm benefiting from its ultra-wide bandgap,strong radi... β-Ga_(2)O_(3),as one of the important 4th generation semiconductors,is widely used in solar-blind ultraviolet(UV)detectors with a short detection range of 200-280 nm benefiting from its ultra-wide bandgap,strong radiation resistance,and excellent chemical and thermal stabilities.Here,a self-powered photodetector(PD)based on an Ag/β-Ga_(2)O_(3) Schottky heterojunction was designed and fabricated.Through a subtle design of electrodes,the pyro-phototronic effect was discovered,which can be coupled to the common photovoltaic effect and further enhance the performance of the PD.Compared to traditional Ga_(2)O_(3)-based PD,the as-used PD exhibited a self-driving property and a broadband response beyond the bandgap lim-itations,ranging from 200 nm(deep UV)to 980 nm(infrared).Moreover,the photoresponse time was greatly shrunk owing to the coupling effect.Under laser irradiation,with a wavelength of 450 nm and a power density of 8 mW cm-2,the photocurrent could be improved by around 41 times compared with the sole photovoltaic effect.Besides,the performances of the Schottky PD were enhanced at both high and low temperatures.The device also possessed long-term working stability.This paper not only re-veals basic physics lying in the 4th generation semiconductor Ga_(2)O_(3) but also sheds light on the multi-encryption transmission of light information using this PD. 展开更多
关键词 PHOTODETECTOR β-Ga_(2)O_(3) Broadband response Pyro-phototronic effect self-powered
原文传递
Realizing self-powered broadband photodetection with low detection limit in a trilayered perovskite ferroelectric
17
作者 Changsheng Yang Yuhang Jiang +5 位作者 Panpan Yu Shiguo Han Shihai You Zeng-Kui Zhu Zihao Yu Junhua Luo 《Chinese Chemical Letters》 2025年第8期567-570,共4页
Two-dimensional perovskite ferroelectric which strongly couple ferroelectricity with semiconducting properties are promising candidates for optoelectronic applications.However,it is still a great challenge to fabricat... Two-dimensional perovskite ferroelectric which strongly couple ferroelectricity with semiconducting properties are promising candidates for optoelectronic applications.However,it is still a great challenge to fabricate self-powered broadband photodetectors with low detection limit.Herein,we successfully realized self-powered broadband photodetection with low detection limit by using a trilayered perovskite ferroelectric(BA)_(2)EA_(2)Pb_(3)I_(10)(1,BA=n-butylamine,EA=ethylamine).Giving to its large spontaneous polarization(5.6μC/cm^(2)),1 exhibits an open-circuit voltage of 0.25 V which provide driving force to separate carriers.Combining with its low dark current(~10^(-14)A)and narrow bandgap(Eg=1.86 e V),1 demonstrates great potential on detecting the broadband weak lights.Thus,a prominent photodetection performance with high open-off ratio(~10^(5)),outstanding responsivity(>10 m A/W),and promising detectivity(>1011Jones),as well as the low detecting limit(~nW/cm^(2))among the wide wavelength from 377 nm to637 nm was realized based on the single crystal of 1.This work demonstrates the great potential of 2D perovskite ferroelectric on self-powered broadband photodetectors. 展开更多
关键词 Hybrid perovskite self-powered Broadband photodetection Detection limit FERROELECTRIC Bulk photovoltaic effect
原文传递
Facile construction of p-Si/n-SnO_(2)junction towards high performance self-powered UV photodetector
18
作者 Xingyu Li Li Tian +1 位作者 Jinshou Wang Hui Liu 《Journal of Semiconductors》 2025年第7期98-106,共9页
Recently,self-powered ultraviolet photodetectors(UV PDs)based on SnO_(2)have gained increasing interest due to its feature of working continuously without the need for external power sources.Nevertheless,the productio... Recently,self-powered ultraviolet photodetectors(UV PDs)based on SnO_(2)have gained increasing interest due to its feature of working continuously without the need for external power sources.Nevertheless,the production of the majority of these existing UV PDs necessitates additional manufacturing stages or intricate processes.In this work,we present a facile,cost-effective approach for the fabrication of a self-powered UV PD based on p-Si/n-SnO_(2)junction.The self-powered device was achieved simply by integrating a p-Si substrate with a n-type SnO_(2)microbelt,which was synthesized via the chemical vapor deposition(CVD)method.The high-quality feature,coupled with the belt-like shape of the SnO_(2)microbelt enables the favorable contact between the n-type SnO_(2)and p-type silicon.The built-in electric field created at the interface endows the self-powered performance of the device.The p-Si/n-SnO_(2)junction photodetector demonstrated a high responsivity(0.12 mA/W),high light/dark current ratio(>103),and rapid response speed at zero bias.This method offers a practical way to develop cost-effective and high-performance self-powered UV PDs. 展开更多
关键词 SnO_(2)microbelt UV photodetector CVD self-powered
在线阅读 下载PDF
Designing and optimizing an intelligent self-powered condition monitoring system for mining belt conveyor idlers and its application
19
作者 Xuanbo JIAO Zhixia WANG +2 位作者 Wei WANG F.S.GU S.HEYNS 《Applied Mathematics and Mechanics(English Edition)》 2025年第9期1679-1698,共20页
Belt conveyors are extensively utilized in mining and power industries.In a typical coal mine conveyor system,coal is transported over distances exceeding 2 km,involving more than 20000 idlers,which far exceeds a reas... Belt conveyors are extensively utilized in mining and power industries.In a typical coal mine conveyor system,coal is transported over distances exceeding 2 km,involving more than 20000 idlers,which far exceeds a reasonable manual inspection capacity.Given that idlers typically have a lifespan of 1-2 years,there is an urgent need for a rapid,cost-effective,and intelligent safety monitoring system.However,current embedded systems face prohibitive replacement costs,while conventional monitoring technologies suffer from inefficiency at low rotational speeds and lack systematic structural optimization frameworks for diverse idler types and parameters.To address these challenges,this paper introduces an integrated,on-site detachable self-powered idler condition monitoring system(ICMS).This system combines energy harvesting based on the magnetic modulation technology with wireless condition monitoring capabilities.Specifically,it develops a data-driven model integrating convolutional neural networks(CNNs) with genetic algorithms(GAs).The conventional testing results show that the data-driven model not only significantly accelerates the parameter response time,but also achieves a prediction accuracy of 92.95%.The in-situ experiments conducted in coal mines demonstrate the system's reliability and monitoring functionality under both no-load and fullload conditions.This research provides an innovative self-powered condition monitoring solution and develops an efficient data-driven model,offering feasible online monitoring approaches for smart mine construction. 展开更多
关键词 intelligent safety monitoring self-powered magnetic modulation data driven model mining conveyor
在线阅读 下载PDF
Contemporary evaluation of triboelectric nanogenerators as self-powereddevices:A bibliometric analysis from 2012 to 2023
20
作者 Natalia Vargas Perdomo Minsoo P.Kim +1 位作者 Xia Li Louis A.Cuccia 《DeCarbon》 2025年第1期13-22,共10页
TriboElectric NanoGenerators(TENGs),introduced in 2012 by Wang et al.,have revolutionized the way we harvest energy,converting mechanical energy into electrical power with remarkable efficiency.Since their inception,T... TriboElectric NanoGenerators(TENGs),introduced in 2012 by Wang et al.,have revolutionized the way we harvest energy,converting mechanical energy into electrical power with remarkable efficiency.Since their inception,TENGs have unlocked innumerable applications,driving a surge in innovative research and development.This study utilizes the Scopus database to conduct a bibliographic analysis,highlighting the diverse applications,influential authors,and citation patterns that define the TENG landscape.Through the use of MATLAB and VOSviewer,we provide a visually compelling analysis that not only shows the integration of artificial intelligence in scientific literature but also explores the challenges and future potential of TENG technology.The document concludes by discussing TENGs challenges and the promising paths for their future applications. 展开更多
关键词 TriboElectric NanoGenerators(TENGs) self-powered devices Bibliometric analysis Energy harvesting Nanotechnology applications
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部