期刊文献+
共找到546,368篇文章
< 1 2 250 >
每页显示 20 50 100
A novel fractional uplink power control framework for self-organizing networks 被引量:2
1
作者 Zezhou Luo Hongcheng Zhuang 《Digital Communications and Networks》 SCIE CSCD 2023年第6期1434-1440,共7页
Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interfere... Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interference,Fractional Uplink Power Control(FUPC)should be optimized from network-wide perspective,which has to find a better traffic distribution model.Conventionally,traffic distribution is geographic-based,and ineffective due to tricky locating efforts.This paper proposes a novel uplink power management framework for Self-Organizing Networks(SON),which firstly builds up pathloss-based traffic distribution model and then makes the decision of FUPC based on the model.PathLoss-based Traffic Distribution(PLTD)aggregates traffic based on the propagation condition of traffic that is defined as the pathloss between the position generating the traffic and surrounding cells.Simulations show that the improvement in optimization efficiency of FUPC with PLTD can be up to 40%compared to conventional GeoGraphic-based Traffic Distribution(GGTD). 展开更多
关键词 5G and beyond self-organizing networks Uplink power control Optimization efficiency Traffic distribution
在线阅读 下载PDF
Impact of Self-Organizing Networks Deployment on Wireless Service Provider Businesses in China
2
作者 Usman Rauf Kamboh Qinghai Yang Meng Qin 《International Journal of Communications, Network and System Sciences》 2017年第5期78-89,共12页
Decoupling of revenues with network traffic and extreme penetration of expenses in wireless network leads to the critical situation for wireless service providers (WSP), as more wireless network is complex due to its ... Decoupling of revenues with network traffic and extreme penetration of expenses in wireless network leads to the critical situation for wireless service providers (WSP), as more wireless network is complex due to its heterogeneity in the context of planning, software & hardware installation, radio parameters setting, drive testing, optimization, healing and maintenance. These operations are time-consuming, labor & budget-intensive and error-prone if activated manually. Hence new approaches have to be designed and applied to meet those demands in a cost-effective way, Self-organizing networks (SON), is a promising approach to handle manual tasks with autonomous manners. More specifically the self-directed functions (self-planning, self-deployment, self-configuration, self-optimization and self-healing) are aid to reduce capital expenditure (CAPEX), implementation expenditure (IMPEX) and operational expenditure (OPEX). In this study, first we investigate the aforementioned impact factors of cost combined with self-functions. Then, we analyze the relative cost benefits causing from deploying the SON functions, using the economical method to have more precise results concerning those potential benefits. At last, the result shows that there is a significant difference in expenses and revenues of WSP with and without SON after enabling self-functions in wireless network. 展开更多
关键词 WIRELESS Service PROVIDERS self-organizing networks Capital EXPENDITURE Operating EXPENDITURE Operating REVENUES
暂未订购
Space-based self-organizing real-time wireless networks for satellite cluster
3
作者 Lei YANG Huaguo YANG +1 位作者 Zhenglong YIN Quan CHEN 《Chinese Journal of Aeronautics》 2025年第8期419-432,共14页
The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nod... The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nodes without the support of the Global Navigation Satellite System(GNSS)and other prior information remains a formidable challenge to real-time wireless networks design.Therefore,a self-organizing network methodology based on multi-agent negotiation is proposed,which autonomously determines the master node through collaborative negotiation and competitive elections.On this basis,a real-time network protocol design is carried out and a high-precision time synchronization method with motion compensation is proposed.Simulation results demonstrate that the proposed method enables rapid networking with the capability of selfdiscovery,self-organization,and self-healing.For a cluster of 8 satellites,the networking time and the reorganization time are less than 4 s.The time synchronization accuracy exceeds 10-10s with motion compensation,demonstrating excellent real-time performance and stability.The research presented in this paper provides a valuable reference for the design and application of spacebased self-organizing networks for satellite cluster. 展开更多
关键词 SATELLITE Real time self-organized network Time synchronization Motion compensation
原文传递
Application of Self-Organizing Feature Map Neural Network Based on K-means Clustering in Network Intrusion Detection 被引量:5
4
作者 Ling Tan Chong Li +1 位作者 Jingming Xia Jun Cao 《Computers, Materials & Continua》 SCIE EI 2019年第7期275-288,共14页
Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one... Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration. 展开更多
关键词 K-means clustering self-organizing feature map neural network network security intrusion detection NSL-KDD data set
在线阅读 下载PDF
Waterlogging risk assessment based on self-organizing map(SOM)artificial neural networks:a case study of an urban storm in Beijing 被引量:4
5
作者 LAI Wen-li WANG Hong-rui +2 位作者 WANG Cheng ZHANG Jie ZHAO Yong 《Journal of Mountain Science》 SCIE CSCD 2017年第5期898-905,共8页
Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annu... Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annuallyinthe urban area of Beijing, the capital of China. Based on a selforganizing map(SOM) artificial neural network(ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product(GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANNis suitable for automatically and quantitatively assessing risks associated with waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors,producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. The points that were assigned risk grades of IV or Vwere located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng. 展开更多
关键词 Waterlogging risk assessment self-organizing map(SOM) neural network Urban storm
原文传递
A Self-organizing Bearings-only Target Tracking Algorithm in Wireless Sensor Network 被引量:5
6
作者 Xu Zhen Rui Liyang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第6期627-636,共10页
In the bearings-only target tracking, wireless sensor network (WSN) collects observations of the target direction at various nodes and uses an adaptive filter to combine them for target tracking. An efficient networ... In the bearings-only target tracking, wireless sensor network (WSN) collects observations of the target direction at various nodes and uses an adaptive filter to combine them for target tracking. An efficient network management is necessary to gain an optimal tradeoffbetween locating accuracy and energy consumption. This article proposes a self-organizing target tracking algorithm to select the most beneficial subset of nodes to track the target at every snapshot. Compared with traditional methods, this scheme avoids the need for keeping global position information of the network as in greedy selection. Each node judges its future usefulness depending on the knowledge of its own position and using simple mathematics computation. Simulations indicate that this scheme has locating accuracy comparable to the global greedy algorithm. Also, it has good robustness against node failure and autonomous adaptability to the change of the network scale. Furthermore, this algorithm consumes limited energy because only a portion of nodes partakes in the selection at every snapshot. 展开更多
关键词 direction of arrival Kalman filtering TRACKING wireless sensor network
原文传递
Self-organizing fuzzy clustering neural network and application to electronic countermeasures effectiveness evaluation 被引量:6
7
作者 Li Zhisheng Li Junshan +1 位作者 Feng Fan Zhao Xin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期119-124,共6页
A self-organizing fuzzy clustering neural network by combining the self-organizing Kohonen clustering network with the fuzzy theory is proposed. This network model is designed for the effectiveness evaluation of elect... A self-organizing fuzzy clustering neural network by combining the self-organizing Kohonen clustering network with the fuzzy theory is proposed. This network model is designed for the effectiveness evaluation of electronic countermeasures, which not only exerts the advantages of the fuzzy theory, but also has a good ability in machine learning and data analysis. The subjective value of sample versus class is computed by the fuzzy computing theory, and the classified results obtained by self-organizing learning of Kohonen neural network are represented on output layer. Meanwhile, the fuzzy competition learning algorithm keeps the similar information between samples and overcomes the disadvantages of neural network which has fewer samples. The simulation result indicates that the proposed algorithm is feasible and effective. 展开更多
关键词 fuzzy clusteringself-organizing neural network effectiveness evaluation
在线阅读 下载PDF
Algorithm for Solving Traveling Salesman Problem Based on Self-Organizing Mapping Network 被引量:1
8
作者 朱江辉 叶航航 +1 位作者 姚莉秀 蔡云泽 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第3期463-470,共8页
Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from ... Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from the perspectives of network update strategy,initialization method,and parameter selection.This paper compares the performance of the proposed algorithms with the performance of existing SOM network algorithms on the TSP and compares them with several heuristic algorithms.Simulations show that compared with existing SOM networks,the improved SOM network proposed in this paper improves the convergence rate and algorithm accuracy.Compared with iterated local search and heuristic algorithms,the improved SOM net-work algorithms proposed in this paper have the advantage of fast calculation speed on medium-scale TSP. 展开更多
关键词 traveling salesman problem(TSP) self-organizing mapping(SOM) combinatorial optimization neu-ral network
原文传递
Research on the credit classification of practicing qualification personnel in construction market based on self-organizing neural network
9
作者 Fan Zhiqing Wang Xueqing Li Baolong 《Engineering Sciences》 EI 2011年第4期93-96,共4页
Combining with the characters of the practicing qualification personnel in construction market,evaluation method based on the self-organizing neural network is brought out to analyze the credit classification of the p... Combining with the characters of the practicing qualification personnel in construction market,evaluation method based on the self-organizing neural network is brought out to analyze the credit classification of the practicing qualification personnel. And the impact factors on the credit classification of the practicing qualification personnel,such as the number of neurons,the training steps,the dimension of neurons and the field of winning neurons are studied. Then a self-organizing competitive neural network is built. At last,a case study is conducted by taking practicing qualification personnel as an example. The research result reveals that the method can efficiently evaluate the credit of the practicing qualification personnel;thus,it could provide scientific advice to the construction enterprise to prevent relevant discreditable behaviors of some practicing qualification personnel. 展开更多
关键词 practicing qualification personnel CREDIT cluster analysis self-organizing neural network
在线阅读 下载PDF
A Self-Organizing RBF Neural Network Based on Distance Concentration Immune Algorithm 被引量:4
10
作者 Junfei Qiao Fei Li +2 位作者 Cuili Yang Wenjing Li Ke Gu 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第1期276-291,共16页
Radial basis function neural network(RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a dis... Radial basis function neural network(RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm(DCIA) is proposed to self-organize the structure and parameters of the RBFNN in this paper. First, the distance concentration algorithm, which increases the diversity of antibodies, is used to find the global optimal solution. Secondly,the information processing strength(IPS) algorithm is used to avoid the instability that is caused by the hidden layer with neurons split or deleted randomly. However, to improve the forecasting accuracy and reduce the computation time, a sample with the most frequent occurrence of maximum error is proposed to regulate the parameters of the new neuron. In addition, the convergence proof of a self-organizing RBF neural network based on distance concentration immune algorithm(DCIA-SORBFNN) is applied to guarantee the feasibility of algorithm. Finally, several nonlinear functions are used to validate the effectiveness of the algorithm. Experimental results show that the proposed DCIASORBFNN has achieved better nonlinear approximation ability than that of the art relevant competitors. 展开更多
关键词 Distance concentration immune algorithm(DCIA) information processing strength(IPS) radial basis function neural network(RBFNN)
在线阅读 下载PDF
A self-organizing shortest path finding strategy on complex networks
11
作者 沈毅 裴文江 +1 位作者 王开 王少平 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第9期3783-3789,共7页
The shortcomings of traditional methods to find the shortest path are revealed, and a strategy of finding the self- organizing shortest path based on thermal flux diffusion on complex networks is presented. In our met... The shortcomings of traditional methods to find the shortest path are revealed, and a strategy of finding the self- organizing shortest path based on thermal flux diffusion on complex networks is presented. In our method, the shortest paths between the source node and the other nodes are found to be self-organized by comparing node temperatures. The computation complexity of the method scales linearly with the number of edges on underlying networks. The effects of the method on several networks, including a regular network proposed by Ravasz and Barabasi which is called the RB network, a real network, a random network proposed by Ravasz and Barabasi which is called the ER network and a scale-free network, are also demonstrated. Analytic and simulation results show that the method has a higher accuracy and lower computational complexity than the conventional methods. 展开更多
关键词 complex networks self-organIZATION the shortest path thermal flux diffusion
原文传递
Employing a Diversity Control Approach to Optimize Self-Organizing Particle Swarm Optimization Algorithms
12
作者 Sung-Jung Hsiao Wen-Tsai Sung 《Computers, Materials & Continua》 2025年第3期3891-3905,共15页
For optimization algorithms,the most important consideration is their global optimization performance.Our research is conducted with the hope that the algorithm can robustly find the optimal solution to the target pro... For optimization algorithms,the most important consideration is their global optimization performance.Our research is conducted with the hope that the algorithm can robustly find the optimal solution to the target problem at a lower computational cost or faster speed.For stochastic optimization algorithms based on population search methods,the search speed and solution quality are always contradictory.Suppose that the random range of the group search is larger;in that case,the probability of the algorithm converging to the global optimal solution is also greater,but the search speed will inevitably slow.The smaller the random range of the group search is,the faster the search speed will be,but the algorithm will easily fall into local optima.Therefore,our method is intended to utilize heuristic strategies to guide the search direction and extract as much effective information as possible from the search process to guide an optimized search.This method is not only conducive to global search,but also avoids excessive randomness,thereby improving search efficiency.To effectively avoid premature convergence problems,the diversity of the group must be monitored and regulated.In fact,in natural bird flocking systems,the distribution density and diversity of groups are often key factors affecting individual behavior.For example,flying birds can adjust their speed in time to avoid collisions based on the crowding level of the group,while foraging birds will judge the possibility of sharing food based on the density of the group and choose to speed up or escape.The aim of this work was to verify that the proposed optimization method is effective.We compared and analyzed the performances of five algorithms,namely,self-organized particle swarm optimization(PSO)-diversity controlled inertia weight(SOPSO-DCIW),self-organized PSO-diversity controlled acceleration coefficient(SOPSO-DCAC),standard PSO(SPSO),the PSO algorithm with a linear decreasing inertia weight(SPSO-LDIW),and the modified PSO algorithm with a time-varying acceleration constant(MPSO-TVAC). 展开更多
关键词 Diversity control optimize self-organizing PSO
在线阅读 下载PDF
Scheduling Optimization and Adaptive Decision-Making Method for Self-organizing Manufacturing Systems Considering Dynamic Disturbances
13
作者 ZHANG Yi QIAO Senyu +2 位作者 YIN Leilei SUN Quan XIE Fupeng 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第3期297-309,共13页
The production mode of manufacturing industry presents characteristics of multiple varieties,small-batch and personalization,leading to frequent disturbances in workshop.Traditional centralized scheduling methods are ... The production mode of manufacturing industry presents characteristics of multiple varieties,small-batch and personalization,leading to frequent disturbances in workshop.Traditional centralized scheduling methods are difficult to achieve efficient and real-time production management under dynamic disturbance.In order to improve the intelligence and adaptability of production scheduler,a novel distributed scheduling architecture is proposed,which has the ability to autonomously allocate tasks and handle disturbances.All production tasks are scheduled through autonomous collaboration and decision-making between intelligent machines.Firstly,the multi-agent technology is applied to build a self-organizing manufacturing system,enabling each machine to be equipped with the ability of active information interaction and joint-action execution.Secondly,various self-organizing collaboration strategies are designed to effectively facilitate cooperation and competition among multiple agents,thereby flexibly achieving global perception of environmental state.To ensure the adaptability and superiority of production decisions in dynamic environment,deep reinforcement learning is applied to build a smart production scheduler:Based on the perceived environment state,the scheduler intelligently generates the optimal production strategy to guide the task allocation and resource configuration.The feasibility and effectiveness of the proposed method are verified through three experimental scenarios using a discrete manufacturing workshop as the test bed.Compared to heuristic dispatching rules,the proposed method achieves an average performance improvement of 34.0%in three scenarios in terms of order tardiness.The proposed system can provide a new reference for the design of smart manufacturing systems. 展开更多
关键词 intlligent manufacturing adaptive scheduling self-organizing manufacturing system reinforcement learning
在线阅读 下载PDF
Self-Organizing Genetic Algorithm Based Method for Constructing Bayesian Networks from Databases
14
作者 郑建军 刘玉树 陈立潮 《Journal of Beijing Institute of Technology》 EI CAS 2003年第1期23-27,共5页
The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learn... The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learning of BNs structures by general genetic algorithms is liable to converge to local extremum. To resolve efficiently this problem, a self-organizing genetic algorithm (SGA) based method for constructing BNs from databases is presented. This method makes use of a self-organizing mechanism to develop a genetic algorithm that extended the crossover operator from one to two, providing mutual competition between them, even adjusting the numbers of parents in recombination (crossover/recomposition) schemes. With the K2 algorithm, this method also optimizes the genetic operators, and utilizes adequately the domain knowledge. As a result, with this method it is able to find a global optimum of the topology of BNs, avoiding premature convergence to local extremum. The experimental results proved to be and the convergence of the SGA was discussed. 展开更多
关键词 Bayesian networks structure learning from databases self-organizing genetic algorithm
在线阅读 下载PDF
Intrusion Detection in NSL-KDD Dataset Using Hybrid Self-Organizing Map Model
15
作者 Noveela Iftikhar Mujeeb Ur Rehman +2 位作者 Mumtaz Ali Shah Mohammed J.F.Alenazi Jehad Ali 《Computer Modeling in Engineering & Sciences》 2025年第4期639-671,共33页
Intrusion attempts against Internet of Things(IoT)devices have significantly increased in the last few years.These devices are now easy targets for hackers because of their built-in security flaws.Combining a Self-Org... Intrusion attempts against Internet of Things(IoT)devices have significantly increased in the last few years.These devices are now easy targets for hackers because of their built-in security flaws.Combining a Self-Organizing Map(SOM)hybrid anomaly detection system for dimensionality reduction with the inherited nature of clustering and Extreme Gradient Boosting(XGBoost)for multi-class classification can improve network traffic intrusion detection.The proposed model is evaluated on the NSL-KDD dataset.The hybrid approach outperforms the baseline line models,Multilayer perceptron model,and SOM-KNN(k-nearest neighbors)model in precision,recall,and F1-score,highlighting the proposed approach’s scalability,potential,adaptability,and real-world applicability.Therefore,this paper proposes a highly efficient deployment strategy for resource-constrained network edges.The results reveal that Precision,Recall,and F1-scores rise 10%-30% for the benign,probing,and Denial of Service(DoS)classes.In particular,the DoS,probe,and benign classes improved their F1-scores by 7.91%,32.62%,and 12.45%,respectively. 展开更多
关键词 Intrusion detection self-organizing map Internet of Things dimensionality reduction
在线阅读 下载PDF
A Self-Organizing Memory Neural Network for Aerosol Concentration Prediction
16
作者 Qiang Liu Yanyun Zou Xiaodong Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第6期617-637,共21页
Haze-fog,which is an atmospheric aerosol caused by natural or man-made factors,seriously affects the physical and mental health of human beings.PM2.5(a particulate matter whose diameter is smaller than or equal to 2.5... Haze-fog,which is an atmospheric aerosol caused by natural or man-made factors,seriously affects the physical and mental health of human beings.PM2.5(a particulate matter whose diameter is smaller than or equal to 2.5 microns)is the chief culprit causing aerosol.To forecast the condition of PM2.5,this paper adopts the related the meteorological data and air pollutes data to predict the concentration of PM2.5.Since the meteorological data and air pollutes data are typical time series data,it is reasonable to adopt a machine learning method called Single Hidden-Layer Long Short-Term Memory Neural Network(SSHL-LSTMNN)containing memory capability to implement the prediction.However,the number of neurons in the hidden layer is difficult to decide unless manual testing is operated.In order to decide the best structure of the neural network and improve the accuracy of prediction,this paper employs a self-organizing algorithm,which uses Information Processing Capability(IPC)to adjust the number of the hidden neurons automatically during a learning phase.In a word,to predict PM2.5 concentration accurately,this paper proposes the SSHL-LSTMNN to predict PM2.5 concentration.In the experiment,not only the hourly precise prediction but also the daily longer-term prediction is taken into account.At last,the experimental results reflect that SSHL-LSTMNN performs the best. 展开更多
关键词 Haze-fog PM2.5 forecasting time series data machine learning long shortterm MEMORY NEURAL network self-organizing algorithm information processing CAPABILITY
在线阅读 下载PDF
基于Self-Organizing Maps回归算法的黄河流域降水量空间预测研究
17
作者 刘文婷 白明照 李凤云 《陕西水利》 2025年第6期9-11,16,共4页
基于Self-Organizing Maps(SOM)回归算法,构建黄河流域降水量空间预测模型。利用2020年305个气象站点降水观测数据,结合海拔、坡度、坡向、NDVI等地理环境因子,通过网格搜索法优化SOM模型参数。结果表明,SOM模型成功捕捉了黄河流域降水... 基于Self-Organizing Maps(SOM)回归算法,构建黄河流域降水量空间预测模型。利用2020年305个气象站点降水观测数据,结合海拔、坡度、坡向、NDVI等地理环境因子,通过网格搜索法优化SOM模型参数。结果表明,SOM模型成功捕捉了黄河流域降水量空间异质性,预测精度较高(R2=0.83,RMSE=47.6 mm)。降水量呈现由东南向西北递减趋势,范围在135 mm~1171 mm之间,高值区(>900 mm)主要分布在东南部,中值区(500 mm~800 mm)位中部,低值区(<400 mm)集中在西北部。该研究可为降水量空间预测提供一种有效的新途径。 展开更多
关键词 self-organizing Maps 降水量 黄河流域 空间预测
在线阅读 下载PDF
Enhanced Self-Organizing Map Neural Network for DNA Sequence Classification
18
作者 Marghny Mohamed Abeer A. Al-Mehdhar +1 位作者 Mohamed Bamatraf Moheb R. Girgis 《Intelligent Information Management》 2013年第1期25-33,共9页
The artificial neural networks (ANNs), among different soft computing methodologies are widely used to meet the challenges thrown by the main objectives of data mining classification techniques, due to their robust, p... The artificial neural networks (ANNs), among different soft computing methodologies are widely used to meet the challenges thrown by the main objectives of data mining classification techniques, due to their robust, powerful, distributed, fault tolerant computing and capability to learn in a data-rich environment. ANNs has been used in several fields, showing high performance as classifiers. The problem of dealing with non numerical data is one major obstacle prevents using them with various data sets and several domains. Another problem is their complex structure and how hands to interprets. Self-Organizing Map (SOM) is type of neural systems that can be easily interpreted, but still can’t be used with non numerical data directly. This paper presents an enhanced SOM structure to cope with non numerical data. It used DNA sequences as the training dataset. Results show very good performance compared to other classifiers. For better evaluation both micro-array structure and their sequential representation as proteins were targeted as dataset accuracy is measured accordingly. 展开更多
关键词 BIOINFORMATICS Artificial Neural networks self-organizing Map CLASSIFICATION SEQUENCE ALIGNMENT
暂未订购
Application of Self-OrganizingKohonen Network in Recognizing Small Faults
19
作者 董守华 刘天放 +1 位作者 杨文强 杨永波 《International Journal of Mining Science and Technology》 SCIE EI 2000年第1期41-44,共4页
The self-organizing Kohonen network is a fast-learning neural network used to deal with classification, clustering, interpretation and so on. On the basis of dynamics as well as kinematics of seismic reflected wave, s... The self-organizing Kohonen network is a fast-learning neural network used to deal with classification, clustering, interpretation and so on. On the basis of dynamics as well as kinematics of seismic reflected wave, small fault can be automatically recognized by using the self-organizing Kohonen artificial neural network. The experimental results indicate that this technique is feasible and has high accuracy. It is expected to become an effective method for recognizing small faults. 展开更多
关键词 small FAULT CHARACTERISTIC PARAMETER KOHONEN network RECOGNITION
在线阅读 下载PDF
Network perspective on rumination and non-suicidal self-injury among adolescents with depressive disorders
20
作者 Fang-Fang Zhang Rui Guo +3 位作者 Si-Lan Chen Wei Yang Xing-Li Liang Ming-Fang Ma 《World Journal of Psychiatry》 2026年第1期346-355,共10页
BACKGROUND Non-suicidal self-injury(NSSI)is common among adolescents with depressive disorders and poses a major public health challenge.Rumination,a key cognitive feature of depression,includes different subtypes tha... BACKGROUND Non-suicidal self-injury(NSSI)is common among adolescents with depressive disorders and poses a major public health challenge.Rumination,a key cognitive feature of depression,includes different subtypes that may relate to NSSI through distinct psychological mechanisms.However,how these subtypes interact with specific NSSI behaviors remains unclear.AIM To examine associations between rumination subtypes and specific NSSI behaviors in adolescents.METHODS We conducted a cross-sectional study with 305 hospitalized adolescents diagnosed with depressive disorders.The subjects ranged from 12-18 years in age.Rumi-nation subtypes were assessed using the Ruminative Response Scale,and 12 NSSI behaviors were evaluated using a validated questionnaire.Network analysis was applied to explore symptom-level associations and identify central symptoms.RESULTS The network analysis revealed close connections between rumination subtypes and NSSI behaviors.Brooding was linked to behaviors such as hitting objects and burning.Scratching emerged as the most influential NSSI symptom.Symptomfocused rumination served as a key bridge connecting rumination and NSSI.CONCLUSION Symptom-focused rumination and scratching were identified as potential intervention targets.These findings highlight the psychological significance of specific cognitive-behavioral links in adolescent depression and suggest directions for tailored prevention and treatment.However,the cross-sectional,single-site design limits causal inference and generalizability.Future longitudinal and multi-center studies are needed to confirm causal pathways and verify the generalizability of the findings to broader adolescent populations. 展开更多
关键词 Depressive disorders Adolescents network analysis RUMINATION Non-suicidal self-injury
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部