This paper deeply explores the autonomous collision avoidance algorithm for intelligent ships,aiming to enhance the intelligence level and safety of ship collision avoidance by integrating navigation experience.An aut...This paper deeply explores the autonomous collision avoidance algorithm for intelligent ships,aiming to enhance the intelligence level and safety of ship collision avoidance by integrating navigation experience.An autonomous collision avoidance algorithm based on navigation experience is designed,a collision avoidance experience database is constructed,a quantitative model is established,and specific algorithm steps are implemented.The algorithm is verified and analyzed through simulation tests.The results show that the algorithm can effectively achieve autonomous ship collision avoidance in different scenarios,providing new ideas and methods for the development of intelligent ship collision avoidance technology.展开更多
In designing modern vessels, calculating the propulsion performance of ships in ice is important, including propeller effective thrust, number of revolutions, consumed power, and ship speed. Such calculations allow fo...In designing modern vessels, calculating the propulsion performance of ships in ice is important, including propeller effective thrust, number of revolutions, consumed power, and ship speed. Such calculations allow for more accurate prediction of the ice performance of a designed ship and provide inputs for designers of ship power and automation systems. Preliminary calculations of ship propulsion and thrust characteristics in ice can enable predictions of full-scale ice resistance without measuring the propeller thrust during sea trials. Measuring propeller revolutions,ship speed, and the power delivered to propellers could be sufficient to determine the propeller thrust of the vessel. At present, significant difficulties arise in determining the thrust of icebreakers and ice-class ships in ice conditions. These challenges are related to the fact that the traditional system of propeller/hull interaction coefficients does not function correctly in ice conditions. The wake fraction becomes negative and tends to minus infinity starting from a certain value of the propeller advance coefficient. This issue prevents accurate determination of the performance characteristics, thrust, and rotational speed of the propulsors. In this study, an alternative system of propeller/hull interaction coefficients for ice is proposed. It enables the calculation of all propulsion parameters in ice based on standard hydrodynamic tests with selfpropulsion models. An experimental method is developed to determine alternative propeller/hull interaction coefficients. A prediction method is suggested to determine propulsion performance in ice based on the alternative interaction coefficient system. A case study applying the propulsion prediction method for ice conditions is provided. This study also discusses the following issues of ship operation in ice: the scale effect of icebreaker propellers and the prospects for introducing an ice interaction coefficient.展开更多
To improve the efficiency of ship traffic in frequently traded sea areas and respond to the national“dual-carbon”strategy,a multi-objective ship route induction model is proposed.Considering the energy-saving and en...To improve the efficiency of ship traffic in frequently traded sea areas and respond to the national“dual-carbon”strategy,a multi-objective ship route induction model is proposed.Considering the energy-saving and environmental issues of ships,this study aims to improve the transportation efficiency of ships by providing a ship route induction method.Ship data from a certain bay during a defined period are collected,and an improved backpropagation neural network algorithm is used to forecast ship traffic.On the basis of the forecasted data and ship route induction objectives,dynamic programming of ship routes is performed.Experimental results show that the routes planned using this induction method reduce the combined cost by 17.55%compared with statically induced routes.This method has promising engineering applications in improving ship navigation efficiency,promoting energy conservation,and reducing emissions.展开更多
Hydrogen fuel cell ships are one of the key solutions to achieving zero carbon emissions in shipping.Multi-fuel cell stacks(MFCS)systems are frequently employed to fulfill the power requirements of high-load power equ...Hydrogen fuel cell ships are one of the key solutions to achieving zero carbon emissions in shipping.Multi-fuel cell stacks(MFCS)systems are frequently employed to fulfill the power requirements of high-load power equipment on ships.Compared to single-stack system,MFCS may be difficult to apply traditional energy management strategies(EMS)due to their complex structure.In this paper,a two-layer power allocation strategy for MFCS of a hydrogen fuel cell ship is proposed to reduce the complexity of the allocation task by splitting it into each layer of the EMS.The first layer of the EMSis centered on the Nonlinear Model Predictive Control(NMPC).The Northern Goshawk Optimization(NGO)algorithm is used to solve the nonlinear optimization problem in NMPC,and the local fine search is performed using sequential quadratic programming(SQP).Based on the power allocation results of the first layer,the second layer is centered on a fuzzy rule-based adaptive power allocation strategy(AP-Fuzzy).The membership function bounds of the fuzzy controller are related to the aging level of the MFCS.The Particle Swarm Optimization(PSO)algorithm is used to optimize the parameters of the residual membership function to improve the performance of the proposed strategy.The effectiveness of the proposed EMS is verified by comparing it with the traditional EMS.The experimental results show that the EMS proposed in this paper can ensure reasonable hydrogen consumption,slow down the FC aging and equalize its performance,effectively extend the system life,and ensure that the ship has good endurance after completing the mission.展开更多
In this paper, Neural Networks (NNs) are used in the modeling of ship maneuvering motion. A nonlinear response model and a linear hydrodynamic model of ship maneuvering motion are also investigated. The maneuverabil...In this paper, Neural Networks (NNs) are used in the modeling of ship maneuvering motion. A nonlinear response model and a linear hydrodynamic model of ship maneuvering motion are also investigated. The maneuverability indices and linear non-dimensional hydrodynamic derivatives in the models are identified by using two-layer feed forward NNs. The stability of parametric estimation is confirmed. Then, the ship maneuvering motion is predicted based on the obtained models. A comparison between the predicted results and the model test results demonstrates the validity of the proposed modeling method.展开更多
A path following controller is developed for underactuated ships with only surge force and yaw moment available to follow a predefined path.The proposed controller is based on nonswitch analytic model predictive contr...A path following controller is developed for underactuated ships with only surge force and yaw moment available to follow a predefined path.The proposed controller is based on nonswitch analytic model predictive control.It is shown that the optimal control law for a nonlinear path following system with ill-defined relative degree is continuous and nonsingular.The problem of ill-defined relative degree is solved.The path-following ability of the nonlinear system is guaranteed.Numerical simulations are provided to demonstrate the effectiveness of the proposed control law.展开更多
Nowadays, the mitigation of damage to a ship caused by the underwater explosion attracts more and more attention from the modern ship designers. In this study, two kinds of scale tests were conducted to investigate th...Nowadays, the mitigation of damage to a ship caused by the underwater explosion attracts more and more attention from the modern ship designers. In this study, two kinds of scale tests were conducted to investigate the effects of polyurea coatings on the blast resistance of hulls subjected to underwater explosion. Firstly, small-scale model tests with different polyurea coatings were carried out. Results indicate that polyurea has a better blast resistance performance when coated on the front face, which can effectively reduce the maximum deflection of the steel plate by more than 20% and reduce the deformation energy by 35.7%-45.4%. Next, a full-scale ship(approximately 50 m × 9 m) under loadings produced by the detonation of 33 kg of spherical TNT charges was tested, where a part of the ship was coated with polyurea on the front face(8 mm + 24 mm) and not on the contrast area. Damage characteristics on the bottom were statistically analyzed based on a 3D scanning technology, indicating that polyurea contributes to enhancing the blast protection of the ship. However, damage results of this test were different from those of the small-scale tests. Moreover, the deformation area of the bottom with polyurea was greatly increased by 40.1% to disperse explosion energy, a conclusion that cannot be drown from the small-scale tests.展开更多
An experimental investigation is performed to assess the relation of interference performance on the total resistance of a pentamaran model advancing in calm water. For this motivation, the total drag of the ship is ...An experimental investigation is performed to assess the relation of interference performance on the total resistance of a pentamaran model advancing in calm water. For this motivation, the total drag of the ship is performed for several values of asymmetric outrigger configuration and hull separation, altering the Froude number in the range 0.3–0.9. Our results indicate that remarkable changes in resistance require notable changes in transverse distance values (hull separation) when wave interference may occur. In addition, there is no single configuration that consistently outperforms the other configurations across the entire speed range and the optimum interference factor -0.2 appears at a Froude number of 0.45 in S/L=0.33 with the outrigger outer position: asymmetric outboard for A3 configuration.展开更多
To control the vibration level of ships under construction,MSC Software’s Patran&Nastran modeling solutions can be used to establish a detailed finite element model of a new manned submersible support mother ship...To control the vibration level of ships under construction,MSC Software’s Patran&Nastran modeling solutions can be used to establish a detailed finite element model of a new manned submersible support mother ship based on a line drawing,including the deck layout,bulkhead section,and stiffener distribution.After a comprehensive analysis of the ship simulation conditions,boundaries,and excitation forces of the main operating equipment,modal analysis and calculation of the ship vibration can be conducted.In this study,we calculated and analyzed the vibration response of key points in the stern area of the ship’s main deck and the submersible warehouse area under design loading working conditions.We then analyzed the vibration response of typical decks(including the compass deck,steering deck,captain’s deck,forecastle deck,and main deck)under the main excitation forces and moments(such as the full swing pod and generator sets).The analysis results showed that under DESIDEP working conditions,the vibration of each deck and key areas of the support mother ship could meet the vibration code requirements of the ship’s preliminary design(using the pod excitation and generator sets).Similarly,the vibration response of a scientific research ship under other loading conditions also met the requirements of the code and provided data support for a comprehensive understanding of the ship’s vibration and noise levels.Using actual vibration measurements,the accuracy of the vibration level simulations using finite element modeling was verified,the vibration of each area of the ship comfortably meeting the requirements of the China Classification Society.展开更多
In order to enhance the authenticity and accuracy of passenger evacuation simulation in ships, a new multi-grid model was proposed on the basis of a traditional cellular automata model. In the new model finer lattices...In order to enhance the authenticity and accuracy of passenger evacuation simulation in ships, a new multi-grid model was proposed on the basis of a traditional cellular automata model. In the new model finer lattices were used, interaction of force among pedestrians or between pedestrians and constructions was considered, and static floor fields in a multi-level exit environment were simplified into cabin and exit static floor fields. Compared with the traditional cellular automata model, the multi-grid model enhanced the continuity of the passengers'track and the precision of the boundary qualifications. The functions of the dislocation distribution of passengers as well as partial overlap of tracks due to congestion were realized. Furthermore, taking the typical cabin environment as an example, the two models were used to analyze passenger evacuation under the same conditions. It was found that the laws of passenger evacuation simulated by the two models are similar, while the simulation's authenticity and accuracy are enhanced by the multi-grid model.展开更多
Conducting model experiments is an effective and reliable way in the investigation of ship hydrodynamic and hydroelastic behaviors. A survey of model testing techniques for ship hydroelasticity and its prospect are pr...Conducting model experiments is an effective and reliable way in the investigation of ship hydrodynamic and hydroelastic behaviors. A survey of model testing techniques for ship hydroelasticity and its prospect are presented in this paper. The research highlights with respect to ship hydroelasticity and key points in model testing are summarized at first. Then testing techniques including laboratory tank test and full-scale sea trial are reviewed, and both their advantages and disadvantages are analyzed comprehensively. Based on the conventional testing approaches, a state-of-the-art testing approach which includes performing tests using large-scale model at sea is proposed. Furthermore, recommendations towards the further development of ship hydroelasticity tests are forecasted and discussed.展开更多
A one-dimensional consolidation-creep model test on the creep deformation of soft muddy clay in the littoral area of Tianjin is performed. A nonlinear rheologic model is established and the model coefficients are dete...A one-dimensional consolidation-creep model test on the creep deformation of soft muddy clay in the littoral area of Tianjin is performed. A nonlinear rheologic model is established and the model coefficients are determined, in consideration of the characteristics of soft muddy clay. Furthermore, a settlement equation is deduced from the theologic model and verified by the field settlement measurements of Beitang Reservoir dam in Tianjin littoral area. Finally, the settlement e- quation is applied in calculating the settlement of "FAIRWAY-" suction dredger, which sunk in the external channel of Tianjin Port, induced by the soft clay consolidation of seabed. These results provide useful information for the decision of salvage plan.展开更多
This paper proposes a risk assessment model considering danger zone,capsizing time,and evaluation time factors(DCEFM)to quantify the emergency risk of ship inflow and calculate the degree of different factors to the e...This paper proposes a risk assessment model considering danger zone,capsizing time,and evaluation time factors(DCEFM)to quantify the emergency risk of ship inflow and calculate the degree of different factors to the emergency risk of water inflow.The DCEFM model divides the water inflow risk factors into danger zone,capsizing time,and evacuation time factors.The danger zone,capsizing time,and evacuation factors are calculated on the basis of damage stability probability,the numerical simulation of water inflow,and personnel evacuation simulation,respectively.The risk of a capsizing scenario is quantified by risk loss.The functional relationship between the location of the danger zone and the probability of damage,the information of breach and the water inflow time,the inclination angle and the evacuation time,and the contribution of different factors to the risk model of ship water inflow are obtained.Results of the DCEFM show that the longitudinal position of the damaged zone and the area of the breach have the greatest impact on the risk.A simple local watertight plate adjustment in the high-risk area can improve the safety of the ship.展开更多
This paper presents the test of a ship model for the design of a backward-bent duct oscillating water column type wave energy conversion system, to supply electric power for a light ship. This system suggests a new wa...This paper presents the test of a ship model for the design of a backward-bent duct oscillating water column type wave energy conversion system, to supply electric power for a light ship. This system suggests a new way to produce electric power automatically for large light ships.展开更多
NVA mild steel is a commonly used material in the shipbuilding industry.An accurate model for description of this material’s ductile fracture behaviour in numerical simulation is still a challenging task.In this pape...NVA mild steel is a commonly used material in the shipbuilding industry.An accurate model for description of this material’s ductile fracture behaviour in numerical simulation is still a challenging task.In this paper,a new method for predicting the critical void volume fraction fc in the Guson-Tvergaard-Needleman(GTN)model is introduced to describe the ductile fracture behaviour of NVA shipbuilding mild steel during ship collision and grounding scenarios.Most of the previous methods for determination of the parameter fc use a converse method,which determines the values of the parameters through comparisons between experi-mental results and numerical simulation results but with high uncertainty.A new method is proposed based on the Hill,Bressan,and Williams hypothesis,which reduces the uncertainty to a satisfying extent.To accurately describe the stress-strain relationship of materials before and after necking,a combination of the Voce and Swift models is used to describe the material properties of NVA mild steel.A user-defined material subroutine has been developed to enable the application of the new parameter deter-mination method and its implementation in the finite element software LS-DYNA.It is observed that the model can accurately describe structural damage by comparing the numerical simulation results with those of experiments;thus,the results demon-strate the model’s capacity for structural response prediction in ship collision and grounding scenario simulations。展开更多
The modeling of a ship steering integrated simulator(SSIS)applied to the design,debugging and maintenance of an autopilot is discussed.A nonlinear responsive model is proposed and applied to the design of SSIS.The SSI...The modeling of a ship steering integrated simulator(SSIS)applied to the design,debugging and maintenance of an autopilot is discussed.A nonlinear responsive model is proposed and applied to the design of SSIS.The SSIS generates real signals of the ship heading,the rudder angle,the ship position and the output to the autopilot.A variety of factors,such as ship speed variety,shallow water effect,nonlinearity of yaw and actuator,and environmental disturbances like wind,wave and current are considered carefully.Detailed formulas for calculating relevant parameters are provided.Taken a naval ship as an example,the physical-digital simulations on SSIS and the digital simulation on a Marine System Simulator(MSS)were conducted separately in various sailing conditions.Simulation results show that the simple nonlinear responsive model can be applied to ship motion control and simulation with sufficient accuracy and effectiveness.展开更多
This paper aims to evaluate the feasibility of pressure-dependent models in the design of ship piping systems.For this purpose,a complex ship piping system is designed to operate in firefighting and bilge services thr...This paper aims to evaluate the feasibility of pressure-dependent models in the design of ship piping systems.For this purpose,a complex ship piping system is designed to operate in firefighting and bilge services through jet pumps.The system is solved as pressure-dependent model by the piping system analysis software EPANET and by a mathematical approach involving a piping network model.This results in a functional system that guarantees the recommendable ranges of hydraulic state variables(flow and pressure)and compliance with the rules of ship classification societies.Through this research,the suitability and viability of pressure-dependent models in the simulation of a ship piping system are proven.展开更多
There have been a great demand for a suitable and convenient method in the field of buckling analysis of stiffened ship structures, which is essential to structural safety assessment and is significantly time-consumin...There have been a great demand for a suitable and convenient method in the field of buckling analysis of stiffened ship structures, which is essential to structural safety assessment and is significantly time-consuming. Modeling, buckling behaviors and ultimate strength prediction of stiffened panels were investigated. The modeling specification including nonlinear finite element model and imperfections generation, and post-buckling analysis procedure of stiffened plates were demonstrated. And a software tool using set-based finite element method was developed and executed in the MSC. Marc environment. Different types of stiffen panels of marine structures have been employed to investigate the buckling behavior and assess the validity in the estimation of ultimate strength. A comparison between results of the generally accepted methods, experiments and the software tool developed was demonstrated. It is shown that the software tool can predict the ultimate capacity of stiffened panels with imperfections with a good accuracy.展开更多
A new method of virtual ship assembly modeling which integrates ship three-dimensional design and ship construction planning was described in this paper. A workflow model of simulation modeling based on the virtual sh...A new method of virtual ship assembly modeling which integrates ship three-dimensional design and ship construction planning was described in this paper. A workflow model of simulation modeling based on the virtual ship assembly process was also established; furthermore, a method of information transformation between the ship three-dimensional design and ship construction plan was formulated. To meet the requirements of information sharing between different systems in the ship virtual assembly, a simulation database was created by using the software engineering design method and the relational data model. With the application of this database, the information of ship three-dimensional design, construction planning, and virtual assembly can be integrated into one system. Subsequently, this new method was applied as a tool to simulate the virtual assembly of a ship, and the results guarantee its rationality and reliability.展开更多
The study of emergency evacuation in public spaces,buildings and large ships may present parallel characteristic in terms of complexity of the layout but there are also significant differences that can hinder passenge...The study of emergency evacuation in public spaces,buildings and large ships may present parallel characteristic in terms of complexity of the layout but there are also significant differences that can hinder passengers to reach muster stations or the lifeboats.There are many hazards on a ship that can cause an emergency evacuation,the most severe result in loss of lives.Providing safe and effective evacuation of passengers from ships in an emergency situation becomes critical.Recently,computer simulation has become an indispensable technology in various fields,among them,the evacuation models that recently evolved incorporating human behavioral factors.In this work,an analysis of evacuation in a Landing Helicopter Dock(LHD)ship was conducted.Escape routes specified by the ship’s procedures were introduced in the model and the six emergency scenarios of the Naval Ship Code were simulated.The crew and embarked troops were introduced with their different evacuation behavior,in addition,walking speeds were extracted from data set collected in experiments conducted at other warships.From the results of the simulations,the longest time was chosen and confidence intervals constructed to determine the total evacuation time.Finally,results show that evacuation time meets regulatory requirements and the usefulness and low cost of the evacuation simulation for testing and refining possible ships’layouts and emergency scenarios.展开更多
基金Research and Development of Unmanned Vessel System Based on Intelligent Ship-Shore Collaborative Technology,Hainan University of Science and Technology Science Research(HKKY2024-79)。
文摘This paper deeply explores the autonomous collision avoidance algorithm for intelligent ships,aiming to enhance the intelligence level and safety of ship collision avoidance by integrating navigation experience.An autonomous collision avoidance algorithm based on navigation experience is designed,a collision avoidance experience database is constructed,a quantitative model is established,and specific algorithm steps are implemented.The algorithm is verified and analyzed through simulation tests.The results show that the algorithm can effectively achieve autonomous ship collision avoidance in different scenarios,providing new ideas and methods for the development of intelligent ship collision avoidance technology.
基金supported by a grant No. 23-19-00039 of Russian Research Fund “Theoretical basis and application tools for developing a system of intellectual fleet planning and support of decisions on Arctic navigation”。
文摘In designing modern vessels, calculating the propulsion performance of ships in ice is important, including propeller effective thrust, number of revolutions, consumed power, and ship speed. Such calculations allow for more accurate prediction of the ice performance of a designed ship and provide inputs for designers of ship power and automation systems. Preliminary calculations of ship propulsion and thrust characteristics in ice can enable predictions of full-scale ice resistance without measuring the propeller thrust during sea trials. Measuring propeller revolutions,ship speed, and the power delivered to propellers could be sufficient to determine the propeller thrust of the vessel. At present, significant difficulties arise in determining the thrust of icebreakers and ice-class ships in ice conditions. These challenges are related to the fact that the traditional system of propeller/hull interaction coefficients does not function correctly in ice conditions. The wake fraction becomes negative and tends to minus infinity starting from a certain value of the propeller advance coefficient. This issue prevents accurate determination of the performance characteristics, thrust, and rotational speed of the propulsors. In this study, an alternative system of propeller/hull interaction coefficients for ice is proposed. It enables the calculation of all propulsion parameters in ice based on standard hydrodynamic tests with selfpropulsion models. An experimental method is developed to determine alternative propeller/hull interaction coefficients. A prediction method is suggested to determine propulsion performance in ice based on the alternative interaction coefficient system. A case study applying the propulsion prediction method for ice conditions is provided. This study also discusses the following issues of ship operation in ice: the scale effect of icebreaker propellers and the prospects for introducing an ice interaction coefficient.
基金Supported by the National Key R&D Program of China project (2017YFC0805309)the National Natural Science Foundation of China (60602020)。
文摘To improve the efficiency of ship traffic in frequently traded sea areas and respond to the national“dual-carbon”strategy,a multi-objective ship route induction model is proposed.Considering the energy-saving and environmental issues of ships,this study aims to improve the transportation efficiency of ships by providing a ship route induction method.Ship data from a certain bay during a defined period are collected,and an improved backpropagation neural network algorithm is used to forecast ship traffic.On the basis of the forecasted data and ship route induction objectives,dynamic programming of ship routes is performed.Experimental results show that the routes planned using this induction method reduce the combined cost by 17.55%compared with statically induced routes.This method has promising engineering applications in improving ship navigation efficiency,promoting energy conservation,and reducing emissions.
基金supported by the National Key R&D Program of China(2022YFB4301403).
文摘Hydrogen fuel cell ships are one of the key solutions to achieving zero carbon emissions in shipping.Multi-fuel cell stacks(MFCS)systems are frequently employed to fulfill the power requirements of high-load power equipment on ships.Compared to single-stack system,MFCS may be difficult to apply traditional energy management strategies(EMS)due to their complex structure.In this paper,a two-layer power allocation strategy for MFCS of a hydrogen fuel cell ship is proposed to reduce the complexity of the allocation task by splitting it into each layer of the EMS.The first layer of the EMSis centered on the Nonlinear Model Predictive Control(NMPC).The Northern Goshawk Optimization(NGO)algorithm is used to solve the nonlinear optimization problem in NMPC,and the local fine search is performed using sequential quadratic programming(SQP).Based on the power allocation results of the first layer,the second layer is centered on a fuzzy rule-based adaptive power allocation strategy(AP-Fuzzy).The membership function bounds of the fuzzy controller are related to the aging level of the MFCS.The Particle Swarm Optimization(PSO)algorithm is used to optimize the parameters of the residual membership function to improve the performance of the proposed strategy.The effectiveness of the proposed EMS is verified by comparing it with the traditional EMS.The experimental results show that the EMS proposed in this paper can ensure reasonable hydrogen consumption,slow down the FC aging and equalize its performance,effectively extend the system life,and ensure that the ship has good endurance after completing the mission.
基金Partially Supported by the Special Item for the Fujian Provincial Department of Ocean and Fisheries(No.MHGX-16)the Special Item for Universities in Fujian Province by the Education Department(No.JK15003)
文摘In this paper, Neural Networks (NNs) are used in the modeling of ship maneuvering motion. A nonlinear response model and a linear hydrodynamic model of ship maneuvering motion are also investigated. The maneuverability indices and linear non-dimensional hydrodynamic derivatives in the models are identified by using two-layer feed forward NNs. The stability of parametric estimation is confirmed. Then, the ship maneuvering motion is predicted based on the obtained models. A comparison between the predicted results and the model test results demonstrates the validity of the proposed modeling method.
基金supported by the National Natural Science Foundation of China(No.50779033)the National High Technology Research and Development Program(863 Program)of China(No.2007AA11Z250)
文摘A path following controller is developed for underactuated ships with only surge force and yaw moment available to follow a predefined path.The proposed controller is based on nonswitch analytic model predictive control.It is shown that the optimal control law for a nonlinear path following system with ill-defined relative degree is continuous and nonsingular.The problem of ill-defined relative degree is solved.The path-following ability of the nonlinear system is guaranteed.Numerical simulations are provided to demonstrate the effectiveness of the proposed control law.
基金the project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology).The project number is NO.QNKT19-04.
文摘Nowadays, the mitigation of damage to a ship caused by the underwater explosion attracts more and more attention from the modern ship designers. In this study, two kinds of scale tests were conducted to investigate the effects of polyurea coatings on the blast resistance of hulls subjected to underwater explosion. Firstly, small-scale model tests with different polyurea coatings were carried out. Results indicate that polyurea has a better blast resistance performance when coated on the front face, which can effectively reduce the maximum deflection of the steel plate by more than 20% and reduce the deformation energy by 35.7%-45.4%. Next, a full-scale ship(approximately 50 m × 9 m) under loadings produced by the detonation of 33 kg of spherical TNT charges was tested, where a part of the ship was coated with polyurea on the front face(8 mm + 24 mm) and not on the contrast area. Damage characteristics on the bottom were statistically analyzed based on a 3D scanning technology, indicating that polyurea contributes to enhancing the blast protection of the ship. However, damage results of this test were different from those of the small-scale tests. Moreover, the deformation area of the bottom with polyurea was greatly increased by 40.1% to disperse explosion energy, a conclusion that cannot be drown from the small-scale tests.
文摘An experimental investigation is performed to assess the relation of interference performance on the total resistance of a pentamaran model advancing in calm water. For this motivation, the total drag of the ship is performed for several values of asymmetric outrigger configuration and hull separation, altering the Froude number in the range 0.3–0.9. Our results indicate that remarkable changes in resistance require notable changes in transverse distance values (hull separation) when wave interference may occur. In addition, there is no single configuration that consistently outperforms the other configurations across the entire speed range and the optimum interference factor -0.2 appears at a Froude number of 0.45 in S/L=0.33 with the outrigger outer position: asymmetric outboard for A3 configuration.
基金Supported by the Research and Implementation of Sea Trial Technology(Grant No.2016YFC03000704).
文摘To control the vibration level of ships under construction,MSC Software’s Patran&Nastran modeling solutions can be used to establish a detailed finite element model of a new manned submersible support mother ship based on a line drawing,including the deck layout,bulkhead section,and stiffener distribution.After a comprehensive analysis of the ship simulation conditions,boundaries,and excitation forces of the main operating equipment,modal analysis and calculation of the ship vibration can be conducted.In this study,we calculated and analyzed the vibration response of key points in the stern area of the ship’s main deck and the submersible warehouse area under design loading working conditions.We then analyzed the vibration response of typical decks(including the compass deck,steering deck,captain’s deck,forecastle deck,and main deck)under the main excitation forces and moments(such as the full swing pod and generator sets).The analysis results showed that under DESIDEP working conditions,the vibration of each deck and key areas of the support mother ship could meet the vibration code requirements of the ship’s preliminary design(using the pod excitation and generator sets).Similarly,the vibration response of a scientific research ship under other loading conditions also met the requirements of the code and provided data support for a comprehensive understanding of the ship’s vibration and noise levels.Using actual vibration measurements,the accuracy of the vibration level simulations using finite element modeling was verified,the vibration of each area of the ship comfortably meeting the requirements of the China Classification Society.
基金Supported by the Ph.D Programs Foundation of Ministryof Education of China under Grant No.201023041108the Fundamental Research Funds for the Central Universities under Grant No.61004008
文摘In order to enhance the authenticity and accuracy of passenger evacuation simulation in ships, a new multi-grid model was proposed on the basis of a traditional cellular automata model. In the new model finer lattices were used, interaction of force among pedestrians or between pedestrians and constructions was considered, and static floor fields in a multi-level exit environment were simplified into cabin and exit static floor fields. Compared with the traditional cellular automata model, the multi-grid model enhanced the continuity of the passengers'track and the precision of the boundary qualifications. The functions of the dislocation distribution of passengers as well as partial overlap of tracks due to congestion were realized. Furthermore, taking the typical cabin environment as an example, the two models were used to analyze passenger evacuation under the same conditions. It was found that the laws of passenger evacuation simulated by the two models are similar, while the simulation's authenticity and accuracy are enhanced by the multi-grid model.
基金the National Natural Science Foundations of China(Nos.51679049 and 51079034)
文摘Conducting model experiments is an effective and reliable way in the investigation of ship hydrodynamic and hydroelastic behaviors. A survey of model testing techniques for ship hydroelasticity and its prospect are presented in this paper. The research highlights with respect to ship hydroelasticity and key points in model testing are summarized at first. Then testing techniques including laboratory tank test and full-scale sea trial are reviewed, and both their advantages and disadvantages are analyzed comprehensively. Based on the conventional testing approaches, a state-of-the-art testing approach which includes performing tests using large-scale model at sea is proposed. Furthermore, recommendations towards the further development of ship hydroelasticity tests are forecasted and discussed.
基金the National Natural Science Foundation of China (Grant No.50579046)the Science and Technology Project of West China Traffic Construction (Grant No.200632800003-06)
文摘A one-dimensional consolidation-creep model test on the creep deformation of soft muddy clay in the littoral area of Tianjin is performed. A nonlinear rheologic model is established and the model coefficients are determined, in consideration of the characteristics of soft muddy clay. Furthermore, a settlement equation is deduced from the theologic model and verified by the field settlement measurements of Beitang Reservoir dam in Tianjin littoral area. Finally, the settlement e- quation is applied in calculating the settlement of "FAIRWAY-" suction dredger, which sunk in the external channel of Tianjin Port, induced by the soft clay consolidation of seabed. These results provide useful information for the decision of salvage plan.
基金Supported by the National Natural Science Foundation of China(51509060)the Natural Science Foundation of Heilongjiang Province of China(YQ2021E014).
文摘This paper proposes a risk assessment model considering danger zone,capsizing time,and evaluation time factors(DCEFM)to quantify the emergency risk of ship inflow and calculate the degree of different factors to the emergency risk of water inflow.The DCEFM model divides the water inflow risk factors into danger zone,capsizing time,and evacuation time factors.The danger zone,capsizing time,and evacuation factors are calculated on the basis of damage stability probability,the numerical simulation of water inflow,and personnel evacuation simulation,respectively.The risk of a capsizing scenario is quantified by risk loss.The functional relationship between the location of the danger zone and the probability of damage,the information of breach and the water inflow time,the inclination angle and the evacuation time,and the contribution of different factors to the risk model of ship water inflow are obtained.Results of the DCEFM show that the longitudinal position of the damaged zone and the area of the breach have the greatest impact on the risk.A simple local watertight plate adjustment in the high-risk area can improve the safety of the ship.
文摘This paper presents the test of a ship model for the design of a backward-bent duct oscillating water column type wave energy conversion system, to supply electric power for a light ship. This system suggests a new way to produce electric power automatically for large light ships.
文摘NVA mild steel is a commonly used material in the shipbuilding industry.An accurate model for description of this material’s ductile fracture behaviour in numerical simulation is still a challenging task.In this paper,a new method for predicting the critical void volume fraction fc in the Guson-Tvergaard-Needleman(GTN)model is introduced to describe the ductile fracture behaviour of NVA shipbuilding mild steel during ship collision and grounding scenarios.Most of the previous methods for determination of the parameter fc use a converse method,which determines the values of the parameters through comparisons between experi-mental results and numerical simulation results but with high uncertainty.A new method is proposed based on the Hill,Bressan,and Williams hypothesis,which reduces the uncertainty to a satisfying extent.To accurately describe the stress-strain relationship of materials before and after necking,a combination of the Voce and Swift models is used to describe the material properties of NVA mild steel.A user-defined material subroutine has been developed to enable the application of the new parameter deter-mination method and its implementation in the finite element software LS-DYNA.It is observed that the model can accurately describe structural damage by comparing the numerical simulation results with those of experiments;thus,the results demon-strate the model’s capacity for structural response prediction in ship collision and grounding scenario simulations。
文摘The modeling of a ship steering integrated simulator(SSIS)applied to the design,debugging and maintenance of an autopilot is discussed.A nonlinear responsive model is proposed and applied to the design of SSIS.The SSIS generates real signals of the ship heading,the rudder angle,the ship position and the output to the autopilot.A variety of factors,such as ship speed variety,shallow water effect,nonlinearity of yaw and actuator,and environmental disturbances like wind,wave and current are considered carefully.Detailed formulas for calculating relevant parameters are provided.Taken a naval ship as an example,the physical-digital simulations on SSIS and the digital simulation on a Marine System Simulator(MSS)were conducted separately in various sailing conditions.Simulation results show that the simple nonlinear responsive model can be applied to ship motion control and simulation with sufficient accuracy and effectiveness.
文摘This paper aims to evaluate the feasibility of pressure-dependent models in the design of ship piping systems.For this purpose,a complex ship piping system is designed to operate in firefighting and bilge services through jet pumps.The system is solved as pressure-dependent model by the piping system analysis software EPANET and by a mathematical approach involving a piping network model.This results in a functional system that guarantees the recommendable ranges of hydraulic state variables(flow and pressure)and compliance with the rules of ship classification societies.Through this research,the suitability and viability of pressure-dependent models in the simulation of a ship piping system are proven.
基金Projects(51575535,51805551)supported by the National Natural Science Foundation of ChinaProject(ZZYJKT2018-15)supported by the of State Key Laboratory of High Performance Complex Manufacturing,China+1 种基金Project(2015CX002)supported by the Innovation-driven Plan in Central South University,ChinaProject(2018BB30501)supported by the Key R&D Program of Liuzhou City,China
文摘There have been a great demand for a suitable and convenient method in the field of buckling analysis of stiffened ship structures, which is essential to structural safety assessment and is significantly time-consuming. Modeling, buckling behaviors and ultimate strength prediction of stiffened panels were investigated. The modeling specification including nonlinear finite element model and imperfections generation, and post-buckling analysis procedure of stiffened plates were demonstrated. And a software tool using set-based finite element method was developed and executed in the MSC. Marc environment. Different types of stiffen panels of marine structures have been employed to investigate the buckling behavior and assess the validity in the estimation of ultimate strength. A comparison between results of the generally accepted methods, experiments and the software tool developed was demonstrated. It is shown that the software tool can predict the ultimate capacity of stiffened panels with imperfections with a good accuracy.
基金Supported by Key National Science & Technology Specific Projects under Grant No. 2008ZX05027-005-002
文摘A new method of virtual ship assembly modeling which integrates ship three-dimensional design and ship construction planning was described in this paper. A workflow model of simulation modeling based on the virtual ship assembly process was also established; furthermore, a method of information transformation between the ship three-dimensional design and ship construction plan was formulated. To meet the requirements of information sharing between different systems in the ship virtual assembly, a simulation database was created by using the software engineering design method and the relational data model. With the application of this database, the information of ship three-dimensional design, construction planning, and virtual assembly can be integrated into one system. Subsequently, this new method was applied as a tool to simulate the virtual assembly of a ship, and the results guarantee its rationality and reliability.
基金the Spanish Ministry of Economy and Competitiveness through the research project TIN2016-76770-R.
文摘The study of emergency evacuation in public spaces,buildings and large ships may present parallel characteristic in terms of complexity of the layout but there are also significant differences that can hinder passengers to reach muster stations or the lifeboats.There are many hazards on a ship that can cause an emergency evacuation,the most severe result in loss of lives.Providing safe and effective evacuation of passengers from ships in an emergency situation becomes critical.Recently,computer simulation has become an indispensable technology in various fields,among them,the evacuation models that recently evolved incorporating human behavioral factors.In this work,an analysis of evacuation in a Landing Helicopter Dock(LHD)ship was conducted.Escape routes specified by the ship’s procedures were introduced in the model and the six emergency scenarios of the Naval Ship Code were simulated.The crew and embarked troops were introduced with their different evacuation behavior,in addition,walking speeds were extracted from data set collected in experiments conducted at other warships.From the results of the simulations,the longest time was chosen and confidence intervals constructed to determine the total evacuation time.Finally,results show that evacuation time meets regulatory requirements and the usefulness and low cost of the evacuation simulation for testing and refining possible ships’layouts and emergency scenarios.