Imaging proteins with high resolution is crucial for studying cellular physiology and pathology.Fluorescence imaging is a privileged method to visualize proteins with subcellular precision in live cells.In recent year...Imaging proteins with high resolution is crucial for studying cellular physiology and pathology.Fluorescence imaging is a privileged method to visualize proteins with subcellular precision in live cells.In recent years,there has been a tremendous advance in the field of fluorescent dyes that are optically more sophisticated than genetically-encodable fluorescent proteins.In this review,we aim to discuss modern bioconjugation methods to specifically incorporate these dyes into protein-of-interests.We focus on advances in live-cell labeling strategies and fluorescent probes,especially the HaloTag,SNAP-tag,TMP-tag,and unnatural amino acid systems and their applications.These protein labeling methods,along with cutting-edge dyes and novel microscopy methods,have become the infrastructure for biological research in the era of super-resolution imaging.展开更多
基金supported by the National Natural Science Foundation of China(Project 31971375)the Beijing Municipal Science&Technology Commission(Project Z221100003422013).
文摘Imaging proteins with high resolution is crucial for studying cellular physiology and pathology.Fluorescence imaging is a privileged method to visualize proteins with subcellular precision in live cells.In recent years,there has been a tremendous advance in the field of fluorescent dyes that are optically more sophisticated than genetically-encodable fluorescent proteins.In this review,we aim to discuss modern bioconjugation methods to specifically incorporate these dyes into protein-of-interests.We focus on advances in live-cell labeling strategies and fluorescent probes,especially the HaloTag,SNAP-tag,TMP-tag,and unnatural amino acid systems and their applications.These protein labeling methods,along with cutting-edge dyes and novel microscopy methods,have become the infrastructure for biological research in the era of super-resolution imaging.