期刊文献+
共找到546,910篇文章
< 1 2 250 >
每页显示 20 50 100
THE EFFECT OF VP SWITCHES ON THE PERFORMANCE OF BACKUP-VP ALGORITHM IN ATM SELF-HEALING NETWORKS
1
作者 Tang Jian(National Digital Switching Center, Zhengzhou 450002}Lei Zhenming(Beijing University of Posts and Telecommunications, Beijing 100088) 《Journal of Electronics(China)》 1999年第4期311-319,共9页
In this approach, three typical implementation schemes of self-healing function in VP switches are discussed and three corresponding queue models for backup-VP self-healing algorithm are established. Computer simulati... In this approach, three typical implementation schemes of self-healing function in VP switches are discussed and three corresponding queue models for backup-VP self-healing algorithm are established. Computer simulations are made to these queue models, and detailed analyses are presented to the effect of both the three implementation schemes of self-healing function and some architecture parameters in VP switches on self-healing performance. 展开更多
关键词 ATM network VP SWITCH self-healing ALGORITHM
在线阅读 下载PDF
Room-temperature fast self-healing graphene polyurethane network with high robustness and ductility through biomimetic interface structures
2
作者 Hao Wu Jinqiu Tao +2 位作者 Junhao Xie Chengbao Liu Qianping Ran 《Nano Materials Science》 2025年第3期349-358,共10页
Intelligent polymers have garnered significant attention for enhancing component safety,but there are still obstacles to achieving rapid self-healing at room temperature.Here,inspired by the microscopic layered struct... Intelligent polymers have garnered significant attention for enhancing component safety,but there are still obstacles to achieving rapid self-healing at room temperature.Here,inspired by the microscopic layered structure of mother-of-pearl,we have developed a biomimetic composite with high strength and self-repairing capabilities,achieved by the ordered arrangement of pearl-like structures within a flexible polyurethane matrix and GO nanosheets functionalized by in situ polymerization of carbon dots(CDs),this biomimetic interface design approach results in a material strength of 8 MPa and toughness(162 MJ m^(-3)),exceptional ductile properties(2697%elongation at break),and a world-record the fast and high-efficient self-healing ability at room temperature(96%at 25℃for 60 min).Thereby these composites overcome the limitations of dynamic composite networks of graphene that struggle to balance repair capability and robustness,and the CDs in situ loaded in the interfacial layer inhibit corrosion and prevent damage to the metal substrate during the repair process.(TheƵ_(f=0.01Hz)was 1.81×10^(9)Ωcm^(2)after 2 h of healing).Besides,the material can be intelligently actuated and shape memory repaired,which provides reliable protection for developments in smart and flexible devices such as robots and electronic skins. 展开更多
关键词 Biomimetic interface High strength Ultra ductile Fast andhigh-efficient self-healing Dynamic composite network
在线阅读 下载PDF
The Optimization Study about Fault Self-Healing Restoration of Power Distribution Network Based on Multi-Agent Technology 被引量:3
3
作者 Fuquan Huang Zijun Liu +2 位作者 Tinghuang Wang Haitai Zhang Tony Yip 《Computers, Materials & Continua》 SCIE EI 2020年第10期865-878,共14页
In order to quickly and accurately locate the fault location of the distribution network and increase the stability of the distribution network,a fault recovery method based on multi-objective optimization algorithm i... In order to quickly and accurately locate the fault location of the distribution network and increase the stability of the distribution network,a fault recovery method based on multi-objective optimization algorithm is proposed.The optimization of the power distribution network fault system based on multiagent technology realizes fast recovery of multi-objective fault,solve the problem of network learning and parameter adjustment in the later stage of particle swarm optimization algorithm falling into the local extreme value dilemma,and realize the multi-dimensional nonlinear optimization of the main grid and the auxiliary grid.The system proposed in this study takes power distribution network as the goal,applies fuzzy probability algorithm,simplifies the calculation process,avoids local extreme value,and finally realizes the energy balance between each power grid.Simulation results show that the Multi-Agent Technology enjoys priority in restoring important load,shortening the recovery time of power grid balance,and reducing the overall line loss rate of power grid.Therefore,the power grid fault self-healing system can improve the safety and stability of the important power grid,and reduce the economic loss rate of the whole power grid. 展开更多
关键词 Multi agent TECHNOLOGY power distribution network fault self-healing
在线阅读 下载PDF
Double network self-healing hydrogel based on hydrophobic association and ionic bond for formation plugging 被引量:10
4
作者 Ying-Rui Bai Qi-Tao Zhang +2 位作者 Jin-Sheng Sun Guan-Cheng Jiang Kai-He Lv 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2150-2164,共15页
Self-healing hydrogels have attracted tremendous attention in the field of oil and gas drilling and production engineering because of their excellent self-healing performance after physical damage.In this study,a seri... Self-healing hydrogels have attracted tremendous attention in the field of oil and gas drilling and production engineering because of their excellent self-healing performance after physical damage.In this study,a series of double network self-healing(DN_(SA))hydrogels based on hydrophobic association and ionic bond were prepared for plugging pores and fractures in formations in oil and gas drilling and production engineering.The mechanical,rheological,and self-healing properties of the DN_(SA)hydrogels were investigated.Results revealed that the DN_(SA)hydrogels exhibited excellent mechanical properties with a tensile stress of 0.67 MPa and toughness of 7069 kJ/cm^(3) owing to the synergistic effect of the double network.In addition,the DN_(SA)hydrogels exhibited excellent compression resistance,notch insensitivity,and self-healing properties.The DN_(SA)-2 hydrogel was granulated and made into gel particles with different particle sizes and used as a plugging agent.The self-healing mechanism of DN_(SA)-2 hydrogel particles in fractures was explored,and it’s plugging effect on fractures of different widths and porous media of different permeabilities were investigated.Experimental results revealed that the plugging capacity of the DN_(SA)-2 hydrogel particles for a fracture with width of 5 mm and a porous medium with a permeability of 30μm^(2) was 3.45 and 4.21 MPa,respectively,which is significantly higher than those of commonly used plugging agents in the oilfield.The DN_(SA)hydrogels with excellent mechanical and self-healing properties prepared in this study will provide a new approach for applying hydrogels in oil and gas drilling and production engineering. 展开更多
关键词 self-healing hydrogel Hydrophobic association Ionic bond Mechanical property Rheological property Formation plugging
原文传递
A review of anticorrosive,superhydrophobic and self-healing properties of coating-composites as corrosion barriers on magnesium alloys:Recent advances,challenges and future directions 被引量:1
5
作者 Babalola Aisosa Oni Olusegun Stanley Tomomewo +2 位作者 Solomon Evro Andrew N.Misian Samuel Eshorame Sanni 《Journal of Magnesium and Alloys》 2025年第6期2435-2469,共35页
Magnesium and its alloys have gained relevance for their light-weight combined with a high value of strength-to-weight ratio,which makes them useful in fields such as aerospace,automotive as well as biomedical enginee... Magnesium and its alloys have gained relevance for their light-weight combined with a high value of strength-to-weight ratio,which makes them useful in fields such as aerospace,automotive as well as biomedical engineering.Unfortunately,the poor corrosion resistance of Mg-alloys limits their wide acceptance.Advanced composite coatings which are self-healing,superhydrophobic anti corrosive,and wear resistant are new synthetic materials for abating these challenges.The superimposed superhydrophobic surfaces help in minimizing their water contact,thus slowing down the electrochemical reactions on the surface of the alloys,while their self-healing characteristics autonomously aid in the repair of any induced micro-crack,defect or damage towards ensuring the metal's long-term protection.In addition,the integration of wear-resistant materials further improves the durability of coatings under mechanical stress.The most recent research efforts have been directed towards the preparation of multifunctional composites,with an emphasis on nanomaterials,functional polymers,and state-of-the-art fabrication techniques in order to take advantage of their synergistic effects.Some of the methods that have so far exhibited promising potentials in fabricating these materials include the sol-gel method,layer-by-layer assembly,and plasma treatments.However,most of the fabricated products are still faced with significant challenges ranging from long-term stability to homogeneous adhesion of the coatings and their scalability for industrial applications.This review discusses the recent progress and the relationship between corrosion inhibition and self-healing efficiencies of wear resistant polymer nanocomposite coatings.Some challenges related to optimizing coating performance were also discussed.In addition,future directions ranging from the consideration of bioinspired designs,novel hybrid nanocomposite materials,and environmentally sustainable solutions integrated with smart protective coatings were also proposed as new wave technologies that can potentially revolutionize the corrosion protection offered by Mg alloys while opening up prospects for improved performance and sustainability. 展开更多
关键词 Magnesium alloys CORROSION SUPERHYDROPHOBIC self-healing coatings Water contact angle
在线阅读 下载PDF
Tetradic double-network physical crosslinking hydrogels with synergistic high stretchable, self-healing, adhesive, and strain-sensitive properties 被引量:3
6
作者 Huihui Bai Zhixing Zhang +3 位作者 Yajie Huo Yongtao Shen Mengmeng Qin Wei Feng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第3期169-176,共8页
Herein,we demonstrate a tetradic double-network physical cross-linking hydrogel comprising of gelatin,polyacrylic acid,tannic acid,and aluminum chloride as wearable hydrogel sensors.Based on the coordination bonds,hyd... Herein,we demonstrate a tetradic double-network physical cross-linking hydrogel comprising of gelatin,polyacrylic acid,tannic acid,and aluminum chloride as wearable hydrogel sensors.Based on the coordination bonds,hydrogen bonds,and chain entanglements of the two networks,the acquired hydrogel possesses excellent tensile properties,self-healing performance,and adhesiveness to many substrates.Mechanical properties can be tuned with fracture strain ranging from 900 to 2200%and tensile strength ranging from 24 to 216 kPa,respectively.Besides,the hydrogel also exhibits good strain-sensitivity when monitoring the motions of humans,such as bending of fingers,bending of elbows.Hence,we can believe that the GATA hydrogel has numerous applications in soft robots,intelligent wearable devices,and human health supervision. 展开更多
关键词 Double-network hydrogel High stretchable ADHESIVE self-healing Strain sensor
原文传递
Flexible,thermal processable,self-healing,and fully bio-based starch plastics by constructing dynamic imine network 被引量:1
7
作者 Xiaoqian Zhang Haishan Zhang +2 位作者 Guowen Zhou Zhiping Su Xiaohui Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第10期1610-1618,共9页
The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and ... The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and renewable nature.However,limitations such as brittleness,hydrophilicity,and thermal properties restrict its widespread application.To overcome these issues,covalent adaptable network was constructed to fabricate a fully bio-based starch plastic with multiple advantages via Schiff base reactions.This strategy endowed starch plastic with excellent thermal processability,as evidenced by a low glass transition temperature(T_(g)=20.15℃).Through introducing Priamine with long carbon chains,the starch plastic demonstrated superior flexibility(elongation at break=45.2%)and waterproof capability(water contact angle=109.2°).Besides,it possessed a good thermal stability and self-adaptability,as well as solvent resistance and chemical degradability.This work provides a promising method to fabricate fully bio-based plastics as alternative to petroleum-based plastics. 展开更多
关键词 Bioplastic Covalent adaptable networks Schiff base chemistry Thermal processability self-healing
在线阅读 下载PDF
A fluorine-free and high-robustness photothermal self-healing superhydrophobic coating with long-term anticorrosion and antibacterial performances 被引量:1
8
作者 Wenliang Zhang Shuyi Li +5 位作者 Dongsong Wei Yafei Shi Ting Lu Zhen Zhang Zaihang Zheng Yan Liu 《Journal of Materials Science & Technology》 2025年第7期284-298,共15页
Superhydrophobic surface is a promising strategy for antibacterial and corrosion protection.However,the use of harmful fluorine-containing materials,poor mechano-chemical stability,the addition of fungicides and poor ... Superhydrophobic surface is a promising strategy for antibacterial and corrosion protection.However,the use of harmful fluorine-containing materials,poor mechano-chemical stability,the addition of fungicides and poor corrosion resistance often limit its practical application.In this paper,a high-robustness pho-tothermal self-healing superhydrophobic coating is prepared by simply spraying a mixture of hydropho-bically modified epoxy resin and two kinds of modified nanofillers(carbon nanotubes and SiO2)for long-term anticorrosion and antibacterial applications.Multi-scale network and lubrication structures formed by cross-linking of modified carbon nanotubes and repeatable roughness endow coating with high ro-bustness,so that the coating maintains superhydrophobicity even after 100 Taber abrasion cycles,20 m sandpaper abrasion and 100 tape peeling cycles.The synergistic effect of antibacterial adhesion and pho-tothermal bactericidal activity endows coating with excellent antibacterial efficiency,which against Es-cherichia coli(E.coli)and Staphylococcus aureus(S.aureus)separately reaches 99.6% and 99.8%.Moreover,the influence of modified epoxy resin,superhydrophobicity,organic coating and coating thicknesses on the anticorrosion of magnesium(Mg)alloy is systematically studied and analyzed.More importantly,the prepared coating still exhibits excellent self-cleaning,anticorrosion and antibacterial abilities after 20 m abrasion.Furthermore,the coating exhibits excellent adhesion(level 4B),chemical stability,UV radiation resistance,high-low temperature alternation resistance,stable heat production capacity and photother-mal self-healing ability.All these excellent performances can promote its application in a wider range of fields. 展开更多
关键词 SUPERHYDROPHOBIC High-robustness Photothermal self-healing Antibacterial adhesion and photothermal bactericidal Long-term anticorrosion
原文传递
Morphological Mechanism and Experimental Verification of Self-healing of Basalt-fiber Modified Water-soaked Asphalt
9
作者 XIAO Minmin DONG Jinyong +2 位作者 LI Chunyan GUO Xu REN Jianguo 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期171-186,共16页
This study investigates the mechanism of action of representative molecules of basalt fibers on the healing of water-soaked asphalt.Thermodynamic parameters,morphological characteristics,interfacial healing energy,and... This study investigates the mechanism of action of representative molecules of basalt fibers on the healing of water-soaked asphalt.Thermodynamic parameters,morphological characteristics,interfacial healing energy,and interfacial healing strength were analyzed using molecular dynamics and macroscopic tests under different time,temperature,and water conditions to evaluate the specific states and critical conditions involved in self-healing.The results indicate that basalt-fiber molecules can induce rearrangement and a combination of water-soaked asphalt at the healing interface.Hydroxyl groups with different bonding states increase the interfacial adsorption capacity of water-soaked asphalt.The interaction between basalt fiber molecules and water molecules leads to a"hoop"phenomenon,while aromatics-2 molecules exhibit a"ring band aggregation"phenomenon.The former reduces the miscibility of water and asphalt molecules,while the latter causes slow diffusion of the components.Furthermore,a micro-macro dual-scale comparison of interfacial healing strength was conducted at temperatures of 297.15 and 312.15 K to identify the strength transition point and critical temperature of 299.4 K during the self-healing process of basalt-fiber modified water-soaked asphalt. 展开更多
关键词 water-soaked asphalt basalt-fibers self-healing properties moisture status molecular characterization
原文传递
A Self-Healing and Nonflammable Cross-Linked Network Polymer Electrolyte with the Combination of Hydrogen Bonds and Dynamic Disulfide Bonds for Lithium Metal Batteries 被引量:1
10
作者 Kai Chen Yuxue Sun +2 位作者 Xiaorong Zhang Jun Liu Haiming Xie 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期106-113,共8页
The self-healing solid polymer electrolytes(SHSPEs)can spontaneously eliminate mechanical damages or micro-cracks generated during the assembly or operation of lithium-ion batteries(LIBs),significantly improving cycli... The self-healing solid polymer electrolytes(SHSPEs)can spontaneously eliminate mechanical damages or micro-cracks generated during the assembly or operation of lithium-ion batteries(LIBs),significantly improving cycling performance and extending service life of LIBs.Here,we report a novel cross-linked network SHSPE(PDDP)containing hydrogen bonds and dynamic disulfide bonds with excellent self-healing properties and nonflammability.The combination of hydrogen bonding between urea groups and the metathesis reaction of dynamic disulfide bonds endows PDDP with rapid self-healing capacity at 28°C without external stimulation.Furthermore,the addition of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide(EMIMTFSI)improves the ionic conductivity(1.13×10^(−4)S cm^(−1)at 28°C)and non-flammability of PDDP.The assembled Li/PDDP/LiFePO_(4)cell exhibits excellent cycling performance with a discharge capacity of 137 mA h g^(−1)after 300 cycles at 0.2 C.More importantly,the self-healed PDDP can recover almost the same ionic conductivity and cycling performance as the original PDDP. 展开更多
关键词 cross-linked network dynamic disulfide bonds lithium-ion batteries NONFLAMMABLE self-healing solid polymer electrolytes
在线阅读 下载PDF
Integrated CuO/g-C_(3)N_(4)S-scheme heterojunction self-healing coatings:A synergistic approach for advanced anti-corrosion and anti-biofouling performance 被引量:1
11
作者 Shunhong Zhang Yu Shen +2 位作者 Yujie Yan Feng Guo Weilong Shi 《Journal of Materials Science & Technology》 2025年第20期22-33,共12页
Coatings of marine equipment inevitably suffer from physical or chemical damage in service,together with biofouling from microbial attachment,leading to a shorter service life of them.Herein,a multi-functional corrosi... Coatings of marine equipment inevitably suffer from physical or chemical damage in service,together with biofouling from microbial attachment,leading to a shorter service life of them.Herein,a multi-functional corrosion-resistant coating with efficient photothermal self-healing and anti-biofouling per-formance was designed by using CuO/g-C_(3)N_(4)(CuO/CN)S-scheme heterojunction filler in combination with polydimethylsiloxane(PDMS)as the coating matrix for achieving the effective protection of Q235 steel.The results of the electrochemical impedance spectroscopy(EIS)experiments indicate that the CuO/CN/PDMS composite coatings possessed excellent corrosion resistance,in which the impedance ra-dius of optimal CuO/CN-1/PDMS composite coating could still remain 3.49×10^(9)Ωcm^(2)after 60 d of immersion in seawater under sunlight irradiation.Meanwhile,the as-prepared CuO/CN/PDMS compos-ite coating not only can be rapidly heated up under the Xenon lamp illumination to achieve complete self-repair of scratches within 45 min,but also exhibited excellent antimicrobial effects in the antifouling experiments.This study opens a new avenue for the development of g-C_(3)N_(4)-based multifunctional coat-ings and provides guidance for the development of the next generation of intelligent protective coatings. 展开更多
关键词 g-C_(3)N_(4) ANTI-CORROSION self-healing Anti-biofouling S-scheme heterojunction
原文传递
Preparation of dynamic polyurethane networks with UV-triggered photothermal self-healing properties based on hydrogen and ion bonds for antibacterial applications 被引量:2
12
作者 Huimeng Feng Wei Wang +4 位作者 Tong Wang Lei Zhang Wen Li Jue Hou Shougang Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第2期89-101,共13页
Photo-induced self-healing composites have attracted more and more attention as a kind of materials that can be controlled remotely and accurately in real time.Here,we report a strategy of a photo-responsive system ba... Photo-induced self-healing composites have attracted more and more attention as a kind of materials that can be controlled remotely and accurately in real time.Here,we report a strategy of a photo-responsive system based on hydrogen and ion bonds capable of performing self-healing process by ultraviolet wave-lengths,which is covalently cross-linked zinc-dimethylglyoxime-polyurethane coordination network with triple dynamic bonds.The recombination of hydrogen bond and metal coordination bond produces ef-fective healing performance.The self-healing behavior and temperature dependence of 3D micro-crack is investigated by molecular dynamics simulations to reveal the mechanism of self-healing at molecu-lar level.Moreover,the hybrid of copper-doped zinc oxide not only provides metal coordination bonds to enhance the self-healing rate,but also enhances the photothermal effect and anti-bacterial properties of polyurethane.Importantly,doping of copper generates more defects and forms a space charge layer on the surface of zinc oxide.The defects could trap surface electrons and holes,preventing the recom-bination of photo-induced electron-hole pairs,generating more heat through lattice vibration.Therefore,under ultraviolet light irradiation,the polyurethane can reach 62.7°C for 60 s,and the scratches of the polyurethane can be healed within 30 min and fully healed within 1 h. 展开更多
关键词 Cu-dopped ZnO Ionic bond PHOTOTHERMAL self-healing ANTIBACTERIAL
原文传递
Spraying-assisted layer-by-layer assembled coatings with dual self-healing ability to resist degradation and enhance endothelialization of ZE21B alloys for vascular stents 被引量:1
13
作者 Liu-Jie Qi Zhao-Qi Zhang +3 位作者 Mujahid Iqbal Fei Wang Jing-An Li Shao-Kang Guan 《Rare Metals》 2025年第5期3405-3427,共23页
Drug-eluting magnesium(Mg)alloy stents have a slower degradation rate and lower restenosis rate compared with uncoated stents,demonstrating good clinical efficacy.However,the release of anti-hyperplasia drugs from coa... Drug-eluting magnesium(Mg)alloy stents have a slower degradation rate and lower restenosis rate compared with uncoated stents,demonstrating good clinical efficacy.However,the release of anti-hyperplasia drugs from coatings delays endothelial tissue repair,thus leading to late stent thrombosis.To address these issues,a dual self-healed coating with various biological properties was fabricated on magnesium fluoride/polydopamine(MgF_(2)/PDA)-treated Mg alloys by spraying-assisted layer-by-layer(LBL)self-assembly of chitosan(CS),gallic acid(GA),and 3-aminobenzeneboronic acid-modified hyaluronic acid(HA-ABBA).The LBL coating,approximately 1.50μm thick,exhibited a uniform morphology with good adhesion strength(~1065 mN).The annual corrosion rate(Pi)of LBL samples was~1400 times slower than that of the Mg substrate,due to the physical barrier function provided by MgF_(2)/PDA layers and the dual self-healed ability of LBL layers.The rapid self-healing ability(with a healing period of~4 h under dynamic/static conditions)resulted from the synergistic interplay between the recombination of diverse chemical bonds within the LBL coating and the coordination of LBL-released GA with Mg2+,as corroborated by computer simulations.Compared with the drug-eluting coatings,the LBL sample demonstrated substantial advantages in anti-oxidation,anti-denaturation of fibrinogen,anti-platelet adhesion,anti-inflammation,anti-hyperplasia,and promoted-endothelialization.These benefits effectively address the limitations associated with drug-eluting coatings. 展开更多
关键词 Drug-eluting stents Degradable magnesium alloys Spraying-assisted LBL assembled coatings Dual self-healing properties Rapid endothelialization
原文传递
An Average Distance Based Self-Relocation and Self-Healing Algorithm for Mobile Sensor Networks 被引量:1
14
作者 Yipeng Qu Stavros V. Georgakopoulos 《Wireless Sensor Network》 2012年第11期257-263,共7页
The sensing coverage of a wireless sensor network is an important measure of the quality of service. It is desirable to develop energy efficient methods for relocating mobile sensors in order to achieve optimum sensin... The sensing coverage of a wireless sensor network is an important measure of the quality of service. It is desirable to develop energy efficient methods for relocating mobile sensors in order to achieve optimum sensing coverage. This paper introduces an average distance based self-relocation and self-healing algorithm for randomly deployed mobile sensor networks. No geo-location or relative location information is needed by this algorithm thereby no hardware such as GPS is required. The tradeoff is that sensors need to move longer distance in order to achieve certain coverage. Simulations are conducted in order to evaluate the proposed relocation and self-healing algorithms. An average of 94% coverage is achieved in the cases that we are examined with or without obstacles. 展开更多
关键词 MOBILE SENSOR network COVERAGE Self-Relocation self-healing
在线阅读 下载PDF
Graphene Oxide on Rheological and Self-healing Properties of Modified Asphalt
15
作者 LIU Qinbao ZHAO Yan +1 位作者 GAO Honggang YAN Luchun 《材料科学与工程学报》 北大核心 2025年第1期80-89,共10页
Graphene oxide nanomaterials are increasingly used in various fields due to their superior properties.In order to study the influence of graphene oxide additives on the performance of modified asphalt,in this study,gr... Graphene oxide nanomaterials are increasingly used in various fields due to their superior properties.In order to study the influence of graphene oxide additives on the performance of modified asphalt,in this study,graphene oxide modified asphalt was prepared and characteristics was studied including the high deformation resistance performance and the self-healing property of modified asphalt.Functional groups and morphology of graphene oxide modified asphalt were described by Fourier transform infrared spectroscopy.The high deformation resistance performance and self-healing effect of asphalt samples were obtained through dynamic slear rheometer(DSR)test.Results shows that graphene oxide dispersions improve the performance of asphalt relatively well compared to graphene oxide powder.There is no chemical reaction between graphene oxide and asphalt,but physical connection.The addition of graphene oxide improved the high deformation resistance of modified asphalt and expedited the self-healing ability of asphalt under fatigue load. 展开更多
关键词 Graphene Oxide Modified asphalt Rheological property self-healing
在线阅读 下载PDF
Synthesis of Lignin-based Nonisocyanate Poly(imine-hydroxyurethane)s Networks.Part II:Self-healing,Reprocessing,and Degradation 被引量:2
16
作者 Chao Shen Bailiang Xue +3 位作者 Danwei Xue Rui Tang Wei Zhao Xinping Li 《Paper And Biomaterials》 CAS 2021年第3期1-9,共9页
This study provides a comprehensive understanding of the polymeric properties of lignin-based non-isocyanate poly(iminehydroxyurethane)s(LNIPUs).The properties of the LNIPUs are affected by changes in the stoichiometr... This study provides a comprehensive understanding of the polymeric properties of lignin-based non-isocyanate poly(iminehydroxyurethane)s(LNIPUs).The properties of the LNIPUs are affected by changes in the stoichiometric feed ratios of the bis(6-membered cyclic carbonate)(BCC)and levulinate enzymatic hydrolysis lignin(LEHL).The results showed that the LNIPUs exhibited a short relaxation time and excellent thermal repair and degradation properties.With a change in the LEHL content in the LNIPUs to 45.53%,a relaxation time of only 9 s was achieved,and the thermal repair rate of the scratches reached 93%.Furthermore,the tensile strength of the LNIPUs decreased with an increase in the LEHL content after two hot-pressing processes,while a higher than 75% tensile strength was maintained after the second hot-pressing treatment.The LNIPUs exhibited thermoresponsive shape memory property with deformation and shape fixing at 80℃.In addition,the as-synthesized LNIPUs were soluble in ethylene glycol in the absence of any organic solvents.This work demonstrates the synthesis of LNIPUs with self-healing,reprocessing,shape memory,and degradation properties. 展开更多
关键词 LIGNIN non-isocyanate polyurethane self-healing REPROCESSING
在线阅读 下载PDF
Progress in the development of self-healing polyurethane materials
17
作者 Yongyin Zhu Henghui Deng +4 位作者 Huizhou Luo Ying Luo Yu Chen Zehong Chen Chaoqun Zhang 《Resources Chemicals and Materials》 2025年第3期68-89,共22页
As a significant branch of smart materials,self-healing polyurethane materials mimic the biological damage repair mechanisms and have been widely applied in flexible electronics,functional coatings,biomedicine,and oth... As a significant branch of smart materials,self-healing polyurethane materials mimic the biological damage repair mechanisms and have been widely applied in flexible electronics,functional coatings,biomedicine,and other fields.This review systematically summarizes the design principles and recent advancements in both extrinsic and intrinsic self-healing polyurethane materials,highlighting their respective self-healing mechanisms and characteristics.For extrinsic system,damage repair is primarily achieved through microcapsules,hollow fibers,nanoparticles,and microvascular networks.However,their healing efficiency remains limited by the stability of carriers and the release kinetics of healing agents.In contrast,intrinsic self-healing polyurethane materials achieve self-healing through the reversibility of dynamic covalent and non-covalent bonds,which confer excellent self-healing capabilities while necessitating a precise balance between mechanical performance and self-healing efficiency.Moreover,their healing behavior is highly dependent on environmental conditions,potentially restricting their practical applications.Recent studies have demonstrated that the synergistic design of dynamic bonding networks can significantly enhance the mechanical properties,self-healing efficiency,and environmental adaptability.These developments offer new insights and theoretical foundations for designing high-performance self-healing polyurethane materials and may broaden their industrial applications. 展开更多
关键词 POLYURETHANE Extrinsic self-healing Intrinsic self-healing Dynamic bond
在线阅读 下载PDF
Enhanced Durability,Self-healing and Crack Arrest in Hybrid Polymer Composite Via Calcium Alginate Xerogels
18
作者 Deepa Ahirwar Rajesh Purohit Savita Dixit 《Journal of Bionic Engineering》 2025年第6期3118-3139,共22页
Self-healing(SH)polymer composites are a transformative achievement in polymer material technology that offers significant potential to extend the lifespan and reliability of materials.This work presents a novel appro... Self-healing(SH)polymer composites are a transformative achievement in polymer material technology that offers significant potential to extend the lifespan and reliability of materials.This work presents a novel approach to developing a hybrid natural-synthetic reinforced polymer composite with SH behavior using urea-free,non-toxic,environment-friendly material encapsulating resin,and hardener within a multicavity microcapsule(MC).This MC offers multiple healing because of its multicavity structure.These Xerogel MCs are integrated into hybrid bamboo/recycled glass fiber reinforced epoxy composite(25 wt% and 40 wt%)and were evaluated for their flexural strength,healing efficiency,moisture absorption,and thermal behavior.The results demonstrated that the composite containing 40 wt% exhibited the highest initial flexural strength and modulus retention after multiple healing cycles,approaching 80.67% and 61.34% respectively at 1st and 2nd cycles of healing efficiency.The behavior of self-healing hybrid composites(SHHC)in different environmental conditions was also investigated.Thermal Analysis TGA and DTA done on hybrid and other SH composites.Scanning electron microscopy shows the surface morphology of Xerogel MCs before and after damage,composite fractured surface,and how Healing Agent(HA)gets released and acquires surface after fracture.To ensure functional groups and chemical reactions between each component of the composite,FTIR analysis confirmed the successful encapsulation of HA inside MC. 展开更多
关键词 Extrinsic self-healing polymer composite Bamboo/glass fiber reinforcement Flexural testing Physical testing Calcium alginate xerogels self-healing
在线阅读 下载PDF
TiO_(2)-PDMS Multifunctional Superhydrophobic Coatings with Excellent Anti-fouling and Self-healing Properties
19
作者 GAO Xinghua HUANG Xiao +2 位作者 CHEN Tianyu XIE Guanya WANG Xin 《Journal of Wuhan University of Technology(Materials Science)》 2025年第6期1552-1562,共11页
A two-step approach was employed to create a composite coating consisting of TiO_(2)nanoparticles and extremely elastic polydimethylsiloxane(PDMS).The TiO_(2)-PDMS composite coating demonstrates exceptional superhydro... A two-step approach was employed to create a composite coating consisting of TiO_(2)nanoparticles and extremely elastic polydimethylsiloxane(PDMS).The TiO_(2)-PDMS composite coating demonstrates exceptional superhydrophobicity and antifouling efficacy,as evidenced by the static contact angle,contact angle hysteresis,and antifouling tests.The electron microscopic analysis reveals that the composite coating consists of TiO_(2)particles and agglomerates,which forms a dual-level roughness structure at the nanometer and micron scales.This unique structure promotes the Cassie-Baxter state of the coating when in contact with the liquid,resulting in an increased static contact angle and a reduced contact angle hysteresis.The PDMS primer facilitates the attachment of TiO_(2)particles,resulting in a composite coating with excellent scratch-resistant characteristics.Additionally,the PDMS primer possesses the capacity to retain low surface energy modifiers.Simultaneously,the PDMS primer serves as a reservoir for a low surface energy modifier,enhancing the self-repairing properties of the TiO_(2)-PDMS composite coating.This composite coating exhibits effective self-cleaning capabilities against many forms of contaminants,including liquids,solids,and slurries. 展开更多
关键词 SUPERHYDROPHOBIC SELF-CLEANING scratch-resistant self-healing two-stage rough structure
原文传递
Stretchable,anti-freezing and self-healing zwitterionic polyacrylate hydrogels for flexible wearable sensors
20
作者 Zhengyuan Zhou Naibing Li +5 位作者 Haoran Cao Xi Luo Yongnan Zhou Tianchi Zhou Lu Cai Jinli Qiao 《Chinese Journal of Chemical Engineering》 2025年第9期367-377,共11页
Traditional hydrogels are inevitably damaged during practical applications,resulting in a gradual deterioration of their functional efficacy.A primary strategy to address this issue involves developing hydrogels with ... Traditional hydrogels are inevitably damaged during practical applications,resulting in a gradual deterioration of their functional efficacy.A primary strategy to address this issue involves developing hydrogels with inherent self-healing properties.In this study,we report the synthesis of self-healing polyacrylate hydrogels that integrate zwitterions,hydrophilic nano-silica and aluminum ions.Due to the synergistic effect of multiple hydrogen bonds,coordination bonds and electrostatic interactions,the tensile strength of the hydrogel is enhanced from 15.1 to 162.6 kPa.Moreover,the electrical resistance and tensile strength of the hydrogel can almost recover to its initial values after 20 min of healing at room temperature,exhibiting remarkable self-healing performance.Furthermore,the zwitterionic polyacrylate hydrogel serves as a wearable sensor with the capability of accurately response to the bending and stretching of human joints,exhibting a gauge factor of 1.87 under tensile strain ranging from 80% to 100%.Even after being freezed at-20℃ for 3 h,the zwitterionic polyacrylate hydrogel retains its exceptional writing performance.In conclusion,the hydrogels developed in this study demonstrate significant potential for wearable electronics applications. 展开更多
关键词 Hydrogel POLYACRYLATE ZWITTERION self-healing Wearable sensor
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部