A time-resolved cross-phase modulation method combined with a modified nonlinear Schrodinger equation is used to study the effects of nonlinear response time on the propagation of ultrashort pulses in nonlinear disper...A time-resolved cross-phase modulation method combined with a modified nonlinear Schrodinger equation is used to study the effects of nonlinear response time on the propagation of ultrashort pulses in nonlinear dispersion media. Evolution of cross-phase modulation spectrum with the different time delay between the probe pulse and pump pulse is simulated using split-step Fourier method. It is shown that both normal self-frequency-shift-red-shift and abnormal self-frequency-shift-blue-shift can occur in the frequency domain for the probe pulse, and a satisfactory theoretical interpretation is given.展开更多
基金Project partly supported the National Natural Science Foundational China.
文摘A time-resolved cross-phase modulation method combined with a modified nonlinear Schrodinger equation is used to study the effects of nonlinear response time on the propagation of ultrashort pulses in nonlinear dispersion media. Evolution of cross-phase modulation spectrum with the different time delay between the probe pulse and pump pulse is simulated using split-step Fourier method. It is shown that both normal self-frequency-shift-red-shift and abnormal self-frequency-shift-blue-shift can occur in the frequency domain for the probe pulse, and a satisfactory theoretical interpretation is given.