The industrial implementation of Solar-driven photocatalysis is hampered by inefficient charge separation,poor reusability and hard retrieval of powdery catalysts.To conquer these drawbacks,a self-floating S-scheme Bi...The industrial implementation of Solar-driven photocatalysis is hampered by inefficient charge separation,poor reusability and hard retrieval of powdery catalysts.To conquer these drawbacks,a self-floating S-scheme Bi_(4)O_(5)Br_(2)/P-doped C_(3)N_(4)/carbon fiber cloth(BB/PN/CC)composed of carbon fibers(CC)as the core and Bi_(4)O_(5)Br_(2)/P-doped C_(3)N_(4)(BB/PN)nanosheets as the shell was constructed as a competent,recyclable cloth-shaped photocatalyst for safe and efficient degradation of aquacultural antibiotics.The BB/PN/CC fabric achieves an exceptional tetracycline degradation rate constant of 0.0118 min‒1,surpassing CN/CC(0.0015 min^(‒1)),BB/CC(0.0066 min^(‒1))and PN/CC(0.0023 min^(‒1))by 6.9,0.8 and 4.1 folds,respectively.Beyond its catalytic prowess,the photocatalyst’s practical superiority is evident in its effortless recovery and environmental adaptability.The superior catalytic effectiveness stems from the S-scheme configuration,which retains the maximum redox capacities of the constituent BB and PN while enabling efficient spatial detachment of photo-carriers.X-ray photoelectron spectroscopy(XPS),in-situ XPS,and electron paramagnetic resonance analyses corroborate the S-scheme mechanism,revealing electron accumulation on PN and hole retention on BB under illumination.Density functional theory calculations further confirm S-scheme interfacial charge redistribution and internal electric field formation.This study advances the design of macroscopic S-scheme heterojunction photocatalysts for sustainable water purification.展开更多
In 2010,the first offshore wind turbine with integrated installation was established in Qidong sea area of Jiangsu Province,China,which led to the implementation phase of one-step-installation technique based on the d...In 2010,the first offshore wind turbine with integrated installation was established in Qidong sea area of Jiangsu Province,China,which led to the implementation phase of one-step-installation technique based on the design and construction of large-scale bucket-top-bearing (LSBTB) bucket foundation.The critical technique of LSBTB bucket foundation included self-floating towing,penetration with adjustment of horizontal levelness,removability and one-step-installation.The process of one-step-installation included the prefabrication of LSBTB bucket foundation in onshore construction base,installation and debugging of wind power,overall water transportation of foundation and wind power system,and installation of foundation and offshore wind turbine on the appointed sea area.The cost of one-step-installation technique was about 5 000 Yuan/kW,which was 30%-50% lower than that of the existing technique.The prefabrication of LSBTB bucket foundation took about two months.During the one-step-installation process,the installation and debugging of wind power and overall water transportation need about one to two days in sea area within 35 m depth.After the proposed technique is industrialized,the cost will be further reduced,and the installation capacity is expected to be up to 500 wind turbines per year.展开更多
Solar-driven interfacial evaporation from seawater is considered an effective way to alleviate the emerging freshwater crisis because of its green and environmentally friendly characteristics.However,developing an eva...Solar-driven interfacial evaporation from seawater is considered an effective way to alleviate the emerging freshwater crisis because of its green and environmentally friendly characteristics.However,developing an evaporator with high efficiency,stability,and salt resistance remains a key challenge.MXene,with an internal photothermal conversion efficiency of 100%,has received tremendous research interest as a photothermal material.However,the process to prepare the MXene with monolayer is inefficient and generates a large amount of“waste”MXene sediments(MS).Here,MXene sediments is selected as the photothermal material,and a three-dimensional MXene sediments/poly(vinyl alcohol)/sodium alginate aerogel evaporator with vertically aligned pores by directional freezing method is innovatively designed.The vertical porous structure enables the evaporator to improve water transport,light capture,and high evaporation rate.Cotton swabs and polypropylene are used as the water channel and support,respectively,thus fabricating a self-floating evaporator.The evaporator exhibits an evaporation rate of 3.6 kg m^(-2)h^(-1)under one-sun illumination,and 18.37 kg m^(-2)of freshwater is collected in the condensation collection device after 7 h of outdoor sun irradiation.The evaporator also displays excellent oil and salt resistance.This research fully utilizes“waste”MS,enabling a self-floating evaporation device for freshwater collection.展开更多
文摘The industrial implementation of Solar-driven photocatalysis is hampered by inefficient charge separation,poor reusability and hard retrieval of powdery catalysts.To conquer these drawbacks,a self-floating S-scheme Bi_(4)O_(5)Br_(2)/P-doped C_(3)N_(4)/carbon fiber cloth(BB/PN/CC)composed of carbon fibers(CC)as the core and Bi_(4)O_(5)Br_(2)/P-doped C_(3)N_(4)(BB/PN)nanosheets as the shell was constructed as a competent,recyclable cloth-shaped photocatalyst for safe and efficient degradation of aquacultural antibiotics.The BB/PN/CC fabric achieves an exceptional tetracycline degradation rate constant of 0.0118 min‒1,surpassing CN/CC(0.0015 min^(‒1)),BB/CC(0.0066 min^(‒1))and PN/CC(0.0023 min^(‒1))by 6.9,0.8 and 4.1 folds,respectively.Beyond its catalytic prowess,the photocatalyst’s practical superiority is evident in its effortless recovery and environmental adaptability.The superior catalytic effectiveness stems from the S-scheme configuration,which retains the maximum redox capacities of the constituent BB and PN while enabling efficient spatial detachment of photo-carriers.X-ray photoelectron spectroscopy(XPS),in-situ XPS,and electron paramagnetic resonance analyses corroborate the S-scheme mechanism,revealing electron accumulation on PN and hole retention on BB under illumination.Density functional theory calculations further confirm S-scheme interfacial charge redistribution and internal electric field formation.This study advances the design of macroscopic S-scheme heterojunction photocatalysts for sustainable water purification.
基金Supported by National High Technology Research and Development Program of China("863"Program,No.2012AA051705)National Natural Science Foundation of China(No.51109160)International Science and Technology Cooperation Program of China(No.2012DFA70490)
文摘In 2010,the first offshore wind turbine with integrated installation was established in Qidong sea area of Jiangsu Province,China,which led to the implementation phase of one-step-installation technique based on the design and construction of large-scale bucket-top-bearing (LSBTB) bucket foundation.The critical technique of LSBTB bucket foundation included self-floating towing,penetration with adjustment of horizontal levelness,removability and one-step-installation.The process of one-step-installation included the prefabrication of LSBTB bucket foundation in onshore construction base,installation and debugging of wind power,overall water transportation of foundation and wind power system,and installation of foundation and offshore wind turbine on the appointed sea area.The cost of one-step-installation technique was about 5 000 Yuan/kW,which was 30%-50% lower than that of the existing technique.The prefabrication of LSBTB bucket foundation took about two months.During the one-step-installation process,the installation and debugging of wind power and overall water transportation need about one to two days in sea area within 35 m depth.After the proposed technique is industrialized,the cost will be further reduced,and the installation capacity is expected to be up to 500 wind turbines per year.
基金supported by the National Natural Science Foundation of China(No.52003131)China Postdoctoral Science Foundation(No.2023M731838)Taishan Scholar Program of Shandong Province in China(tsqn202211116).
文摘Solar-driven interfacial evaporation from seawater is considered an effective way to alleviate the emerging freshwater crisis because of its green and environmentally friendly characteristics.However,developing an evaporator with high efficiency,stability,and salt resistance remains a key challenge.MXene,with an internal photothermal conversion efficiency of 100%,has received tremendous research interest as a photothermal material.However,the process to prepare the MXene with monolayer is inefficient and generates a large amount of“waste”MXene sediments(MS).Here,MXene sediments is selected as the photothermal material,and a three-dimensional MXene sediments/poly(vinyl alcohol)/sodium alginate aerogel evaporator with vertically aligned pores by directional freezing method is innovatively designed.The vertical porous structure enables the evaporator to improve water transport,light capture,and high evaporation rate.Cotton swabs and polypropylene are used as the water channel and support,respectively,thus fabricating a self-floating evaporator.The evaporator exhibits an evaporation rate of 3.6 kg m^(-2)h^(-1)under one-sun illumination,and 18.37 kg m^(-2)of freshwater is collected in the condensation collection device after 7 h of outdoor sun irradiation.The evaporator also displays excellent oil and salt resistance.This research fully utilizes“waste”MS,enabling a self-floating evaporation device for freshwater collection.
基金supported by the National Natural Science Foundation of China(U20A20250,52172206,and 22179034)the Development Plan of the Youth Innovation Team in Colleges and Universities of Shandong Province。