期刊文献+
共找到372篇文章
< 1 2 19 >
每页显示 20 50 100
Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
1
作者 王玺 唐孟 +3 位作者 蒋明璇 陈阳春 刘智骁 邓辉球 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期456-465,共10页
Zirconium hydride(ZrH_(2)) is an ideal neutron moderator material. However, radiation effect significantly changes its properties, which affect its behavior and the lifespan of the reactor. The threshold energy of dis... Zirconium hydride(ZrH_(2)) is an ideal neutron moderator material. However, radiation effect significantly changes its properties, which affect its behavior and the lifespan of the reactor. The threshold energy of displacement is an important quantity of the number of radiation defects produced, which helps us to predict the evolution of radiation defects in ZrH_(2).Molecular dynamics(MD) and ab initio molecular dynamics(AIMD) are two main methods of calculating the threshold energy of displacement. The MD simulations with empirical potentials often cannot accurately depict the transitional states that lattice atoms must surpass to reach an interstitial state. Additionally, the AIMD method is unable to perform largescale calculation, which poses a computational challenge beyond the simulation range of density functional theory. Machine learning potentials are renowned for their high accuracy and efficiency, making them an increasingly preferred choice for molecular dynamics simulations. In this work, we develop an accurate potential energy model for the ZrH_(2) system by using the deep-potential(DP) method. The DP model has a high degree of agreement with first-principles calculations for the typical defect energy and mechanical properties of the ZrH_(2) system, including the basic bulk properties, formation energy of point defects, as well as diffusion behavior of hydrogen and zirconium. By integrating the DP model with Ziegler–Biersack–Littmark(ZBL) potential, we can predict the threshold energy of displacement of zirconium and hydrogen in ε-ZrH_(2). 展开更多
关键词 zirconium hydride deep learning potential radiation defects molecular dynamics threshold energy of displacement
原文传递
Achieving dynamic privacy measurement and protection based on reinforcement learning for mobile edge crowdsensing of IoT
2
作者 Renwan Bi Mingfeng Zhao +2 位作者 Zuobin Ying Youliang Tian Jinbo Xiong 《Digital Communications and Networks》 SCIE CSCD 2024年第2期380-388,共9页
With the maturity and development of 5G field,Mobile Edge CrowdSensing(MECS),as an intelligent data collection paradigm,provides a broad prospect for various applications in IoT.However,sensing users as data uploaders... With the maturity and development of 5G field,Mobile Edge CrowdSensing(MECS),as an intelligent data collection paradigm,provides a broad prospect for various applications in IoT.However,sensing users as data uploaders lack a balance between data benefits and privacy threats,leading to conservative data uploads and low revenue or excessive uploads and privacy breaches.To solve this problem,a Dynamic Privacy Measurement and Protection(DPMP)framework is proposed based on differential privacy and reinforcement learning.Firstly,a DPM model is designed to quantify the amount of data privacy,and a calculation method for personalized privacy threshold of different users is also designed.Furthermore,a Dynamic Private sensing data Selection(DPS)algorithm is proposed to help sensing users maximize data benefits within their privacy thresholds.Finally,theoretical analysis and ample experiment results show that DPMP framework is effective and efficient to achieve a balance between data benefits and sensing user privacy protection,in particular,the proposed DPMP framework has 63%and 23%higher training efficiency and data benefits,respectively,compared to the Monte Carlo algorithm. 展开更多
关键词 Mobile edge crowdsensing Dynamic privacy measurement Personalized privacy threshold Privacy protection Reinforcement learning
在线阅读 下载PDF
Hyperparameter on-line learning of stochastic resonance based threshold networks
3
作者 Weijin Li Yuhao Ren Fabing Duan 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第8期289-295,共7页
Aiming at training the feed-forward threshold neural network consisting of nondifferentiable activation functions, the approach of noise injection forms a stochastic resonance based threshold network that can be optim... Aiming at training the feed-forward threshold neural network consisting of nondifferentiable activation functions, the approach of noise injection forms a stochastic resonance based threshold network that can be optimized by various gradientbased optimizers. The introduction of injected noise extends the noise level into the parameter space of the designed threshold network, but leads to a highly non-convex optimization landscape of the loss function. Thus, the hyperparameter on-line learning procedure with respective to network weights and noise levels becomes of challenge. It is shown that the Adam optimizer, as an adaptive variant of stochastic gradient descent, manifests its superior learning ability in training the stochastic resonance based threshold network effectively. Experimental results demonstrate the significant improvement of performance of the designed threshold network trained by the Adam optimizer for function approximation and image classification. 展开更多
关键词 noise injection adaptive stochastic resonance threshold neural network hyperparameter learning
原文传递
Threshold Filtering Semi-Supervised Learning Method for SAR Target Recognition
4
作者 Linshan Shen Ye Tian +4 位作者 Liguo Zhang Guisheng Yin Tong Shuai Shuo Liang Zhuofei Wu 《Computers, Materials & Continua》 SCIE EI 2022年第10期465-476,共12页
The semi-supervised deep learning technology driven by a small part of labeled data and a large amount of unlabeled data has achieved excellent performance in the field of image processing.However,the existing semisup... The semi-supervised deep learning technology driven by a small part of labeled data and a large amount of unlabeled data has achieved excellent performance in the field of image processing.However,the existing semisupervised learning techniques are all carried out under the assumption that the labeled data and the unlabeled data are in the same distribution,and its performance is mainly due to the two being in the same distribution state.When there is out-of-class data in unlabeled data,its performance will be affected.In practical applications,it is difficult to ensure that unlabeled data does not contain out-of-category data,especially in the field of Synthetic Aperture Radar(SAR)image recognition.In order to solve the problem that the unlabeled data contains out-of-class data which affects the performance of the model,this paper proposes a semi-supervised learning method of threshold filtering.In the training process,through the two selections of data by the model,unlabeled data outside the category is filtered out to optimize the performance of the model.Experiments were conducted on the Moving and Stationary Target Acquisition and Recognition(MSTAR)dataset,and compared with existing several state-of-the-art semi-supervised classification approaches,the superiority of our method was confirmed,especially when the unlabeled data contained a large amount of out-of-category data. 展开更多
关键词 Semi-supervised learning SAR target recognition threshold filtering out-of-class data
在线阅读 下载PDF
Avoidant Learning Ability in Free Flying Housefly (Aldrichina grahami) by Electric Shock 被引量:1
5
作者 蒋苹 周东明 马原野 《Zoological Research》 CAS CSCD 北大核心 2009年第5期515-519,共5页
Previous studies have confirmed that both honeybee and Drosophila are capable of learning and memory. This study aimed to investigate whether the house fly (Aldrichina grahami), with strong instincts to adapt their ... Previous studies have confirmed that both honeybee and Drosophila are capable of learning and memory. This study aimed to investigate whether the house fly (Aldrichina grahami), with strong instincts to adapt their living environment, have the learning ability to associate odor stimulus to avoid electric shock in free flying state using a device developed by the authors. The result showed the learning ability ofA. grahami at the electric shock voltages of 5 V, 25 V and 45 V AC. When 60 V was used, the flies were frequently injured. Our results indicate that A. grahami is a good model to study the neural mechanism of learning and memory. The paradigm in this study has some advantages that can be used in future studies of free insects. 展开更多
关键词 Aldrichina grahami Free flying state Avoidant learning Electro-shock Voltage threshold
在线阅读 下载PDF
Iterative learning based fault diagnosis for discrete linear uncertain systems 被引量:1
6
作者 Wei Cao Ming Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第3期496-501,共6页
In order to detect and estimate faults in discrete lin-ear time-varying uncertain systems, the discrete iterative learning strategy is applied in fault diagnosis, and a novel fault detection and estimation algorithm i... In order to detect and estimate faults in discrete lin-ear time-varying uncertain systems, the discrete iterative learning strategy is applied in fault diagnosis, and a novel fault detection and estimation algorithm is proposed. And the threshold limited technology is adopted in the proposed algorithm. Within the chosen optimal time region, residual signals are used in the proposed algorithm to correct the introduced virtual faults with iterative learning rules, making the virtual faults close to these occurred in practical systems. And the same method is repeated in the rest optimal time regions, thereby reaching the aim of fault diagnosis. The proposed algorithm not only completes fault detection and estimation for discrete linear time-varying uncertain systems, but also improves the reliability of fault detection and decreases the false alarm rate. The final simulation results verify the validity of the proposed algorithm. 展开更多
关键词 discrete linear uncertain system threshold limited technology iterative learning fault estimation.
在线阅读 下载PDF
Few-shot working condition recognition of a sucker-rod pumping system based on a 4-dimensional time-frequency signature and meta-learning convolutional shrinkage neural network 被引量:2
7
作者 Yun-Peng He Chuan-Zhi Zang +4 位作者 Peng Zeng Ming-Xin Wang Qing-Wei Dong Guang-Xi Wan Xiao-Ting Dong 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1142-1154,共13页
The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep le... The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions. 展开更多
关键词 Few-shot learning Indicator diagram META-learning Soft thresholding Sucker-rod pumping system Time–frequency signature Working condition recognition
原文传递
Statistic Learning-based Defect Detection for Twill Fabrics 被引量:1
8
作者 Li-Wei Han De Xu Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PRC 《International Journal of Automation and computing》 EI 2010年第1期86-94,共9页
Template matching methods have been widely utilized to detect fabric defects in textile quality control. In this paper, a novel approach is proposed to design a flexible classifier for distinguishing flaws from twill ... Template matching methods have been widely utilized to detect fabric defects in textile quality control. In this paper, a novel approach is proposed to design a flexible classifier for distinguishing flaws from twill fabrics by statistically learning from the normal fabric texture. Statistical information of natural and normal texture of the fabric can be extracted via collecting and analyzing the gray image. On the basis of this, both judging threshold and template are acquired and updated adaptively in real-time according to the real textures of fabric, which promises more flexibility and universality. The algorithms are experimented with images of fault free and faulty textile samples. 展开更多
关键词 Image processing fabric flaw detection template matching adaptive template threshold self-learning
在线阅读 下载PDF
Sound transducer calibration of ambulatory audiometric system utilizing delta learning rule
9
作者 KIM Kyeong-seop SHIN Seung-won +3 位作者 YOON Tae-ho LEE Sang-min LEE Insung RYU Keun ho 《Journal of Central South University》 SCIE EI CAS 2011年第6期2009-2014,共6页
An efficient calibration algorithm for an ambulatory audiometric test system is proposed. This system utilizes a personal digital assistant (PDA) device to generate the correct sound pressure level (SPL) from an audio... An efficient calibration algorithm for an ambulatory audiometric test system is proposed. This system utilizes a personal digital assistant (PDA) device to generate the correct sound pressure level (SPL) from an audiometric transducer such as an earphone. The calibrated sound intensities for an audio-logical examination can be obtained in terms of the sound pressure levels of pure-tonal sinusoidal signals in eight-banded frequency ranges (250, 500, 1 000, 2 000, 3 000, 4 000, 6 000 and 8 000 Hz), and with mapping of the input sound pressure levels by the weight coefficients that are tuned by the delta learning rule. With this scheme, the sound intensities, which evoke eight-banded sound pressure levels by 5 dB steps from a minimum of 25 dB to a maximum of 80 dB, can be generated without volume displacement. Consequently, these sound intensities can be utilized to accurately determine the hearing threshold of a subject in the ambulatory audiometric testing environment. 展开更多
关键词 calibration audiometric system pure-tonal sound sound pressure level heating threshold delta learning rule
在线阅读 下载PDF
Vehicle Abnormal Behavior Detection Based on Dense Block and Soft Thresholding
10
作者 Yuanyao Lu Wei Chen +2 位作者 Zhanhe Yu Jingxuan Wang Chaochao Yang 《Computers, Materials & Continua》 SCIE EI 2024年第6期5051-5066,共16页
With the rapid advancement of social economies,intelligent transportation systems are gaining increasing atten-tion.Central to these systems is the detection of abnormal vehicle behavior,which remains a critical chall... With the rapid advancement of social economies,intelligent transportation systems are gaining increasing atten-tion.Central to these systems is the detection of abnormal vehicle behavior,which remains a critical challenge due to the complexity of urban roadways and the variability of external conditions.Current research on detecting abnormal traffic behaviors is still nascent,with significant room for improvement in recognition accuracy.To address this,this research has developed a new model for recognizing abnormal traffic behaviors.This model employs the R3D network as its core architecture,incorporating a dense block to facilitate feature reuse.This approach not only enhances performance with fewer parameters and reduced computational demands but also allows for the acquisition of new features while simplifying the overall network structure.Additionally,this research integrates a self-attentive method that dynamically adjusts to the prevailing traffic conditions,optimizing the relevance of features for the task at hand.For temporal analysis,a Bi-LSTM layer is utilized to extract and learn from time-based data nuances.This research conducted a series of comparative experiments using the UCF-Crime dataset,achieving a notable accuracy of 89.30%on our test set.Our results demonstrate that our model not only operates with fewer parameters but also achieves superior recognition accuracy compared to previous models. 展开更多
关键词 Vehicle abnormal behavior deep learning ResNet dense block soft thresholding
在线阅读 下载PDF
基于FEDformer-LGBM-AT架构的采煤工作面上隅角瓦斯浓度预测 被引量:3
11
作者 梁运培 李赏 +4 位作者 李全贵 郭亚博 孙万杰 郑梦浩 王程成 《煤炭学报》 北大核心 2025年第1期360-378,共19页
在煤矿智能化升级的大环境下,从海量的工作面监测数据中挖掘高质量的信息来构建科学的模型从而提高预测时长和精度是防范上隅角瓦斯浓度超限的关键。然而,上隅角瓦斯浓度影响因素众多,海量数据利用匮乏,瓦斯浓度预测精度高但时长较短,仅... 在煤矿智能化升级的大环境下,从海量的工作面监测数据中挖掘高质量的信息来构建科学的模型从而提高预测时长和精度是防范上隅角瓦斯浓度超限的关键。然而,上隅角瓦斯浓度影响因素众多,海量数据利用匮乏,瓦斯浓度预测精度高但时长较短,仅为0~30 min,而中长时30~60 min预测精度低、泛化能力差。为了解决这个问题,以山西某矿回采工作面为研究对象,对该工作面的煤层瓦斯含量进行动态提取,组建煤层瓦斯含量、瓦斯浓度、采煤机、风速的特征集合,并对该特征集合进行预处理,通过相关性分析对不同特征进行筛选,进一步构造相关特征的短时趋势、长时趋势、周期趋势以及拼接特征,首先构建基于频率增强分解Transformer(FEDformer)的瓦斯浓度预测层,构建基于轻量梯度增强机(LGBM)的残差修正层,然后引入自适应阈值(AT)技术构建阈值感知层,最终组成3层瓦斯超限预测模型架构,对未来60 min内上隅角瓦斯浓度进行预测,并通过召回率(TPR),误报率(FPR),平均绝对误差(MAE)以及平均绝对百分误差(MAPE)对预测性能进行考察。结果表明:所构建的基于FEDformer-LGBM-AT架构的上隅角瓦斯浓度预测模型的短时TPR为0.956,FPR为0.035,MAE为0.033,MAPE为0.183;长时预测的TPR为0.940,FPR为0.035,MAE为0.047,MAPE为0.262;与传统的灰色模型(GM)、支持向量机(SVM)、反向传播(BP)、门控循环单元(GRU)、粒子群优化的长短期记忆(PSOLSTM)、Transformer等模型的长时预测能力相比,FEDformer-LGBM-AT架构模型具有更好的长时预测精度和泛化能力,自适应阈值感知使得模型对高值瓦斯浓度敏感。该架构模型弥补短期预测局限性和泛化性,支撑现场瓦斯超限防治措施,可为回采工作面瓦斯浓度智能预测提供一定的借鉴和参考。 展开更多
关键词 瓦斯浓度 深度学习 特征构造 自适应阈值 长时预测
在线阅读 下载PDF
基于小波降噪与WOA⁃Bi⁃LSTM的短时交通流预测 被引量:1
12
作者 贾现广 苏治文 +1 位作者 冯超琴 吕英英 《现代电子技术》 北大核心 2025年第14期77-84,共8页
交通流数据中异常数据波动作为噪声,会对模型训练收敛以及预测精度产生不利影响。为解决该问题,引入两种不同阈值函数的小波阈值去噪方法对交通流数据进行降噪处理,将小波阈值去噪(WD)、鲸鱼优化算法(WOA)和双向长短期记忆网络(Bi-LSTM... 交通流数据中异常数据波动作为噪声,会对模型训练收敛以及预测精度产生不利影响。为解决该问题,引入两种不同阈值函数的小波阈值去噪方法对交通流数据进行降噪处理,将小波阈值去噪(WD)、鲸鱼优化算法(WOA)和双向长短期记忆网络(Bi-LSTM)相结合,提出一种WD-WOA-Bi-LSTM方法。首先,将两种方法降噪后的交通流数据进行对比,并将降噪效果更好的数据进行归一化处理、数据集划分以及数据维度转换;然后,通过WOA对Bi-LSTM部分超参数进行寻优,迭代至最优适应度的超参数组合,并用于构建Bi-LSTM;最后,应用英格兰公路交通流数据验证所提模型。结果表明:WDWOA-Bi-LSTM方法相较WOA-Bi-LSTM和WD-Bi-LSTM,RMSE降低12.5004%和3.9789%;MAE降低21.7350%和4.7225%;MAPE降低38.5647%和10.8652%。该模型相比其他模型评价指标均为最低,具有较高的预测精度,可以为高精度的短时交通流预测提供参考。 展开更多
关键词 智能交通 短时交通流预测 小波阈值去噪 鲸鱼优化算法 双向长短期记忆网络 深度学习 超参数寻优
在线阅读 下载PDF
融合深度学习框架的通信安全态势感知技术
13
作者 胡荣 《现代电子技术》 北大核心 2025年第23期89-96,共8页
针对当前通信网络安全态势感知技术方案存在的实时性差、准确率低、鲁棒性不足等问题,文中基于改进卷积神经网络与长短时记忆网络(CNN⁃LSTM)融合架构,设计了一种安全态势感知与预测方法。该方法首先建立了多维度信道参数实时采集体系来... 针对当前通信网络安全态势感知技术方案存在的实时性差、准确率低、鲁棒性不足等问题,文中基于改进卷积神经网络与长短时记忆网络(CNN⁃LSTM)融合架构,设计了一种安全态势感知与预测方法。该方法首先建立了多维度信道参数实时采集体系来获取信噪比、误码率、响应延迟以及丢包率等关键指标,采用自适应特征提取机制进行预处理,以改进CNN提取空间特征并结合LSTM捕获时序依赖。同时,引入了注意力机制来优化特征权重分配,提出基于深度强化学习的动态阈值调整策略,有效提升了异常检测自适应能力,并通过分层级联的安全策略影响框架实现了从底层参数监测到顶层态势评估的全链路覆盖。在公开数据集和实际通信网络环境中进行的测试结果表明,所提方法的安全态势识别准确率达97.8%、误报率降至0.83%、响应延迟缩短至23.5 ms,综合性能相比于当前的主流方法有明显提升,且具有良好的鲁棒性,可实现对通信网络安全态势的高效、精准感知与快速响应。 展开更多
关键词 深度学习 通信安全 态势感知 CNN⁃LSTM 异常检测 注意力机制 动态阈值
在线阅读 下载PDF
基于迁移学习和改进EfficientNet-B0的脑肿瘤分类算法
14
作者 王勇 杨义龙 +2 位作者 范晓晖 周雷 孔祥勇 《电子科技》 2025年第4期46-51,共6页
针对现有脑肿瘤分类模型和方法复杂度高以及识别率低等问题,文中提出一种基于改进EfficientNet-B0的模型用于3种脑肿瘤分类。在数据预处理阶段,使用ROI(Region of Interest)特征裁剪出脑肿瘤图像的关键特征区域,并按肿瘤类型扩增数据集... 针对现有脑肿瘤分类模型和方法复杂度高以及识别率低等问题,文中提出一种基于改进EfficientNet-B0的模型用于3种脑肿瘤分类。在数据预处理阶段,使用ROI(Region of Interest)特征裁剪出脑肿瘤图像的关键特征区域,并按肿瘤类型扩增数据集。根据卷积网络设计思想重新设计了EfficientNet中的MBConv(Mobile Inverted Bottleneck Convolution)模块,在首步卷积后引入卷积注意力CBAM(Convolutional Block Attention Module)。为了更完整地进行迁移学习,在不修改原始输出结构的基础上外接3个神经元用于脑肿瘤的三分类。改进网络模型具有更低的复杂度,可更好地适应肿瘤病灶的识别。文中利用迁移学习方法在公开数据集figshare-Brain Tumor Dataset上进行微调。实验结果表明,改进模型在该公共数据集上分类准确率为99.67%,相较于原始EfficientNet-B0网络提升了约3.1百分点。 展开更多
关键词 脑肿瘤分类 深度学习 卷积神经网络 阈值化处理 类平衡 EfficientNet ECA注意力机制 CBAM注意力机制
在线阅读 下载PDF
基于MAUP效应的城市活力与建成环境的非线性关系——以西安市为例 被引量:1
15
作者 任嫄 段兆雯 +1 位作者 霍豫 李开宇 《浙江大学学报(理学版)》 北大核心 2025年第2期172-188,共17页
厘清微观尺度下建成环境对城市活力的影响机制,有助于精准引导存量更新背景下精细化城市规划的实施方向。基于多源数据,以西安市中心城区为例,采用融合机器学习算法和沙普利加性可解释方法(SHapley Additive exPlanations,SHAP),从街道... 厘清微观尺度下建成环境对城市活力的影响机制,有助于精准引导存量更新背景下精细化城市规划的实施方向。基于多源数据,以西安市中心城区为例,采用融合机器学习算法和沙普利加性可解释方法(SHapley Additive exPlanations,SHAP),从街道和街区两个层面,探究建成环境对城市活力的影响机制。结果表明:(1)西安市中心城区城市活力在街道与街区两个层面的空间分布特征基本相似,均呈现从中心向边缘递减的活力梯度格局;活力热点分布在街道与街区层面略有差异,存在空间异质性。(2)在影响西安市中心城区城市活力的建成环境要素中,在街道层面,相对重要性最高的为全局整合度,在街区层面,相对重要性最高的为POI类别数。(3)西安市中心城区建成环境要素对城市活力存在非线性影响,在影响街道和街区活力的共同核心要素中,天空开敞度、地铁可达性在街道和街区层面阈值效应基本一致;POI类别数、容积率和绿视率在街道和街区层面的作用方式有差别。影响城市活力的建成环境要素之间存在交互作用,在街道层面,交互作用处于主导地位的为地铁可达性,街区层面为POI类别数。基于研究结果提出了相关规划建议,加强街道与街区协同发展,提高城市活力。 展开更多
关键词 建成环境 城市活力 机器学习 阈值效应 西安市
在线阅读 下载PDF
可学习阈值优化的大规模动态多用户接入检测 被引量:1
16
作者 石昌伟 郭里婷 +3 位作者 康芃 杜伟庆 陈平平 方毅 《电子学报》 北大核心 2025年第5期1436-1444,共9页
在大规模免授权非正交多址接入(Grant-Free Non-Orthogonal Multiple Access,GF-NOMA)中,多用户检测往往依靠先验信号稀疏度进行活跃用户检测,但在实际应用,特别在动态多用户接入中,用户接入过程变得更加复杂,获取这种先验信息变得更为... 在大规模免授权非正交多址接入(Grant-Free Non-Orthogonal Multiple Access,GF-NOMA)中,多用户检测往往依靠先验信号稀疏度进行活跃用户检测,但在实际应用,特别在动态多用户接入中,用户接入过程变得更加复杂,获取这种先验信息变得更为困难.针对该问题,本文提出一种可学习阈值优化的大规模动态多用户接入检测方案,即阈值改进的自适应交替方向乘子(Threshold-Improved Adaptive Alternating Direction Method of Multipliers,TI-A-ADMM)算法.在该算法中,利用活跃用户连续通信的时间相关性,引入动态相关性度量,对活跃用户检测的噪声阈值进行自适应缩放,提高检测性能.此外,为提升不同信噪比下活跃用户检测的准确度,采用深度学习网络对活跃用户检测初始阈值进行优化,以适应不同的接入环境.仿真结果表明,在未知先验稀疏度信息的动态多用户接入情况下,所提TI-A-ADMM算法相较现有已知稀疏度信息的算法,在误活跃率(Activity Error Rate,AER)和误符号率(Symbol Er-ror Rate,SER)上能得到2.4 dB的性能增益.所提算法对因多用户接入而引起的干扰具有较低的性能衰减和更高的鲁棒性. 展开更多
关键词 大规模机器类通信 多用户检测 压缩感知 交替方向乘子法 阈值 深度学习
在线阅读 下载PDF
基于自适应去噪模块的高效激光雷达信号处理方法 被引量:1
17
作者 王子珣 刘博 《红外与激光工程》 北大核心 2025年第6期148-158,共11页
单光子激光雷达作为高精度和高时间分辨率的主动探测技术,被广泛应用于多种场景中的高精度三维结构重建。然而,弱回波场景对应有限的信号光子计数和低信噪比场景对应高背景噪声计数对精确高效解算深度提出了巨大挑战。针对应用于上述挑... 单光子激光雷达作为高精度和高时间分辨率的主动探测技术,被广泛应用于多种场景中的高精度三维结构重建。然而,弱回波场景对应有限的信号光子计数和低信噪比场景对应高背景噪声计数对精确高效解算深度提出了巨大挑战。针对应用于上述挑战场景的单光子激光雷达单点测距需求,文中提出了一种基于时间窗口预处理模块、自适应软阈值去噪模块和自注意力机制的卷积神经网络。首先,通过与发射激光脉冲脉宽匹配的时间窗口预处理模块对光子序列直方图数据进行初步的特征提取和数据增强;引入自注意力机制模块捕捉光子序列直方图的长程相关性,提高距离解算精度和鲁棒性;引入软阈值去噪模块自适应生成阈值并滤除噪声光子,最后输出去噪后信号回波波形和解算深度。同时文中结合光子序列直方图的分布特性和任务需求使用多损失函数联合约束网络训练,通过消融实验证明其有效性。与其他直方图技术相比,通过在模拟数据集进行训练测试和在真实数据集进行验证,所提出的模型相较于直方图技术能够取得更优的量化结果。特别地,针对探测距离为7.7 km、平均累积周期数为164以及平均回波光子数为14.21的回波信号,该模型实现了均方根误差1.3659 m的距离解算精度。 展开更多
关键词 单光子激光雷达 单点测距 深度学习 自注意力机制 软阈值去噪
原文传递
基于样本优化和机器学习的地质灾害气象风险预报模型研究——以云南省怒江州为例 被引量:1
18
作者 张天祥 王艳霞 +2 位作者 张雪珂 林钏 周汝良 《广西师范大学学报(自然科学版)》 北大核心 2025年第1期201-215,共15页
降雨是地质灾害发生的主要诱因,云南省降雨频繁导致地质灾害频发,严重威胁人民生命财产安全,地质灾害气象风险预报是防灾减灾的有效手段。本文以高山峡谷区——云南省怒江州为例,基于信息量模型构建信息阈值,以信息阈值优化样本后,使用... 降雨是地质灾害发生的主要诱因,云南省降雨频繁导致地质灾害频发,严重威胁人民生命财产安全,地质灾害气象风险预报是防灾减灾的有效手段。本文以高山峡谷区——云南省怒江州为例,基于信息量模型构建信息阈值,以信息阈值优化样本后,使用机器学习模型进行怒江州综合地质灾害易发性评价,并计算怒江州有效降雨系数,建立气象风险预报模型,以历史灾害点验证模型准确率。结果表明:信息阈值优化样本的滑坡、泥石流灾害评价模型AUC值分别为0.97、0.99,预测准确率为0.93、0.98。怒江州综合地质灾害极高、高易发区主要沿河流和道路分布于峡谷中。气象风险预警模型的预报命中率为90.91%、漏报率为0、空报率为22.22%,降雨结束时高风险区域面积472.24 km^(2)。以信息阈值优化样本使机器学习模型的预测和泛化能力均获得较大提升,并且以0.5为衰减系数的气象预报模型提高了地质灾害气象风险预报的精确性。研究结果可为怒江州及类似地区的防灾减灾工作提供指导和支持。 展开更多
关键词 地质灾害 信息阈值 优化样本 机器学习 降雨衰减系数 气象风险预报
在线阅读 下载PDF
基于最小先验知识的自监督学习方法
19
作者 朱俊屹 常雷雷 +3 位作者 徐晓滨 郝智勇 于海跃 姜江 《计算机应用》 北大核心 2025年第4期1035-1041,共7页
为了弥补有监督学习对监督信息要求过高的不足,提出一种基于最小先验知识的自监督学习方法。首先,基于数据的先验知识聚类无标签数据,或基于有标签数据的中心距离为无标签数据生成初始标签;其次,随机抽取赋予标签后的数据,并选择机器学... 为了弥补有监督学习对监督信息要求过高的不足,提出一种基于最小先验知识的自监督学习方法。首先,基于数据的先验知识聚类无标签数据,或基于有标签数据的中心距离为无标签数据生成初始标签;其次,随机抽取赋予标签后的数据,并选择机器学习方法建立子模型;再次,计算各个数据抽取的权重和误差,以求得数据平均误差作为各个数据集的数据标签度,并根据初始数据标签度设置迭代阈值;最后,比较迭代过程中数据标签度的大小和阈值决定是否达到终止条件。在10个UCI公开数据集上的实验结果表明,相较于无监督学习K-means等方法、有监督学习支持向量机(SVM)等算法和主流自监督学习TabNet(Tabular Network)等方法,所提方法在不平衡数据集不使用标签,或在平衡数据集上使用有限标签时仍可以取得较高的分类准确度。 展开更多
关键词 最小先验知识 自监督学习 机器学习 数据标签度 迭代阈值
在线阅读 下载PDF
基于SWT和ResNet50-TL-S模型的小样本齿轮箱故障诊断模型
20
作者 许家瑞 陈焰 《机电工程》 北大核心 2025年第8期1458-1468,共11页
在传统齿轮箱故障诊断过程中,因故障样本稀缺会导致模型的故障诊断精度降低。针对这一问题,提出了一种基于同步压缩小波变换(SWT)和ResNet50-TL-S模型的小样本齿轮箱故障诊断方法(模型)。首先,使用小波阈值去噪算法对采集到的齿轮箱振... 在传统齿轮箱故障诊断过程中,因故障样本稀缺会导致模型的故障诊断精度降低。针对这一问题,提出了一种基于同步压缩小波变换(SWT)和ResNet50-TL-S模型的小样本齿轮箱故障诊断方法(模型)。首先,使用小波阈值去噪算法对采集到的齿轮箱振动信号进行了阈值化去噪处理,消除了背景噪声;然后,使用同步压缩小波变换算法,对去噪后的振动信号进行了时频分析和时频变换,将一维去噪信号转变为二维时频图,用于构建故障诊断模型的训练样本;接着,对预训练ResNet50模型进行了微调,实现了迁移学习(TL)目的,并对迁移学习模型进行了轻量化改进,同时在模型内部嵌入了多头注意力机制,用于改善模型对不同特征权重的分配;最后,使用2组齿轮副数据和2组轴承数据,对基于SWT和ResNet50-TL-S模型的小样本齿轮箱故障诊断方法的有效性进行了验证。研究结果表明:基于SWT和ResNet50-TL-S模型的小样本齿轮箱故障诊断方法在无负荷工况下的单齿轮副故障诊断中,模型分类精度高达99.45%,模型训练时间为644 s;在齿轮副和轴承多重故障诊断中,模型分类精度为99.59%,模型训练时间为643 s;在有负荷工况的轴承和齿轮副多重故障诊断中,模型分类精度为98.12%,模型训练时间为646 s。这表明基于SWT和ResNet50-TL-S模型的齿轮箱故障诊断方法具备较高的齿轮箱故障诊断精度和较短的模型训练时间。 展开更多
关键词 机械传动 小波阈值去噪 同步压缩小波变换 ResNet50模型 轻量化改进 多头注意力机制 迁移学习模型
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部