In this paper, we construct MDS Euclidean self-dual codes which are ex-tended cyclic duadic codes. And we obtain many new MDS Euclidean self-dual codes. We also construct MDS Hermitian self-dual codes from generalized...In this paper, we construct MDS Euclidean self-dual codes which are ex-tended cyclic duadic codes. And we obtain many new MDS Euclidean self-dual codes. We also construct MDS Hermitian self-dual codes from generalized Reed-Solomon codes and constacyclic codes.展开更多
It is well known that erasure coding can be used in storage systems to efficiently store data while protecting against failures. Conventionally, the design of erasure codes has focused on the tradeoff between redundan...It is well known that erasure coding can be used in storage systems to efficiently store data while protecting against failures. Conventionally, the design of erasure codes has focused on the tradeoff between redundancy and reliability. Under this criterion, an maximum distance separable(MDS) code has optimal redundancy. In this paper, we address a new class of MDS array codes for tolerating triple node failures by extending the row di- agonal parity(RDP) code, named the RDDP(row double diagonal parity) code. The RDDP code takes advantages of good perform- ances of the RDP code with balanced I/0. A specific triple-erasure decoding algorithm to reduce decoding complexity is depicted by geometric graph, and it is easily implemented by software and hardware. The theoretical analysis shows that the comprehensive properties of the RDDP code are optimal, such as encoding and decoding efficiency, update efficiency and I/0 balance performance.展开更多
In this paper, we study self-dual permutation codes over formal power series rings and finite principal ideal rings. We first give some results on the torsion codes associated with the linear codes over formal power s...In this paper, we study self-dual permutation codes over formal power series rings and finite principal ideal rings. We first give some results on the torsion codes associated with the linear codes over formal power series rings. These results allow for obtaining some conditions for non-existence of self-dual permutation codes over formal power series rings. Finally, we describe self-dual permutation codes over finite principal ideal rings by examining permutation codes over their component chain rings.展开更多
Permutation codes over finite chain rings are introduced; by using the character of the finite chain rings and the knowledge of representation of group, some conditions for existence or non-existence of self-dual perm...Permutation codes over finite chain rings are introduced; by using the character of the finite chain rings and the knowledge of representation of group, some conditions for existence or non-existence of self-dual permutation codes over finite chain rings are obtained. Specially, when the group is a direct product of a 2-group and a T-group, and the group action is transitive, the sufficient and necessary condition of the existence of permutation codes is given.展开更多
文摘In this paper, we construct MDS Euclidean self-dual codes which are ex-tended cyclic duadic codes. And we obtain many new MDS Euclidean self-dual codes. We also construct MDS Hermitian self-dual codes from generalized Reed-Solomon codes and constacyclic codes.
基金Supported by the National Natural Science Foundation of China(60873216)the Key Project of Sichuan Provincial Department of Education(12ZA223)
文摘It is well known that erasure coding can be used in storage systems to efficiently store data while protecting against failures. Conventionally, the design of erasure codes has focused on the tradeoff between redundancy and reliability. Under this criterion, an maximum distance separable(MDS) code has optimal redundancy. In this paper, we address a new class of MDS array codes for tolerating triple node failures by extending the row di- agonal parity(RDP) code, named the RDDP(row double diagonal parity) code. The RDDP code takes advantages of good perform- ances of the RDP code with balanced I/0. A specific triple-erasure decoding algorithm to reduce decoding complexity is depicted by geometric graph, and it is easily implemented by software and hardware. The theoretical analysis shows that the comprehensive properties of the RDDP code are optimal, such as encoding and decoding efficiency, update efficiency and I/0 balance performance.
文摘In this paper, we study self-dual permutation codes over formal power series rings and finite principal ideal rings. We first give some results on the torsion codes associated with the linear codes over formal power series rings. These results allow for obtaining some conditions for non-existence of self-dual permutation codes over formal power series rings. Finally, we describe self-dual permutation codes over finite principal ideal rings by examining permutation codes over their component chain rings.
基金Supported by the National Natural Science Foundation of China (60373087, 60473023, 90104005, 60673071)
文摘Permutation codes over finite chain rings are introduced; by using the character of the finite chain rings and the knowledge of representation of group, some conditions for existence or non-existence of self-dual permutation codes over finite chain rings are obtained. Specially, when the group is a direct product of a 2-group and a T-group, and the group action is transitive, the sufficient and necessary condition of the existence of permutation codes is given.