This paper considers a class of stochastic variational inequality problems. As proposed by Jiang and Xu (2008), by using the so-called regularized gap function, the authors formulate the problems as constrained opti...This paper considers a class of stochastic variational inequality problems. As proposed by Jiang and Xu (2008), by using the so-called regularized gap function, the authors formulate the problems as constrained optimization problems and then propose a sample average approximation method for solving the problems. Under some moderate conditions, the authors investigate the limiting behavior of the optimal values and the optimal solutions of the approximation problems. Finally, some numerical results are reported to show efficiency of the proposed method.展开更多
In this paper, we study the p-order cone constraint stochastic variational inequality problem. We first take the sample average approximation method to deal with the expectation and gain an approximation problem, furt...In this paper, we study the p-order cone constraint stochastic variational inequality problem. We first take the sample average approximation method to deal with the expectation and gain an approximation problem, further the rationality is given. When the underlying function is Lipschitz continuous, we acquire a projection and contraction algorithm to solve the approximation problem. In the end, the method is applied to some numerical experiments and the effectiveness of the algorithm is verified.展开更多
基金This research is partly supported by the National Natural Science Foundation of China under Grant Nos. 71171027 and 11071028, the Fundamental Research Funds for the Central Universities under Grant No. DUT11SX11, and the Key Project of the National Natural Science Foundation of China under Grant No. 71031002.
文摘This paper considers a class of stochastic variational inequality problems. As proposed by Jiang and Xu (2008), by using the so-called regularized gap function, the authors formulate the problems as constrained optimization problems and then propose a sample average approximation method for solving the problems. Under some moderate conditions, the authors investigate the limiting behavior of the optimal values and the optimal solutions of the approximation problems. Finally, some numerical results are reported to show efficiency of the proposed method.
文摘In this paper, we study the p-order cone constraint stochastic variational inequality problem. We first take the sample average approximation method to deal with the expectation and gain an approximation problem, further the rationality is given. When the underlying function is Lipschitz continuous, we acquire a projection and contraction algorithm to solve the approximation problem. In the end, the method is applied to some numerical experiments and the effectiveness of the algorithm is verified.