期刊文献+
共找到98,136篇文章
< 1 2 250 >
每页显示 20 50 100
OPTIMIZING DESIGN OF MECHANICAL SELF-CENTERING DEVICE FOR SUSPENSION HEIGHT 被引量:2
1
作者 CAO Min ZHANG Yongchao YU Fan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第6期69-75,共7页
Firstly, in view of the respective defects of existing self-centering devices for vehicle suspension height, the design scheme of the proposed mechanical self-centering device for suspension height is described. Takin... Firstly, in view of the respective defects of existing self-centering devices for vehicle suspension height, the design scheme of the proposed mechanical self-centering device for suspension height is described. Taking the rear suspension of a certain light bus as a research example, the structures and parameters of the novel device are designed and ascertained. Then, the road excitation models, the performance evaluation indexes and the half-vehicle model are built, the simulation outputs of time and frequency domain are obtained with the road excitations of random and pulse by using MATLAB/Simulink software. So the main characteristics of the self-centering suspension are presented preliminarily. Finally, a multi-objective parameter design optimization model for the self-centering device is built by weighted sum approach, and optimal solution is obtained by adopting complex approach. The relevant choosing-type parameters for self-centering device components are deduced by using discrete variable optimal method, and the optimal results are verified and analyzed. So the performance potentials of the self-centering device are exerted fully in condition of ensuring overall suspension performances. 展开更多
关键词 Suspension height self-centering Vehicle height adjustment Optimizing design Multi-objective optimization
在线阅读 下载PDF
Electrochromic Devices with High Stability from Colorless to Green Conversion Based on Viologen Derivatives
2
作者 PENG Yuyi QIAN Chao +3 位作者 WANG Peng GUO Xu JIANG Chuanyu LIU Ping 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期258-267,共10页
Two viologen derivatives containing fluorine substituent(F)with an asymmetric structures,1,1'-bis(4-(trifluoromethyl)phenyl)-[4,4'-bipyridine]dihexafluorophosphate(DFPV)and 1-benzyl-1'-(4-(trifluoromethyl)... Two viologen derivatives containing fluorine substituent(F)with an asymmetric structures,1,1'-bis(4-(trifluoromethyl)phenyl)-[4,4'-bipyridine]dihexafluorophosphate(DFPV)and 1-benzyl-1'-(4-(trifluoromethyl)phenyl)-[4,4'-bipyridine]di-hexafluorophosphate(Bn-FPV),were synthesized.These viologen derivatives as active materials were used to assemble both flexible and rigid electrochromic devices(ECDs).ECDs based on DFPV exhibited reversible color change from colorless to deep green and ECDs based on Bn-FPV exhibited reversible color change from colorless to blue-green within applied voltage.It was found that the devices based on DFPV showed cycle stability,which could still maintain more than 90% after 1000 cycles.In addition,the modulation rate of the device to the solar irradiance is also calculated to characterize its application potential in smart windows.Among them,the rigid device(R-DFPV)based on the DFPV has a large solar irradiance modulation rate of 54.66%,which has the potential to be used as smart windows. 展开更多
关键词 viologen derivatives electrochromic material flexible electrochromic devices rigid electrochromic device smart windows
原文传递
Cement-Based Thermoelectric Materials, Devices and Applications
3
作者 Wanqiang Li Chunyu Du +1 位作者 Lirong Liang Guangming Chen 《Nano-Micro Letters》 2026年第1期750-781,共32页
Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement ... Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement fails to reconcile ecological responsibility with advanced functional performance.By incorporating tailored fillers into cement matrices,the resulting composites achieve enhanced thermoelectric(TE)conversion capabilities.These materials can harness solar radiation from building envelopes and recover waste heat from indoor thermal gradients,facilitating bidirectional energy conversion.This review offers a comprehensive and timely overview of cementbased thermoelectric materials(CTEMs),integrating material design,device fabrication,and diverse applications into a holistic perspective.It summarizes recent advancements in TE performance enhancement,encompassing fillers optimization and matrices innovation.Additionally,the review consolidates fabrication strategies and performance evaluations of cement-based thermoelectric devices(CTEDs),providing detailed discussions on their roles in monitoring and protection,energy harvesting,and smart building.We also address sustainability,durability,and lifecycle considerations of CTEMs,which are essential for real-world deployment.Finally,we outline future research directions in materials design,device engineering,and scalable manufacturing to foster the practical application of CTEMs in sustainable and intelligent infrastructure. 展开更多
关键词 Functional cement Thermoelectric materials device structure Smart building
在线阅读 下载PDF
Wearable Ultrasound Devices for Therapeutic Applications
4
作者 Sicheng Chen Qunle Ouyang +5 位作者 Xuanbo Miao Feng Zhang Zehua Chen Xiaoyan Qian Jinwei Xie Zheng Yan 《Nano-Micro Letters》 2026年第2期260-287,共28页
Wearable ultrasound devices represent a transformative advancement in therapeutic applications,offering noninvasive,continuous,and targeted treatment for deep tissues.These systems leverage flexible materials(e.g.,pie... Wearable ultrasound devices represent a transformative advancement in therapeutic applications,offering noninvasive,continuous,and targeted treatment for deep tissues.These systems leverage flexible materials(e.g.,piezoelectric composites,biodegradable polymers)and conformable designs to enable stable integration with dynamic anatomical surfaces.Key innovations include ultrasound-enhanced drug delivery through cavitation-mediated transdermal penetration,accelerated tissue regeneration via mechanical and electrical stimulation,and precise neuromodulation using focused acoustic waves.Recent developments demonstrate wireless operation,real-time monitoring,and closed-loop therapy,facilitated by energy-efficient transducers and AI-driven adaptive control.Despite progress,challenges persist in material durability,clinical validation,and scalable manufacturing.Future directions highlight the integration of nanomaterials,3D-printed architectures,and multimodal sensing for personalized medicine.This technology holds significant potential to redefine chronic disease management,postoperative recovery,and neurorehabilitation,bridging the gap between clinical and home-based care. 展开更多
关键词 Wearable ultrasound devices Drug delivery Tissue regeneration Closed-loop therapy NEUROREHABILITATION
暂未订购
Bioinspired self-adaptive thermoelectric device with hydrogen bonding-enhanced robustness
5
作者 Feng-Qi Xu Rongzhuang Song +6 位作者 Cheng Chen Bo Li Jie-Long Xu Xin-Lin Li Heng-An Wu Yin-Bo Zhu Jian-Wei Liu 《Nano Research》 2026年第1期1213-1221,共9页
Electronic devices capable of perceiving and responding to environmental changes are essential for applications in human-machine interaction,monitoring systems,and robotics.However,most existing devices struggle with ... Electronic devices capable of perceiving and responding to environmental changes are essential for applications in human-machine interaction,monitoring systems,and robotics.However,most existing devices struggle with the separation of sensing and actuation,resulting in complex integration and limited responsiveness.Here,inspired by the interplay between sensory and muscle cells in sea anemones,we present an intelligent thermoelectric device that seamlessly combines multimodal sensing with autonomous thermal actuation,achieving a closed-loop sensory-motor reflex.The device exhibits excellent temperature sensitivity(0.2℃)and pressure resolution(0.03 mm),attributable to its threedimensional(3D)architecture and hierarchical conductive network.Molecular dynamics simulations reveal that a dynamic hydrogen-bonding network enhances stress dissipation and interfacial adhesion,ensuring exceptional mechanical stability over 140,000 cycles.Notably,it also features thermal self-adaptation,actively triggering a protection mechanism to avoid high-temperature stimuli via thermoresponsive deformation,with an adjustable actuation threshold.This work advances intelligent electronics with real-time decision-making and environmental interaction. 展开更多
关键词 thermoelectric device multifunctional sensing thermal self-actuation biomimetic structure hydrogen-bond network
原文传递
Numerical simulation of the seismic behavior of self-centering steel beam-column connections with bottom flange friction devices 被引量:3
6
作者 Guo Tong Song Lianglong Zhang Guodong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第2期229-238,共10页
A new type of steel moment resisting frame with bottom flange friction devices (BFFDs) has been developed to provide self-centering capacity and energy dissipation, and to reduce permanent deformations under earthqu... A new type of steel moment resisting frame with bottom flange friction devices (BFFDs) has been developed to provide self-centering capacity and energy dissipation, and to reduce permanent deformations under earthquakes. This paper presents a numerical simulation of self-centering beam-column connections with BFFDs, in which the gap opening/closing at the beam-column interfaces is simulated by using pairs of zero-length elements with compression-only material properties, and the energy dissipation due to friction is simulated by using truss elements with specified hysteretic behavior. In particular, the effect of the friction bolt bearing against the slotted plate in the BFFDs was modeled, so that the increase in lateral force and the loss of friction force due to the bolt bearing could be taken into account. Parallel elastic-perfectly plastic gap (ElasticPPGap) materials in the Open System for Earthquake Engineering Simulation (OpenSees) were used with predefined gaps to specify the sequence that each bolt went into the bearing and the corresponding increase in bending stiffness. The MinMax material in OpenSees is used to specify the minimum and maximum values of strains of the ElasticPPGap materials. To consider the loss of friction force due to bok bearing, a number of parallel hysteretic materials were used, and the failure of these materials in sequence simulated the gradual loss of friction force. Analysis results obtained by using the proposed numerical model are discussed and compared with the test results under cyclic loadings and the seismic loading, respectively. 展开更多
关键词 numerical simulation post tensioned self-centering moment resisting steel frame bottom flange frictiondevice bolt bearing
在线阅读 下载PDF
Research and development of a self-centering clamping device for deep-water multifunctional pipeline repair machinery
7
作者 Wang Liquan Guo Shiqing +1 位作者 Gong Haixia Shang Xianchao 《Natural Gas Industry B》 2016年第1期82-89,共8页
When multifunctional pipeline repair machinery(MPRM)is used in the deep sea area,it is difficult to grip the pipeline and ensure concentricity between the cutter heads and the pipeline during its operation.In view of ... When multifunctional pipeline repair machinery(MPRM)is used in the deep sea area,it is difficult to grip the pipeline and ensure concentricity between the cutter heads and the pipeline during its operation.In view of this,a new system of two-arm holding self-centering pipeline clamping device was proposed.The system is composed of two groups of parallelogram double-rocker mechanism and cranking block mechanism which are symmetrically distributed on the frame.The geometric parameter solutions of the clamping device were analyzed with motion and transmission as the constraints.A mechanical model was established to associate the friction torque of clamping points with the driving force.Clamping device and machinery were designed and manufactured for theØ304.8e457.2 mm pipelines used in this test.ADAMS simulation experiments were conducted underwater,and the cutting and beveling tests were carried out onshore.The following results are achieved.First,the smaller the pipe diameter,the smaller the transmission angle of the oscillating slider mechanism;the longer the hydraulic cylinder stroke,the greater the transmission angle of the double rocker mechanism.Second,the driving force of the clamping device increases with the increase of the pipe diameter.When the diameter reaches 457.2 mm,the hydraulic cylinder driving force of the clamping device should be greater than 10219 N.Third,the feed rate of the cutters increases suddenly due to the slight shaking of the machinery which occurs at the beginning of the pipe cutting,so it is necessary to adopt a small feed rate.And fourth,onshore experiment results agree well with the theoretical design and simulation results,proving the rationality of the system.The research results in this paper provide technical basis for the research and development of similar engineering prototypes. 展开更多
关键词 Deepwater Submarine pipeline Multifunctional pipeline repair machinery self-centering Two-arm holding Clamping device ADAMS simulation Experimental study Bevel
在线阅读 下载PDF
Ion-modulation optoelectronic neuromorphic devices:mechanisms,characteristics,and applications 被引量:1
8
作者 Xiaohan Meng Runsheng Gao +1 位作者 Xiaojian Zhu Run-Wei Li 《Journal of Semiconductors》 2025年第2期24-36,共13页
The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorph... The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorphic computing,inspired by the architecture of the human brain,offers a promising alternative by integrating memory and computational func-tions,enabling parallel,high-speed,and energy-efficient information processing.Among various neuromorphic technologies,ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multi-dimensional control strategies.This review provides a comprehensive overview of recent progress in ion-modulation optoelec-tronic neuromorphic devices.It elucidates the key mechanisms underlying ionic modulation of light fields,including ion migra-tion dynamics and capture and release of charge through ions.Furthermore,the synthesis of active materials and the proper-ties of these devices are analyzed in detail.The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems,neuromorphic computing,and other bionic fields.Finally,the existing challenges and future direc-tions for the development of optoelectronic neuromorphic devices are discussed,providing critical insights for advancing this promising field. 展开更多
关键词 ion migration optoelectronic modulation optoelectronic device neuromorphic computing artificial vision system
在线阅读 下载PDF
Synaptic devices based on silicon carbide for neuromorphic computing 被引量:1
9
作者 Boyu Ye Xiao Liu +2 位作者 Chao Wu Wensheng Yan Xiaodong Pi 《Journal of Semiconductors》 2025年第2期38-51,共14页
To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the vario... To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the various materials inves-tigated for the fabrication of synaptic devices,silicon carbide(SiC)has emerged as a preferred choices due to its high electron mobility,superior thermal conductivity,and excellent thermal stability,which exhibits promising potential for neuromorphic applications in harsh environments.In this review,the recent progress in SiC-based synaptic devices is summarized.Firstly,an in-depth discussion is conducted regarding the categories,working mechanisms,and structural designs of these devices.Subse-quently,several application scenarios for SiC-based synaptic devices are presented.Finally,a few perspectives and directions for their future development are outlined. 展开更多
关键词 silicon carbide wide bandgap semiconductors synaptic devices neuromorphic computing high temperature
在线阅读 下载PDF
Physics of 2D Materials for Developing Smart Devices 被引量:1
10
作者 Neeraj Goel Rahul Kumar 《Nano-Micro Letters》 2025年第8期449-490,共42页
Rapid industrialization advancements have grabbed worldwide attention to integrate a very large number of electronic components into a smaller space for performing multifunctional operations.To fulfill the growing com... Rapid industrialization advancements have grabbed worldwide attention to integrate a very large number of electronic components into a smaller space for performing multifunctional operations.To fulfill the growing computing demand state-of-the-art materials are required for substituting traditional silicon and metal oxide semiconductors frameworks.Two-dimensional(2D)materials have shown their tremendous potential surpassing the limitations of conventional materials for developing smart devices.Despite their ground-breaking progress over the last two decades,systematic studies providing in-depth insights into the exciting physics of 2D materials are still lacking.Therefore,in this review,we discuss the importance of 2D materials in bridging the gap between conventional and advanced technologies due to their distinct statistical and quantum physics.Moreover,the inherent properties of these materials could easily be tailored to meet the specific requirements of smart devices.Hence,we discuss the physics of various 2D materials enabling them to fabricate smart devices.We also shed light on promising opportunities in developing smart devices and identified the formidable challenges that need to be addressed. 展开更多
关键词 2D materials HETEROSTRUCTURES Smart devices Van der Waals Flexible electronics
在线阅读 下载PDF
Research Progress on Microfluidic Paper-based Analytical Devices for Point-of-care Testing 被引量:1
11
作者 ZHANG Yuji XU Ruicheng SHAN Dan 《激光生物学报》 2025年第1期1-11,共11页
Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by... Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided. 展开更多
关键词 point-of-care testing microfluidic paper-based analytical devices SENSOR personalized medical treatment portable diagnostic equipment
在线阅读 下载PDF
Influence study of main cable displacement-controlled device type of long-span suspension bridges on structural mechanical properties 被引量:1
12
作者 YUAN Zhijie WANG Hao +2 位作者 MAO Jianxiao LI Rou ZONG Hai 《Journal of Southeast University(English Edition)》 2025年第1期27-36,共10页
Main cable displacement-controlled devices(DCDs)are key components for coordinating the vertical deformation of the main cable and main girder in the side span of continuous suspension bridges.To reveal the mechanical... Main cable displacement-controlled devices(DCDs)are key components for coordinating the vertical deformation of the main cable and main girder in the side span of continuous suspension bridges.To reveal the mechanical action mechanisms of DCD on bridge structures,a three-span continuous suspension bridge was taken as the engineering background in this study.The influence of different forms of DCD on the internal force and displacement of the components in the side span of the bridge and the structural dynamic characteristics were explored through numerical simulations.The results showed that the lack of DCD caused the main cable and main girder to have large vertical displacements.The stresses of other components were redistributed,and the safety factor of the suspenders at the side span was greatly reduced.The setting of DCD improved the vertical stiffness of the structure.The rigid DCD had larger internal forces,but its control effect on the internal forces at the side span was slightly better than that of the flexible DCD.Both forms of DCD effectively coordinated the deformation of the main cable and main girder and the stress distribution of components in the side span area.The choice of DCD form depends on the topographic factors of bridge sites and the design requirements of related components at the side span. 展开更多
关键词 long-span suspension bridge displacement-controlled device static and dynamic characteristics finite element live load
在线阅读 下载PDF
Recent Advances in Artificial Sensory Neurons:Biological Fundamentals,Devices,Applications,and Challenges
13
作者 Shuai Zhong Lirou Su +4 位作者 Mingkun Xu Desmond Loke Bin Yu Yishu Zhang Rong Zhao 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期168-216,共49页
Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantage... Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantages,convertingthe external analog signals to spikes is an essential prerequisite.Conventionalapproaches including analog-to-digital converters or ring oscillators,and sensorssuffer from high power and area costs.Recent efforts are devoted to constructingartificial sensory neurons based on emerging devices inspired by the biologicalsensory system.They can simultaneously perform sensing and spike conversion,overcoming the deficiencies of traditional sensory systems.This review summarizesand benchmarks the recent progress of artificial sensory neurons.It starts with thepresentation of various mechanisms of biological signal transduction,followed bythe systematic introduction of the emerging devices employed for artificial sensoryneurons.Furthermore,the implementations with different perceptual capabilitiesare briefly outlined and the key metrics and potential applications are also provided.Finally,we highlight the challenges and perspectives for the future development of artificial sensory neurons. 展开更多
关键词 Artificial intelligence Emerging devices Artificial sensory neurons Spiking neural networks Neuromorphic sensing
在线阅读 下载PDF
Simulation of Restraint Device Degradation of Long-Span Suspension Bridge Based on Finite Element Model 被引量:1
14
作者 Qiaowei Ye Ying Peng +3 位作者 Zihang Wang Chao Deng Xiang Xu Yuan Ren 《Structural Durability & Health Monitoring》 2025年第4期851-868,共18页
The girder end restraint devices such as bearings and dampers on long span suspension bridge will deteriorate over time.However,it is difficult to achieve the quantitative assessment of the performance of the restrain... The girder end restraint devices such as bearings and dampers on long span suspension bridge will deteriorate over time.However,it is difficult to achieve the quantitative assessment of the performance of the restraint device through existing detection methods in actual inspections,making it difficult to obtain the impact of changes in the performance of the restraint device on the bridge structure.In this paper,a random vehicle load model is firstly established based on the WIM data of Jiangyin Bridge,and the displacement of girder end under the actual traffic flow is simulated by using finite element dynamic time history analysis.On this basis,according to the performance test data of the bearings and dampers,the performance degradation laws of the above two restraint devices are summarized,and the performance degradation process of the two restraint devices and the effects of different restraint parameters on the bridge structure are simulated.The results show that the performance degradation of the damper will significantly reduce the damping force at low speed,resulting in a significant increase in the cumulative displacement of the girder end;in the presence of longitudinal dampers,the increase in the friction coefficient caused by the deterioration of the bearing sliding plate has little effect on the cumulative displacement,but excessive wear of the bearing sliding plate adversely affects the structural dynamic performance. 展开更多
关键词 Suspension bridge longitudinal displacement of girder end random vehicle load model deterioration of restraint devices
在线阅读 下载PDF
SolarDesign:An online photovoltaic device simulation and design platform 被引量:1
15
作者 Wei E.I.Sha Xiaoyu Wang +8 位作者 Wenchao Chen Yuhao Fu Lijun Zhang Liang Tian Minshen Lin Shudi Jiao Ting Xu Tiange Sun Dongxue Liu 《Chinese Physics B》 2025年第1期135-141,共7页
Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency ... Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency solar cells such as organic,perovskite,and tandem cells.The platform offers user-updatable libraries of basic photovoltaic materials and devices,device-level multi-physics simulations involving optical–electrical–thermal interactions,and circuit-level compact model simulations based on detailed balance theory.Employing internationally advanced numerical methods,the platform accurately,rapidly,and efficiently solves optical absorption,electrical transport,and compact circuit models.It achieves multi-level photovoltaic simulation technology from“materials to devices to circuits”with fully independent intellectual property rights.Compared to commercial softwares,the platform achieves high accuracy and improves speed by more than an order of magnitude.Additionally,it can simulate unique electrical transport processes in emerging solar cells,such as quantum tunneling,exciton dissociation,and ion migration. 展开更多
关键词 photovoltaic device simulation silicon solar cells organic and perovskite solar cells multi-physics and circuit simulation
原文传递
Sensitivity analysis of parameters influencing ED and self-centering capacity in self-centering bridge bents with ED beams using validated numerical model
16
作者 XIE Wen BAO Yangyang +1 位作者 TIE Ning HONG Yangfan 《Journal of Southeast University(English Edition)》 2025年第3期338-347,共10页
A self-centering bridge bent equipped with energy-dissipation(ED)beams is proposed.Quasi-static tests are conducted on self-centering bridge bents,both with and without ED beams,to validate the accuracy of the corresp... A self-centering bridge bent equipped with energy-dissipation(ED)beams is proposed.Quasi-static tests are conducted on self-centering bridge bents,both with and without ED beams,to validate the accuracy of the corresponding numerical models.The effects of various param-eters,such as the web area of ED beams,prestressing force of tendons,tendon arrangements,and number of column segments,on the seismic performance of self-centering bridge bents with ED beams are evaluated using the validated numerical model.The results demonstrate that the nu-merical models accurately replicate the quasi-static test results,with average errors in the lateral force remaining below 9.6%.The web area of ED beams significantly affects the strength,cumulative energy dissipation,and relative self-centering index(RSI)of the self-centering bridge bents.Increasing the prestressing force enhances the lateral force and self-centering capability of the bridge bents but has minimal effect on their ED capacity.Reducing the num-ber of segments in each column enhances the lateral force and cumulative hysteretic energy dissipation of the self-centering bridge bents while exerting an insignificant effect on the RSI.Thus,the proposed novel system is highly suitable for doubleor multicolumn piers supporting bridges in regions prone to strong earthquakes. 展开更多
关键词 self-centering bridge bents energy-dissipation beams energy dissipation self-centering capacity quasi-static test numerical validation
在线阅读 下载PDF
Kali Pi—A Miniature Ultra-Portable Penetration Testing Device
17
作者 Ahmed Bin Ali 《Journal of Information Security》 2025年第1期101-113,共13页
Penetration testing plays a critical role in ensuring security in an increasingly interconnected world. Despite advancements in technology leading to smaller, more portable devices, penetration testing remains reliant... Penetration testing plays a critical role in ensuring security in an increasingly interconnected world. Despite advancements in technology leading to smaller, more portable devices, penetration testing remains reliant on traditional laptops and computers, which, while portable, lack true ultra-portability. This paper explores the potential impact of developing a dedicated, ultra-portable, low-cost device for on-the-go penetration testing. Such a device could replicate the core functionalities of advanced penetration testing tools, including those found in Kali Linux, within a compact form factor that fits easily into a pocket. By offering the convenience and portability akin to a smartphone, this innovative device could redefine the way penetration testers operate, enabling them to carry essential tools wherever they go and ensuring they are always prepared to conduct security assessments efficiently. This approach aims to revolutionize penetration testing by merging high functionality with unparalleled portability. 展开更多
关键词 Penetration Testing Portable device CYBERSECURITY Raspberry Pi
在线阅读 下载PDF
Changshu Textile Machinery:Focusing on the shedding devices R&D for more than 60 years
18
《China Textile》 2025年第5期47-47,共1页
Changshu Textile Machinery Works Co.,Ltd.was founded in 1958 and is a professional R&D and manufacturing enterprise of looms shedding device in China.The company's products cover three series of shedding devic... Changshu Textile Machinery Works Co.,Ltd.was founded in 1958 and is a professional R&D and manufacturing enterprise of looms shedding device in China.The company's products cover three series of shedding devices for looms(Dobby,Jacquard,Cam Motion),forming a series of products with electronic shedding devices as the main products,and mechanical shedding devices as the auxiliary products.D2876pro electronic dobby The D2876pro electronic dobby is a high-performance equipment designed for a maximum operating speed of 800rpm.It has 16 cams,and 12mm of pitch,with a high installation type.The shedding type is double lift and full clear open.Its maximum wefts is 12,800 and 100,000.It has a two-stage filtration lubrication with a gerotor pump oil recycle system,and it is suitable for water-jet looms. 展开更多
关键词 dobby loom d pro electronic dobby high performance equipment electronic shedding devices shedding device electronic dobby shedding devices
在线阅读 下载PDF
Reconfigurable devices based on two-dimensional materials for logic and analog applications
19
作者 Liutianyi Zhang Ping-Heng Tan Jiangbin Wu 《Journal of Semiconductors》 2025年第7期48-64,共17页
In recent years,as the dimensions of the conventional semiconductor technology is approaching the physical limits,while the multifunction circuits are restricted by the relatively fixed characteristics of the traditio... In recent years,as the dimensions of the conventional semiconductor technology is approaching the physical limits,while the multifunction circuits are restricted by the relatively fixed characteristics of the traditional metal−oxide−semiconductor field-effect transistors,reconfigurable devices that can realize reconfigurable characteristics and multiple functions at device level have been seen as a promising method to improve integration density and reduce power consumption.Owing to the ultrathin structure,effective control of the electronic characteristics and ability to modulate structural defects,two-dimensional(2D)materials have been widely used to fabricate reconfigurable devices.In this review,we summarize the working principles and related logic applications of reconfigurable devices based on 2D materials,including generating tunable anti-ambipolar responses and demonstrating nonvolatile operations.Furthermore,we discuss the analog signal processing applications of anti-ambipolar transistors and the artificial intelligence hardware implementations based on reconfigurable transistors and memristors,respectively,therefore highlighting the outstanding advantages of reconfigurable devices in footprint,energy consumption and performance.Finally,we discuss the challenges of the 2D materials-based reconfigurable devices. 展开更多
关键词 two-dimensional materials reconfigurable devices anti-ambipolar characteristics nonvolatile devices artificial intelligence hardware
在线阅读 下载PDF
Seismic behavior of prefabricated,assembled,self-centering bridge piers with a damage transfer configuration
20
作者 Zhang Juhui Wu Jiashun +1 位作者 Qian Yiqing Guan Zhongguo 《Earthquake Engineering and Engineering Vibration》 2025年第3期861-874,共14页
To address local concrete damage in joint areas at the footing of prefabricated assembled self-centering bridge piers(PASPs)in seismic design,a damage transfer configuration(DTC)was proposed,based on the bridge pier s... To address local concrete damage in joint areas at the footing of prefabricated assembled self-centering bridge piers(PASPs)in seismic design,a damage transfer configuration(DTC)was proposed,based on the bridge pier structure configuration and the mechanism of local damage formation.Integrating the DTC into the PASP,numerical models of a previous experimental reference PASP and a PASP with damage transfer configuration(DTPASP)were established using the finite element software ABAQUS with a concrete damage plasticity(CDP)model.The models were then compared with experimental results regarding damage distribution,hysteresis curves,energy dissipation capacity,the joint opening degree,and residual displacement.The findings indicate that the finite element model developed in this study can well reflect the experimental results of the reference PASP.The incorporation of the DTC proved to be beneficial in preserving structural integrity,bearing capacity,and the functionality of the core structure of bridge piers following an earthquake.Meanwhile,this addition did not exert a significant influence on the seismic behavior of the core structure of the bridge pier. 展开更多
关键词 bridge engineering seismic behavior numerical models prefabricated assembled self-centering bridge piers damage transfer configuration
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部