Driven by the wave of informatization and intelligence,the smart city has become a new trend of global urban development.The intelligent transformation of energy systems is of great importance to a smart city.The Inte...Driven by the wave of informatization and intelligence,the smart city has become a new trend of global urban development.The intelligent transformation of energy systems is of great importance to a smart city.The Internet helps the sustainable development of smart cities by optimizing resource allocation,improving utilization efficiency,and promoting market competition.This study analyzes the current situation and problems of energy Internet supporting smart cities and finds that policy environment,technology maturity,market demand,and industrial chain integration have a significant positive impact on its development.Based on this,relevant strategies are proposed to provide theoretical and practical guidance for the integrated development of smart cities and the energy Internet.展开更多
The widespread deployment of Internet of Things(IoT)devices has led to an increasing demand for sustainable and cost-effective power resources.Soil microbial fuel cells(SMFCs)have emerged as a promising solution,offer...The widespread deployment of Internet of Things(IoT)devices has led to an increasing demand for sustainable and cost-effective power resources.Soil microbial fuel cells(SMFCs)have emerged as a promising solution,offering great biocompatibility and operational viability.This study presents a thorough investigation of the critical design parameters that influence the performance of SMFCs,with a particular focus on electrode material selection and electrode spatial configurations.Six common metallic materials,including brass,copper,stainless steel,aluminum alloy,iron,and zinc,are evaluated for their effectiveness as electrode materials,with zinc-stainless steel being found to be the optimal combination based on voltage and current outputs.The spatial arrangement of the electrodes is also shown to impact performance,with the series connection mode providing higher voltage output and larger internal resistance,while the parallel mode results in higher power output and lower internal resistance.To showcase the practical potential of SMFCs,a nine-cell series array was utilized to power a customized low-power IoT node,enabling the successful transmission of temperature data to the cloud without the need for a traditional battery.This work highlights the viability of SMFCs as a renewable,battery-free solution for IoT devices,with potential applications in agriculture,environmental monitoring,and smart campuses.展开更多
Effective resource management in the Internet of Things and fog computing is essential for efficient and scalable networks.However,existing methods often fail in dynamic and high-demand environments,leading to resourc...Effective resource management in the Internet of Things and fog computing is essential for efficient and scalable networks.However,existing methods often fail in dynamic and high-demand environments,leading to resource bottlenecks and increased energy consumption.This study aims to address these limitations by proposing the Quantum Inspired Adaptive Resource Management(QIARM)model,which introduces novel algorithms inspired by quantum principles for enhanced resource allocation.QIARM employs a quantum superposition-inspired technique for multi-state resource representation and an adaptive learning component to adjust resources in real time dynamically.In addition,an energy-aware scheduling module minimizes power consumption by selecting optimal configurations based on energy metrics.The simulation was carried out in a 360-minute environment with eight distinct scenarios.This study introduces a novel quantum-inspired resource management framework that achieves up to 98%task offload success and reduces energy consumption by 20%,addressing critical challenges of scalability and efficiency in dynamic fog computing environments.展开更多
The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This pape...The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This paper introduces the Adaptive Blended Marine Predators Algorithm(AB-MPA),a novel optimization technique designed to enhance Quality of Service(QoS)in IoT systems by dynamically optimizing network configurations for improved energy efficiency and stability.Our results represent significant improvements in network performance metrics such as energy consumption,throughput,and operational stability,indicating that AB-MPA effectively addresses the pressing needs ofmodern IoT environments.Nodes are initiated with 100 J of stored energy,and energy is consumed at 0.01 J per square meter in each node to emphasize energy-efficient networks.The algorithm also provides sufficient network lifetime extension to a resourceful 7000 cycles for up to 200 nodes with a maximum Packet Delivery Ratio(PDR)of 99% and a robust network throughput of up to 1800 kbps in more compact node configurations.This study proposes a viable solution to a critical problem and opens avenues for further research into scalable network management for diverse applications.展开更多
A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric veh...A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric vehicles and local energy storage will be widely deployed. Internet technology will be utilized to transform the power grid into an energysharing inter-grid. To prepare for the future, a smart grid with intelligent periphery, or smart GRIP, is proposed. The building blocks of GRIP architecture are called clusters and include an energy-management system (EMS)-controlled transmission grid in the core and distribution grids, micro-grids, and smart buildings and homes on the periphery; all of which are hierarchically structured. The layered architecture of GRIP allows a seamless transition from the present to the future and plug-and-play interoperability. The basic functions of a cluster consist of (1) dispatch, (2) smoothing, and (3) mitigation. A risk-limiting dispatch methodology is presented; a new device, called the electric spring, is developed for smoothing out fluctuations in periphery clusters; and means to mitigate failures are discussed.展开更多
The increasing penetration of renewable energy on the transmission and distribution power network is driving the adoption of two-way power flow control, data and communications needed to meet the dependency of balanci...The increasing penetration of renewable energy on the transmission and distribution power network is driving the adoption of two-way power flow control, data and communications needed to meet the dependency of balancing generation and load. Thus, creating an environment where power and information flow seamlessly in real time to enable reliable and economically viable energy delivery, the advent of Internet of Energy(IoE) as well as the rising of Internet of Things(IoT) based smart systems.The evolution of IT to Io T has shown that an information network can be connected in an autonomous way via routers from operating system(OS) based computers and devices to build a highly intelligent eco-system. Conceptually, we are applying the same methodology to the Io E concept so that Energy Operating System(EOS) based assets and devices can be developed into a distributed energy network via energy gateway and self-organized into a smart energy eco-system.This paper introduces a laboratory based IIo T driven software and controls platform developed on the NICE Nano-grid as part of a NICE smart system Initiative for Shenhua group. The goal of this effort is to develop an open architecture based Industrial Smart Energy Consortium(ISEC) to attract industrial partners, academic universities, module supplies, equipment vendors and related stakeholder to explore and contribute into a test-bed centric open laboratory template and platform for next generation energy-oriented smart industry applications.In the meanwhile, ISEC will play an important role to drive interoperability standards for the mining industry so that the era of un-manned underground mining operation can become the reality as well as increasing safety regulation enforcement.展开更多
The European power grid is one of the largest regional interconnected power grids in the world.It realizes a multinational grid operation,which is rare.The total installed capacity of the European power grid is the la...The European power grid is one of the largest regional interconnected power grids in the world.It realizes a multinational grid operation,which is rare.The total installed capacity of the European power grid is the largest throughout the world.In addition,the integration and utilization of renewable energy in this grid is a great benchmark for other countries and can help promote energy transformation and achieve a high proportion of renewable energy consumption.Based on the analysis of the existing status of the European interconnected power grid and the development history of this power grid,this paper summarizes four key development stages of the European power grid.In addition,the characteristics of each stage and the development prospect of the European power grid are analyzed.On this basis,this paper gives suggestions for the development and construction of China’s energy internet;this can provide valuable reference for further studies on China’s energy internet.展开更多
Energy efficiency is very important for the Internet of Things(IoT),especially for front-end sensed terminal or node.It not only embodies the node’s life,but also reflects the lifetime of the network.Meanwhile,it is ...Energy efficiency is very important for the Internet of Things(IoT),especially for front-end sensed terminal or node.It not only embodies the node’s life,but also reflects the lifetime of the network.Meanwhile,it is also a key indicator of green communications.Unfortunately,there is no article on systematic analysis and review for energy efficiency evaluation in IoT.In this paper,we systemically analyze the architecture of IoT,and point out its energy distribution,Furthermore,we summarized the energy consumption model in IoT,analyzed the pros and cons of improving energy efficiency,presented a state of the art the evaluation metrics of energy efficiency.Finally,we conclude the techniques and methods,and carry out a few open research issues and directions in this field.展开更多
With the release of the electricity sales side,large-scale small-capacity distributed power generation units are connected to the distribution side,forming multi-type market entities such as microgrids,integrated ener...With the release of the electricity sales side,large-scale small-capacity distributed power generation units are connected to the distribution side,forming multi-type market entities such as microgrids,integrated energy systems,and virtual power plants.With the large-scale integration of distributed energy,the energy market under the energy internet is different from a traditional transmission grid.It is currently developing in the direction of diversified entities and commodities,a flat structure,and a flexible and competitive multi-agent market mechanism.In this context,this study analyzes the value of combining blockchain and the electricity market presents the design of a blockchain trading framework for multi-agent cooperation and sharing of the energy internet.The nodes in market transactions are modeled through power system modeling in the physical layer and the transaction consensus strategy in the cyber layer;moreover,the nodes are verified in a modified IEEE 13 testing feeder of a distribution network.A transaction example is demonstrated using the multi-agent cooperation and sharing transaction platform based on the Ethereum private blockchain.展开更多
Green Internet of things (loT) has been heralded as the "next big thing" waiting to be realized in energy-efficient ubiquitous computing. Green IoT revolves around increased machine-to-machine communications and e...Green Internet of things (loT) has been heralded as the "next big thing" waiting to be realized in energy-efficient ubiquitous computing. Green IoT revolves around increased machine-to-machine communications and encompasses energy-efficient wireless embedded sensors and actuators that assist in monitoring and controlling home appliances. Energy efficiency in home applications can be achieved by better monitoring of the specific energy consumption by the appliances. There are many wireless standards that can be adopted for the design of such embedded devices in loT. These communication technologies cater to different requirements and are classified as the short-range and long-range ones. To select the best communication method, this paper surveys various loT communication technologies and discusses the advantages and disadvantages to develop an energy monitoring system. An IoT device based on the Wi-Fi technology system is developed and tested for usage in the home energy monitoring environment. The performance of this system is then evaluated by the measurement of power consumption metrics. In the efficient deep-sleep mode, the system saves up to 0.3 W per cycle with an average power dissipation of less than 0.1 W/s.展开更多
The internet of things(IoT)has a wide variety of applications,which in turn raisesmany challenging issues.IoT technology enables devices to closely monitor their environment,providing context-aware intelligence based ...The internet of things(IoT)has a wide variety of applications,which in turn raisesmany challenging issues.IoT technology enables devices to closely monitor their environment,providing context-aware intelligence based on the real-time data collected by their sensor nodes.The IoT not only controls these devices but also monitors their user’s behaviour.One of the major issues related to IoT is the need for an energy-efficient communication protocol which uses the heterogeneity and diversity of the objects connected through the internet.Minimizing energy consumption is a requirement for energyconstrained nodes and outsourced nodes.The IoT nodes deployed in different geographical regions typically have different energy levels.This paper focuses on creating an energy-efficient protocol for IoTwhich can deal with the clustering of nodes and the cluster head selection process.An energy thresholdmodel is developed to select the appropriate cluster heads and also to ensure uniform distribution of energy to those heads andmember nodes.The proposed model envisages an IoT network with three different types of nodes,described here as advanced,intermediate and normal nodes.Normal nodes are first-level nodes,which have the lowest energy use;intermediate nodes are second-level nodes,which have a medium energy requirement;and the advanced class are thirdlevel nodes with the highest energy use.The simulation results demonstrate that the proposed algorithm outperforms other existing algorithms.In tests,it shows a 26%improvement in network lifetime compared with existing algorithms.展开更多
Internet of Things (IoT) refers to an infrastructure which enables the forms of com- munication and collaboration between people and things, and between things themselves. In order to improve its performance, we pre...Internet of Things (IoT) refers to an infrastructure which enables the forms of com- munication and collaboration between people and things, and between things themselves. In order to improve its performance, we present a tradeoff between bandwidth and energy con- sumption in the loT in this paper. A service providing model is built to find the relation- ship between bandwidth and energy consump- tion using a cooperative differential game mo- del. The game solution is gotten in the condi- tion of grand coalition, feedback Nash equili- brium and intermediate coalitions and an allo- cation policy is obtain by Shapley theory. The results are shown as follows. Firstly, the per- formance of IoT decreases with the increasing of bandwidth cost or with the decreasing of en- ergy cost; secondly, all the nodes in the IoT com- posing a grand coalition can save bandwidth and energy consumption; thirdly, when the fac- tors of bandwidth cost and energy cost are eq- ual, the obtained number of provided services is an optimised value which is the trade-off between energy and bandwidth consumption.展开更多
Under the background of the rapid development of the Internet, new energy vehicles (NEVs) have ushered in an excellent development opportunity. With the subsidy policy exiting, new energy vehicles are facing unprecede...Under the background of the rapid development of the Internet, new energy vehicles (NEVs) have ushered in an excellent development opportunity. With the subsidy policy exiting, new energy vehicles are facing unprecedented challenges. One purpose of stimulating the NEVs through “Internet plus” initiative is to promote diversification of vehicle energy systems and advance industrial upgrading and transformation. On the premise of “Internet plus”, the paper analyses the obstacles and opportunities of new energy vehicles from four aspects, and proposes a promoting development model which includes management mode and profit mode, and constructs a promoting development framework which is about three stages of new energy vehicles. Finally, from the perspective of the new energy vehicle charging, the paper puts forward some policy advice to promote industrialization and popularization of new energy vehicles in China.展开更多
The energy Internet operation platform provides market entities such as energy users,energy enterprises,suppliers,and governments with the ability to interact,transact,and manage various operations.Owing to the large ...The energy Internet operation platform provides market entities such as energy users,energy enterprises,suppliers,and governments with the ability to interact,transact,and manage various operations.Owing to the large number of platform users,complex businesses,and large amounts of data-mining tasks,it is necessary to solve the problems afflicting platform task scheduling and the provision of simultaneous access to a large number of users.This study examines the two core technologies of platform task scheduling and multiuser concurrent processing,proposing a distributed task-scheduling method and a technical implementation scheme based on the particle swarm optimization algorithm,and presents a systematic solution in concurrent processing for massive user numbers.Based on the results of this study,the energy internet operation platform can effectively deal with the concurrent access of tens of millions of users and complex task-scheduling problems.展开更多
The?convergence of the Internet, sensor networks, and Radio Frequency Identification (RFID) systems has ushered to the concept of Internet of Things (IoT) which is capable of connecting daily things, making them smart...The?convergence of the Internet, sensor networks, and Radio Frequency Identification (RFID) systems has ushered to the concept of Internet of Things (IoT) which is capable of connecting daily things, making them smart through sensing, reasoning, and cooperating with other things. Further, RFID technology enables tracking of an object and assigning it a unique ID. IoT has the potential for a wide range of applications relating to healthcare, environment, transportation, cities… Moreover, the middleware is a basic component in the IoT architecture. It handles heterogeneity issues among IoT devices and provides a common framework for communication. More recently, the interest has focusing on developing publish/subscribe middleware systems for the IoT to allow asynchronous communication between the IoT devices. The scope of our paper is to study routing protocols for publish/subscribe schemes that include content and context-based routing. We propose an Energy-Efficient Content-Based Routing (EECBR) protocol for the IoT that minimizes the energy consumption. The proposed algorithm makes use of a virtual topology that is constructed in a centralized manner and then routes the events from the publishers to the intended interested subscribers in a distributed manner. EECBR has been simulated using Omnet++. The simulation results show that EECBR has a significant performance in term of the energy variance compared to the other schemes.展开更多
In order to solve the problems of poor informationflow,low energy utilization rate and energy consumption data reuse in the heavy equipment industrial park,the Internet of Things(IoT)technology is applied to construct...In order to solve the problems of poor informationflow,low energy utilization rate and energy consumption data reuse in the heavy equipment industrial park,the Internet of Things(IoT)technology is applied to construct the intelligent energy management and control system(IEMCS).The application architecture and function module planning are analyzed and designed.Furthermore,the IEMCS scheme is not unique due to the fuzziness of customer demand and the understanding deviation of designer to customer demand in the design stage.Scheme assessment is of great significance for the normal subsequent implementation of the system.A fuzzy assessment method for IEMCS scheme alternatives is proposed to achieve scheme selection.Fuzzy group decision using triangular fuzzy number to express the vague assessment of experts is adopted to determine the index value.TOPSIS is modified by replacing Euclidean distance with contact vector distance in IEMCS scheme alternative assessment.An experiment with eight IEMCS scheme alternatives in a heavy equipment industrial park is given for the validation.The experiment result shows that eight IEMCS scheme alternatives can be assessed.Through the comparisons with other methods,the reliability of the results obtained by the proposed method is discussed.展开更多
Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suf...Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suffered from problems such as low adaptability,policy lag,and difficulty in determining the degree of tolerance.To address these issues,we propose a novel adaptive intrusion tolerance model based on game theory that enjoys two-fold ideas:(1)it constructs an improved replica of the intrusion tolerance model of the dynamic equation evolution game to induce incentive weights;and (2)it combines a tournament competition model with incentive weights to obtain optimal strategies for each stage of the game process.Extensive experiments are conducted in the IEEE 39-bus system,whose results demonstrate the feasibility of the incentive weights,confirm the proposed strategy strengthens the system’s ability to tolerate aggression,and improves the dynamic adaptability and response efficiency of the aggression-tolerant system in the case of limited resources.展开更多
The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy ...The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy internet. Progressive penetration of intermittent renewable energy sources into the energy system has led to unprecedented challenges to the currently wide use of coal-fired power generation technologies. Here, the applications and prospects of advanced coal-fired power generation technologies are analyzed. These technologies can be summarized into three categories:(1) large-scale and higher parameters coal-fired power generation technologies, including 620/650/700 oC ultra-supercritical thermal power and double reheat ultra-supercritical coal-fired power generation technologies;(2) system innovation and specific, highefficiency thermal cycles, which consist of renewable energy-aided coal-fired power generation technologies, a supercritical CO_2 Brayton cycle for coal-fired power plants, large-scale air-cooling coal-fired power plant technologies, and innovative layouts for waste heat utilization and enhanced energy cascade utilization;(3) coal-fired power generation combined with poly-generation technologies, which are represented by integrated gasification combined cycle(IGCC) and integrated gasification fuel cell(IGFC) technologies. Concerning the existing coal-fired power units, which are responsible for peak shaving, possible strategies for enhancing flexibility and operational stability are discussed. Furthermore, future trends for coal-fired power plants coupled with cyber-physical system(CPS) technologies are introduced. The development of advanced, coal-fired power generation technologies demonstrates the progress of science and is suitable for the sustainable development of human society.展开更多
Energy Internet is deeply integrated by Internet concept, information technology and energy industry, and Energy Internet Big Data are one of core technologies that achieve energy-information-economic interconnection ...Energy Internet is deeply integrated by Internet concept, information technology and energy industry, and Energy Internet Big Data are one of core technologies that achieve energy-information-economic interconnection and improve the development and evolution of Energy Internet. This paper describes the concept and characteristics of Energy Internet Big Data, and feasibility of applying Energy Internet Big Data to integrated energy market. On this basis, as for integrated energy market and multi-subjects of Energy Internet, typical application and technical system based on Energy Internet Big Data in integrated energy market is put forward, which provides a reference for the analysis and decision of integrated energy market in Energy Internet.展开更多
基金Research and Innovation Team Building Project of Qingdao City University(QCU23TDKJO1)。
文摘Driven by the wave of informatization and intelligence,the smart city has become a new trend of global urban development.The intelligent transformation of energy systems is of great importance to a smart city.The Internet helps the sustainable development of smart cities by optimizing resource allocation,improving utilization efficiency,and promoting market competition.This study analyzes the current situation and problems of energy Internet supporting smart cities and finds that policy environment,technology maturity,market demand,and industrial chain integration have a significant positive impact on its development.Based on this,relevant strategies are proposed to provide theoretical and practical guidance for the integrated development of smart cities and the energy Internet.
基金financially supported by the National Natural Science Foundation of China(Grant No.52305135)the Guangzhou Municipal Science and Technology Bureau(Grant Nos.SL2023A03J00869,SL2023A04J01741)+2 种基金the Guangdong Provincial Key Lab of Integrated Communication,Sensing and Computation for Ubiquitous Internet of Things(Grant No.2023B1212010007)the Guangzhou Municipal Science and Technology Project(Grant No.2023A03J0011)the Guangzhou Municipal Key Laboratory on Future Networked Systems(Grant No.024A03J0623).
文摘The widespread deployment of Internet of Things(IoT)devices has led to an increasing demand for sustainable and cost-effective power resources.Soil microbial fuel cells(SMFCs)have emerged as a promising solution,offering great biocompatibility and operational viability.This study presents a thorough investigation of the critical design parameters that influence the performance of SMFCs,with a particular focus on electrode material selection and electrode spatial configurations.Six common metallic materials,including brass,copper,stainless steel,aluminum alloy,iron,and zinc,are evaluated for their effectiveness as electrode materials,with zinc-stainless steel being found to be the optimal combination based on voltage and current outputs.The spatial arrangement of the electrodes is also shown to impact performance,with the series connection mode providing higher voltage output and larger internal resistance,while the parallel mode results in higher power output and lower internal resistance.To showcase the practical potential of SMFCs,a nine-cell series array was utilized to power a customized low-power IoT node,enabling the successful transmission of temperature data to the cloud without the need for a traditional battery.This work highlights the viability of SMFCs as a renewable,battery-free solution for IoT devices,with potential applications in agriculture,environmental monitoring,and smart campuses.
基金funded by Researchers Supporting Project Number(RSPD2025R947)King Saud University,Riyadh,Saudi Arabia.
文摘Effective resource management in the Internet of Things and fog computing is essential for efficient and scalable networks.However,existing methods often fail in dynamic and high-demand environments,leading to resource bottlenecks and increased energy consumption.This study aims to address these limitations by proposing the Quantum Inspired Adaptive Resource Management(QIARM)model,which introduces novel algorithms inspired by quantum principles for enhanced resource allocation.QIARM employs a quantum superposition-inspired technique for multi-state resource representation and an adaptive learning component to adjust resources in real time dynamically.In addition,an energy-aware scheduling module minimizes power consumption by selecting optimal configurations based on energy metrics.The simulation was carried out in a 360-minute environment with eight distinct scenarios.This study introduces a novel quantum-inspired resource management framework that achieves up to 98%task offload success and reduces energy consumption by 20%,addressing critical challenges of scalability and efficiency in dynamic fog computing environments.
文摘The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This paper introduces the Adaptive Blended Marine Predators Algorithm(AB-MPA),a novel optimization technique designed to enhance Quality of Service(QoS)in IoT systems by dynamically optimizing network configurations for improved energy efficiency and stability.Our results represent significant improvements in network performance metrics such as energy consumption,throughput,and operational stability,indicating that AB-MPA effectively addresses the pressing needs ofmodern IoT environments.Nodes are initiated with 100 J of stored energy,and energy is consumed at 0.01 J per square meter in each node to emphasize energy-efficient networks.The algorithm also provides sufficient network lifetime extension to a resourceful 7000 cycles for up to 200 nodes with a maximum Packet Delivery Ratio(PDR)of 99% and a robust network throughput of up to 1800 kbps in more compact node configurations.This study proposes a viable solution to a critical problem and opens avenues for further research into scalable network management for diverse applications.
基金supported by National Natural Science Foundation of China(61433004,61603085)the China Postdoctoral Science Foundation(2015M570253)the Fundamental Research Funds for the Central Universities(N150403004)
基金sponsored by National Key Basic Research Program of China (973 Program) (2012CB215102) for WuUS National Science Foundation Award (1135872) for VaraiyaHong Kong RGC Theme-based Research Project (T23-701/14-N) for Hui
文摘A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric vehicles and local energy storage will be widely deployed. Internet technology will be utilized to transform the power grid into an energysharing inter-grid. To prepare for the future, a smart grid with intelligent periphery, or smart GRIP, is proposed. The building blocks of GRIP architecture are called clusters and include an energy-management system (EMS)-controlled transmission grid in the core and distribution grids, micro-grids, and smart buildings and homes on the periphery; all of which are hierarchically structured. The layered architecture of GRIP allows a seamless transition from the present to the future and plug-and-play interoperability. The basic functions of a cluster consist of (1) dispatch, (2) smoothing, and (3) mitigation. A risk-limiting dispatch methodology is presented; a new device, called the electric spring, is developed for smoothing out fluctuations in periphery clusters; and means to mitigate failures are discussed.
基金supported by National Key Research and Development Program(2016YFE0102600)National Natural Science Foundation of China(51577096,51477082)
文摘The increasing penetration of renewable energy on the transmission and distribution power network is driving the adoption of two-way power flow control, data and communications needed to meet the dependency of balancing generation and load. Thus, creating an environment where power and information flow seamlessly in real time to enable reliable and economically viable energy delivery, the advent of Internet of Energy(IoE) as well as the rising of Internet of Things(IoT) based smart systems.The evolution of IT to Io T has shown that an information network can be connected in an autonomous way via routers from operating system(OS) based computers and devices to build a highly intelligent eco-system. Conceptually, we are applying the same methodology to the Io E concept so that Energy Operating System(EOS) based assets and devices can be developed into a distributed energy network via energy gateway and self-organized into a smart energy eco-system.This paper introduces a laboratory based IIo T driven software and controls platform developed on the NICE Nano-grid as part of a NICE smart system Initiative for Shenhua group. The goal of this effort is to develop an open architecture based Industrial Smart Energy Consortium(ISEC) to attract industrial partners, academic universities, module supplies, equipment vendors and related stakeholder to explore and contribute into a test-bed centric open laboratory template and platform for next generation energy-oriented smart industry applications.In the meanwhile, ISEC will play an important role to drive interoperability standards for the mining industry so that the era of un-manned underground mining operation can become the reality as well as increasing safety regulation enforcement.
基金funded by the State Grid Science and Technology Research Program:“Research on coordination development mode and reliability evaluation of source,network,load and storage considering the safety requirements(No.B3440818K005)”
文摘The European power grid is one of the largest regional interconnected power grids in the world.It realizes a multinational grid operation,which is rare.The total installed capacity of the European power grid is the largest throughout the world.In addition,the integration and utilization of renewable energy in this grid is a great benchmark for other countries and can help promote energy transformation and achieve a high proportion of renewable energy consumption.Based on the analysis of the existing status of the European interconnected power grid and the development history of this power grid,this paper summarizes four key development stages of the European power grid.In addition,the characteristics of each stage and the development prospect of the European power grid are analyzed.On this basis,this paper gives suggestions for the development and construction of China’s energy internet;this can provide valuable reference for further studies on China’s energy internet.
基金This work is partially supported by the National Natural Science Foundation of China(No.61571004,No.61571303)the National Science and Technology Major Project of China(No.2018ZX03001031)+3 种基金National Key Research and Development Program of China(No.2019YFB2101602)the Science and Technology Innovation Program of Shanghai(No.17DZ2292000,No.16510711600)the Shanghai Natural Science Foundation(No.16ZR1435200)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.YJKYYQ20170074).
文摘Energy efficiency is very important for the Internet of Things(IoT),especially for front-end sensed terminal or node.It not only embodies the node’s life,but also reflects the lifetime of the network.Meanwhile,it is also a key indicator of green communications.Unfortunately,there is no article on systematic analysis and review for energy efficiency evaluation in IoT.In this paper,we systemically analyze the architecture of IoT,and point out its energy distribution,Furthermore,we summarized the energy consumption model in IoT,analyzed the pros and cons of improving energy efficiency,presented a state of the art the evaluation metrics of energy efficiency.Finally,we conclude the techniques and methods,and carry out a few open research issues and directions in this field.
基金the Smart Grid Joint Fund of the National Natural Science Foundation of China(No.U2066209)the Science and Technology Project of the China Electric Power Research Institute(No.AI83-20-002).
文摘With the release of the electricity sales side,large-scale small-capacity distributed power generation units are connected to the distribution side,forming multi-type market entities such as microgrids,integrated energy systems,and virtual power plants.With the large-scale integration of distributed energy,the energy market under the energy internet is different from a traditional transmission grid.It is currently developing in the direction of diversified entities and commodities,a flat structure,and a flexible and competitive multi-agent market mechanism.In this context,this study analyzes the value of combining blockchain and the electricity market presents the design of a blockchain trading framework for multi-agent cooperation and sharing of the energy internet.The nodes in market transactions are modeled through power system modeling in the physical layer and the transaction consensus strategy in the cyber layer;moreover,the nodes are verified in a modified IEEE 13 testing feeder of a distribution network.A transaction example is demonstrated using the multi-agent cooperation and sharing transaction platform based on the Ethereum private blockchain.
文摘Green Internet of things (loT) has been heralded as the "next big thing" waiting to be realized in energy-efficient ubiquitous computing. Green IoT revolves around increased machine-to-machine communications and encompasses energy-efficient wireless embedded sensors and actuators that assist in monitoring and controlling home appliances. Energy efficiency in home applications can be achieved by better monitoring of the specific energy consumption by the appliances. There are many wireless standards that can be adopted for the design of such embedded devices in loT. These communication technologies cater to different requirements and are classified as the short-range and long-range ones. To select the best communication method, this paper surveys various loT communication technologies and discusses the advantages and disadvantages to develop an energy monitoring system. An IoT device based on the Wi-Fi technology system is developed and tested for usage in the home energy monitoring environment. The performance of this system is then evaluated by the measurement of power consumption metrics. In the efficient deep-sleep mode, the system saves up to 0.3 W per cycle with an average power dissipation of less than 0.1 W/s.
文摘The internet of things(IoT)has a wide variety of applications,which in turn raisesmany challenging issues.IoT technology enables devices to closely monitor their environment,providing context-aware intelligence based on the real-time data collected by their sensor nodes.The IoT not only controls these devices but also monitors their user’s behaviour.One of the major issues related to IoT is the need for an energy-efficient communication protocol which uses the heterogeneity and diversity of the objects connected through the internet.Minimizing energy consumption is a requirement for energyconstrained nodes and outsourced nodes.The IoT nodes deployed in different geographical regions typically have different energy levels.This paper focuses on creating an energy-efficient protocol for IoTwhich can deal with the clustering of nodes and the cluster head selection process.An energy thresholdmodel is developed to select the appropriate cluster heads and also to ensure uniform distribution of energy to those heads andmember nodes.The proposed model envisages an IoT network with three different types of nodes,described here as advanced,intermediate and normal nodes.Normal nodes are first-level nodes,which have the lowest energy use;intermediate nodes are second-level nodes,which have a medium energy requirement;and the advanced class are thirdlevel nodes with the highest energy use.The simulation results demonstrate that the proposed algorithm outperforms other existing algorithms.In tests,it shows a 26%improvement in network lifetime compared with existing algorithms.
基金ACKNOWLEDGEMENT We gratefully acknowledge anonymous revie- wers who read drafts and made many helpful suggestions. This work was supported by the National Natural Science Foundation of China under Grant No. 61202079 the China Post- doctoral Science Foundation under Grant No. 2013M530526+2 种基金 the Foundation of Beijing En- gineering the Fundamental Research Funds for the Central Universities under Grant No. FRF-TP-13-015A and the Technology Centre for Convergence Networks and Ubiquitous Services.
文摘Internet of Things (IoT) refers to an infrastructure which enables the forms of com- munication and collaboration between people and things, and between things themselves. In order to improve its performance, we present a tradeoff between bandwidth and energy con- sumption in the loT in this paper. A service providing model is built to find the relation- ship between bandwidth and energy consump- tion using a cooperative differential game mo- del. The game solution is gotten in the condi- tion of grand coalition, feedback Nash equili- brium and intermediate coalitions and an allo- cation policy is obtain by Shapley theory. The results are shown as follows. Firstly, the per- formance of IoT decreases with the increasing of bandwidth cost or with the decreasing of en- ergy cost; secondly, all the nodes in the IoT com- posing a grand coalition can save bandwidth and energy consumption; thirdly, when the fac- tors of bandwidth cost and energy cost are eq- ual, the obtained number of provided services is an optimised value which is the trade-off between energy and bandwidth consumption.
文摘Under the background of the rapid development of the Internet, new energy vehicles (NEVs) have ushered in an excellent development opportunity. With the subsidy policy exiting, new energy vehicles are facing unprecedented challenges. One purpose of stimulating the NEVs through “Internet plus” initiative is to promote diversification of vehicle energy systems and advance industrial upgrading and transformation. On the premise of “Internet plus”, the paper analyses the obstacles and opportunities of new energy vehicles from four aspects, and proposes a promoting development model which includes management mode and profit mode, and constructs a promoting development framework which is about three stages of new energy vehicles. Finally, from the perspective of the new energy vehicle charging, the paper puts forward some policy advice to promote industrialization and popularization of new energy vehicles in China.
基金supported by the Science and Technology Project of State Grid Corporation“Research and Application of Internet Operation Platform for Ubiquitous Power Internet of Things”(5700-201955462A-0-0-00).
文摘The energy Internet operation platform provides market entities such as energy users,energy enterprises,suppliers,and governments with the ability to interact,transact,and manage various operations.Owing to the large number of platform users,complex businesses,and large amounts of data-mining tasks,it is necessary to solve the problems afflicting platform task scheduling and the provision of simultaneous access to a large number of users.This study examines the two core technologies of platform task scheduling and multiuser concurrent processing,proposing a distributed task-scheduling method and a technical implementation scheme based on the particle swarm optimization algorithm,and presents a systematic solution in concurrent processing for massive user numbers.Based on the results of this study,the energy internet operation platform can effectively deal with the concurrent access of tens of millions of users and complex task-scheduling problems.
文摘The?convergence of the Internet, sensor networks, and Radio Frequency Identification (RFID) systems has ushered to the concept of Internet of Things (IoT) which is capable of connecting daily things, making them smart through sensing, reasoning, and cooperating with other things. Further, RFID technology enables tracking of an object and assigning it a unique ID. IoT has the potential for a wide range of applications relating to healthcare, environment, transportation, cities… Moreover, the middleware is a basic component in the IoT architecture. It handles heterogeneity issues among IoT devices and provides a common framework for communication. More recently, the interest has focusing on developing publish/subscribe middleware systems for the IoT to allow asynchronous communication between the IoT devices. The scope of our paper is to study routing protocols for publish/subscribe schemes that include content and context-based routing. We propose an Energy-Efficient Content-Based Routing (EECBR) protocol for the IoT that minimizes the energy consumption. The proposed algorithm makes use of a virtual topology that is constructed in a centralized manner and then routes the events from the publishers to the intended interested subscribers in a distributed manner. EECBR has been simulated using Omnet++. The simulation results show that EECBR has a significant performance in term of the energy variance compared to the other schemes.
文摘In order to solve the problems of poor informationflow,low energy utilization rate and energy consumption data reuse in the heavy equipment industrial park,the Internet of Things(IoT)technology is applied to construct the intelligent energy management and control system(IEMCS).The application architecture and function module planning are analyzed and designed.Furthermore,the IEMCS scheme is not unique due to the fuzziness of customer demand and the understanding deviation of designer to customer demand in the design stage.Scheme assessment is of great significance for the normal subsequent implementation of the system.A fuzzy assessment method for IEMCS scheme alternatives is proposed to achieve scheme selection.Fuzzy group decision using triangular fuzzy number to express the vague assessment of experts is adopted to determine the index value.TOPSIS is modified by replacing Euclidean distance with contact vector distance in IEMCS scheme alternative assessment.An experiment with eight IEMCS scheme alternatives in a heavy equipment industrial park is given for the validation.The experiment result shows that eight IEMCS scheme alternatives can be assessed.Through the comparisons with other methods,the reliability of the results obtained by the proposed method is discussed.
基金supported by the National Natural Science Foundation of China(Nos.51977113,62293500,62293501 and 62293505).
文摘Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suffered from problems such as low adaptability,policy lag,and difficulty in determining the degree of tolerance.To address these issues,we propose a novel adaptive intrusion tolerance model based on game theory that enjoys two-fold ideas:(1)it constructs an improved replica of the intrusion tolerance model of the dynamic equation evolution game to induce incentive weights;and (2)it combines a tournament competition model with incentive weights to obtain optimal strategies for each stage of the game process.Extensive experiments are conducted in the IEEE 39-bus system,whose results demonstrate the feasibility of the incentive weights,confirm the proposed strategy strengthens the system’s ability to tolerate aggression,and improves the dynamic adaptability and response efficiency of the aggression-tolerant system in the case of limited resources.
基金supported by the National Nature Science Foundation of China(Grant No.51821004)supported by National Soft Science Projects:"Frontier tracking research on science and technology in the field of energy" program
文摘The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy internet. Progressive penetration of intermittent renewable energy sources into the energy system has led to unprecedented challenges to the currently wide use of coal-fired power generation technologies. Here, the applications and prospects of advanced coal-fired power generation technologies are analyzed. These technologies can be summarized into three categories:(1) large-scale and higher parameters coal-fired power generation technologies, including 620/650/700 oC ultra-supercritical thermal power and double reheat ultra-supercritical coal-fired power generation technologies;(2) system innovation and specific, highefficiency thermal cycles, which consist of renewable energy-aided coal-fired power generation technologies, a supercritical CO_2 Brayton cycle for coal-fired power plants, large-scale air-cooling coal-fired power plant technologies, and innovative layouts for waste heat utilization and enhanced energy cascade utilization;(3) coal-fired power generation combined with poly-generation technologies, which are represented by integrated gasification combined cycle(IGCC) and integrated gasification fuel cell(IGFC) technologies. Concerning the existing coal-fired power units, which are responsible for peak shaving, possible strategies for enhancing flexibility and operational stability are discussed. Furthermore, future trends for coal-fired power plants coupled with cyber-physical system(CPS) technologies are introduced. The development of advanced, coal-fired power generation technologies demonstrates the progress of science and is suitable for the sustainable development of human society.
文摘Energy Internet is deeply integrated by Internet concept, information technology and energy industry, and Energy Internet Big Data are one of core technologies that achieve energy-information-economic interconnection and improve the development and evolution of Energy Internet. This paper describes the concept and characteristics of Energy Internet Big Data, and feasibility of applying Energy Internet Big Data to integrated energy market. On this basis, as for integrated energy market and multi-subjects of Energy Internet, typical application and technical system based on Energy Internet Big Data in integrated energy market is put forward, which provides a reference for the analysis and decision of integrated energy market in Energy Internet.