期刊文献+
共找到49,406篇文章
< 1 2 250 >
每页显示 20 50 100
SEFormer:A Lightweight CNN-Transformer Based on Separable Multiscale Depthwise Convolution and Efficient Self-Attention for Rotating Machinery Fault Diagnosis 被引量:1
1
作者 Hongxing Wang Xilai Ju +1 位作者 Hua Zhu Huafeng Li 《Computers, Materials & Continua》 SCIE EI 2025年第1期1417-1437,共21页
Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained promine... Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained prominence as a central focus of research in the field of fault diagnosis by strong fault feature extraction ability and end-to-end fault diagnosis efficiency.Recently,utilizing the respective advantages of convolution neural network(CNN)and Transformer in local and global feature extraction,research on cooperating the two have demonstrated promise in the field of fault diagnosis.However,the cross-channel convolution mechanism in CNN and the self-attention calculations in Transformer contribute to excessive complexity in the cooperative model.This complexity results in high computational costs and limited industrial applicability.To tackle the above challenges,this paper proposes a lightweight CNN-Transformer named as SEFormer for rotating machinery fault diagnosis.First,a separable multiscale depthwise convolution block is designed to extract and integrate multiscale feature information from different channel dimensions of vibration signals.Then,an efficient self-attention block is developed to capture critical fine-grained features of the signal from a global perspective.Finally,experimental results on the planetary gearbox dataset and themotor roller bearing dataset prove that the proposed framework can balance the advantages of robustness,generalization and lightweight compared to recent state-of-the-art fault diagnosis models based on CNN and Transformer.This study presents a feasible strategy for developing a lightweight rotating machinery fault diagnosis framework aimed at economical deployment. 展开更多
关键词 CNN-Transformer separable multiscale depthwise convolution efficient self-attention fault diagnosis
在线阅读 下载PDF
Spatio-temporal prediction of groundwater vulnerability based on CNN-LSTM model with self-attention mechanism:A case study in Hetao Plain,northern China 被引量:2
2
作者 Yifu Zhao Liangping Yang +4 位作者 Hongjie Pan Yanlong Li Yongxu Shao Junxia Li Xianjun Xie 《Journal of Environmental Sciences》 2025年第7期128-142,共15页
Located in northern China,the Hetao Plain is an important agro-economic zone and population centre.The deterioration of local groundwater quality has had a serious impact on human health and economic development.Nowad... Located in northern China,the Hetao Plain is an important agro-economic zone and population centre.The deterioration of local groundwater quality has had a serious impact on human health and economic development.Nowadays,the groundwater vulnerability assessment(GVA)has become an essential task to identify the current status and development trend of groundwater quality.In this study,the Convolutional Neural Network(CNN)and Long Short-Term Memory(LSTM)models are integrated to realize the spatio-temporal prediction of regional groundwater vulnerability by introducing the Self-attention mechanism.The study firstly builds the CNN-LSTM modelwith self-attention(SA)mechanism and evaluates the prediction accuracy of the model for groundwater vulnerability compared to other common machine learning models such as Support Vector Machine(SVM),Random Forest(RF),and Extreme Gradient Boosting(XGBoost).The results indicate that the CNNLSTM model outperforms thesemodels,demonstrating its significance in groundwater vulnerability assessment.It can be posited that the predictions indicate an increased risk of groundwater vulnerability in the study area over the coming years.This increase can be attributed to the synergistic impact of global climate anomalies and intensified local human activities.Moreover,the overall groundwater vulnerability risk in the entire region has increased,evident fromboth the notably high value and standard deviation.This suggests that the spatial variability of groundwater vulnerability in the area is expected to expand in the future due to the sustained progression of climate change and human activities.The model can be optimized for diverse applications across regional environmental assessment,pollution prediction,and risk statistics.This study holds particular significance for ecological protection and groundwater resource management. 展开更多
关键词 Groundwater vulnerability assessment Convolutional Neural Network Long Short-Term memory self-attention mechanism
原文传递
A Novel Dynamic Residual Self-Attention Transfer Adaptive Learning Fusion Approach for Brain Tumor Diagnosis
3
作者 Tawfeeq Shawly Ahmed A.Alsheikhy 《Computers, Materials & Continua》 2025年第3期4161-4179,共19页
A healthy brain is vital to every person since the brain controls every movement and emotion.Sometimes,some brain cells grow unexpectedly to be uncontrollable and cancerous.These cancerous cells are called brain tumor... A healthy brain is vital to every person since the brain controls every movement and emotion.Sometimes,some brain cells grow unexpectedly to be uncontrollable and cancerous.These cancerous cells are called brain tumors.For diagnosed patients,their lives depend mainly on the early diagnosis of these tumors to provide suitable treatment plans.Nowadays,Physicians and radiologists rely on Magnetic Resonance Imaging(MRI)pictures for their clinical evaluations of brain tumors.These evaluations are time-consuming,expensive,and require expertise with high skills to provide an accurate diagnosis.Scholars and industrials have recently partnered to implement automatic solutions to diagnose the disease with high accuracy.Due to their accuracy,some of these solutions depend on deep-learning(DL)methodologies.These techniques have become important due to their roles in the diagnosis process,which includes identification and classification.Therefore,there is a need for a solid and robust approach based on a deep-learning method to diagnose brain tumors.The purpose of this study is to develop an intelligent automatic framework for brain tumor diagnosis.The proposed solution is based on a novel dense dynamic residual self-attention transfer adaptive learning fusion approach(NDDRSATALFA),carried over two implemented deep-learning networks:VGG19 and UNET to identify and classify brain tumors.In addition,this solution applies a transfer learning approach to exchange extracted features and data within the two neural networks.The presented framework is trained,validated,and tested on six public datasets of MRIs to detect brain tumors and categorize these tumors into three suitable classes,which are glioma,meningioma,and pituitary.The proposed framework yielded remarkable findings on variously evaluated performance indicators:99.32%accuracy,98.74%sensitivity,98.89%specificity,99.01%Dice,98.93%Area Under the Curve(AUC),and 99.81%F1-score.In addition,a comparative analysis with recent state-of-the-art methods was performed and according to the comparative analysis,NDDRSATALFA shows an admirable level of reliability in simplifying the timely identification of diverse brain tumors.Moreover,this framework can be applied by healthcare providers to assist radiologists,pathologists,and physicians in their evaluations.The attained outcomes open doors for advanced automatic solutions that improve clinical evaluations and provide reasonable treatment plans. 展开更多
关键词 Brain tumor deep learning transfer learning RESIDUAL self-attention VGG19 UNET
在线阅读 下载PDF
An Overlapped Multihead Self-Attention-Based Feature Enhancement Approach for Ocular Disease Image Recognition
4
作者 Peng Xiao Haiyu Xu +3 位作者 Peng Xu Zhiwei Guo Amr Tolba Osama Alfarraj 《Computers, Materials & Continua》 2025年第11期2999-3022,共24页
Medical image analysis based on deep learning has become an important technical requirement in the field of smart healthcare.In view of the difficulties in collaborative modeling of local details and global features i... Medical image analysis based on deep learning has become an important technical requirement in the field of smart healthcare.In view of the difficulties in collaborative modeling of local details and global features in multimodal image analysis of ophthalmology,as well as the existence of information redundancy in cross-modal data fusion,this paper proposes amultimodal fusion framework based on cross-modal collaboration and weighted attention mechanism.In terms of feature extraction,the framework collaboratively extracts local fine-grained features and global structural dependencies through a parallel dual-branch architecture,overcoming the limitations of traditional single-modality models in capturing either local or global information;in terms of fusion strategy,the framework innovatively designs a cross-modal dynamic fusion strategy,combining overlappingmulti-head self-attention modules with a bidirectional feature alignment mechanism,addressing the bottlenecks of low feature interaction efficiency and excessive attention fusion computations in traditional parallel fusion,and further introduces cross-domain local integration technology,which enhances the representation ability of the lesion area through pixel-level feature recalibration and optimizes the diagnostic robustness of complex cases.Experiments show that the framework exhibits excellent feature expression and generalization performance in cross-domain scenarios of ophthalmic medical images and natural images,providing a high-precision,low-redundancy fusion paradigm for multimodal medical image analysis,and promoting the upgrade of intelligent diagnosis and treatment fromsingle-modal static analysis to dynamic decision-making. 展开更多
关键词 Overlapping multi-head self-attention deep learning cross-modal dynamic fusion multi-level fusion
在线阅读 下载PDF
EFI-SATL:An Efficient Net and Self-Attention Based Biometric Recognition for Finger-Vein Using Deep Transfer Learning
5
作者 Manjit Singh Sunil Kumar Singla 《Computer Modeling in Engineering & Sciences》 2025年第3期3003-3029,共27页
Deep Learning-based systems for Finger vein recognition have gained rising attention in recent years due to improved efficiency and enhanced security.The performance of existing CNN-based methods is limited by the pun... Deep Learning-based systems for Finger vein recognition have gained rising attention in recent years due to improved efficiency and enhanced security.The performance of existing CNN-based methods is limited by the puny generalization of learned features and deficiency of the finger vein image training data.Considering the concerns of existing methods,in this work,a simplified deep transfer learning-based framework for finger-vein recognition is developed using an EfficientNet model of deep learning with a self-attention mechanism.Data augmentation using various geometrical methods is employed to address the problem of training data shortage required for a deep learning model.The proposed model is tested using K-fold cross-validation on three publicly available datasets:HKPU,FVUSM,and SDUMLA.Also,the developed network is compared with other modern deep nets to check its effectiveness.In addition,a comparison of the proposed method with other existing Finger vein recognition(FVR)methods is also done.The experimental results exhibited superior recognition accuracy of the proposed method compared to other existing methods.In addition,the developed method proves to be more effective and less sophisticated at extracting robust features.The proposed EffAttenNet achieves an accuracy of 98.14%on HKPU,99.03%on FVUSM,and 99.50%on SDUMLA databases. 展开更多
关键词 Biometrics finger-vein recognition(FVR) deep net self-attention Efficient Nets transfer learning
在线阅读 下载PDF
A precise magnetic modeling method for scientific satellites based on a self-attention mechanism and Kolmogorov-Arnold Networks
6
作者 Ye Liu Xingjian Shi +2 位作者 Wenzhe Yang Zhiming Cai Huawang Li 《Astronomical Techniques and Instruments》 2025年第1期1-9,共9页
As the complexity of scientific satellite missions increases,the requirements for their magnetic fields,magnetic field fluctuations,and even magnetic field gradients and variations become increasingly stringent.Additi... As the complexity of scientific satellite missions increases,the requirements for their magnetic fields,magnetic field fluctuations,and even magnetic field gradients and variations become increasingly stringent.Additionally,there is a growing need to address the alternating magnetic fields produced by the spacecraft itself.This paper introduces a novel modeling method for spacecraft magnetic dipoles using an integrated self-attention mechanism and a transformer combined with Kolmogorov-Arnold Networks.The self-attention mechanism captures correlations among globally sparse data,establishing dependencies b.etween sparse magnetometer readings.Concurrently,the Kolmogorov-Arnold Network,proficient in modeling implicit numerical relationships between data features,enhances the ability to learn subtle patterns.Comparative experiments validate the capability of the proposed method to precisely model magnetic dipoles,achieving maximum Root Mean Square Errors of 24.06 mA·m^(2)and 0.32 cm for size and location modeling,respectively.The spacecraft magnetic model established using this method accurately computes magnetic fields and alternating magnetic fields at designated surfaces or points.This approach facilitates the rapid and precise construction of individual and complete spacecraft magnetic models,enabling the verification of magnetic specifications from the spacecraft design phase. 展开更多
关键词 Magnetic dipole model self-attention mechanism Kolmogorov-Arnold networks Alternating current magnetic fields
在线阅读 下载PDF
Dual Self-attention Fusion Message Neural Network for Virtual Screening in Drug Discovery by Molecular Property Prediction
7
作者 Jingjing Wang Kangming Hou +2 位作者 Hao Chen Jing Fang Hongzhen Li 《Journal of Bionic Engineering》 2025年第1期354-369,共16页
The development of deep learning has made non-biochemical methods for molecular property prediction screening a reality,which can increase the experimental speed and reduce the experimental cost of relevant experiment... The development of deep learning has made non-biochemical methods for molecular property prediction screening a reality,which can increase the experimental speed and reduce the experimental cost of relevant experiments.There are currently two main approaches to representing molecules:(a)representing molecules by fixing molecular descriptors,and(b)representing molecules by graph convolutional neural networks.Currently,both of these Representative methods have achieved some results in their respective experiments.Based on past efforts,we propose a Dual Self-attention Fusion Message Neural Network(DSFMNN).DSFMNN uses a combination of dual self-attention mechanism and graph convolutional neural network.Advantages of DSFMNN:(1)The dual self-attention mechanism focuses not only on the relationship between individual subunits in a molecule but also on the relationship between the atoms and chemical bonds contained in each subunit.(2)On the directed molecular graph,a message delivery approach centered on directed molecular bonds is used.We test the performance of the model on eight publicly available datasets and compare the performance with several models.Based on the current experimental results,DSFMNN has superior performance compared to previous models on the datasets applied in this paper. 展开更多
关键词 Directed message passing network Deep learning Molecular property prediction self-attention mechanism
暂未订购
Self-attention and convolutional feature fusion for real-time intelligent fault detection of high-speed railway pantographs
8
作者 Xufeng LI Jien MAI +3 位作者 Ping TAN Lanfen LIN Lin QIU Youtong FANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第10期997-1009,共13页
Currently,most trains are equipped with dedicated cameras for capturing pantograph videos.Pantographs are core to the high-speed-railway pantograph-catenary system,and their failure directly affects the normal operati... Currently,most trains are equipped with dedicated cameras for capturing pantograph videos.Pantographs are core to the high-speed-railway pantograph-catenary system,and their failure directly affects the normal operation of high-speed trains.However,given the complex and variable real-world operational conditions of high-speed railways,there is no real-time and robust pantograph fault-detection method capable of handling large volumes of surveillance video.Hence,it is of paramount importance to maintain real-time monitoring and analysis of pantographs.Our study presents a real-time intelligent detection technology for identifying faults in high-speed railway pantographs,utilizing a fusion of self-attention and convolution features.We delved into lightweight multi-scale feature-extraction and fault-detection models based on deep learning to detect pantograph anomalies.Compared with traditional methods,this approach achieves high recall and accuracy in pantograph recognition,accurately pinpointing issues like discharge sparks,pantograph horns,and carbon pantograph-slide malfunctions.After experimentation and validation with actual surveillance videos of electric multiple-unit train,our algorithmic model demonstrates real-time,high-accuracy performance even under complex operational conditions. 展开更多
关键词 High-speed railway pantograph self-attention Convolutional neural network(CNN) REAL-TIME Feature fusion Faultdetection
原文传递
LS-DDI:融合LSTM和Self-Attention的药物-药物相互作用预测研究
9
作者 陈星鑫 聂斌 +1 位作者 苗震 杨洋 《现代信息科技》 2025年第14期21-26,31,共7页
多药联合使用可能导致药物不良反应,引起身体健康问题。因此,预测潜在的药物相互作用非常重要。文章提出了一种融合LSTM(长短期记忆网络)和Self-Attention(自注意力机制)的算法(LS-DDI)用于预测药物相互作用,通过高斯相似性分别计算子... 多药联合使用可能导致药物不良反应,引起身体健康问题。因此,预测潜在的药物相互作用非常重要。文章提出了一种融合LSTM(长短期记忆网络)和Self-Attention(自注意力机制)的算法(LS-DDI)用于预测药物相互作用,通过高斯相似性分别计算子结构、靶标和酶三个不同特征,形成相似性矩阵,后接LSTM进行上下文信息的提取,Self-Attention作用在三个特征上赋予不同权重,最后进行预测研究。通过五折交叉验证,在两个不同数据集上的实验结果表明,LS-DDI的结果优于其他四个对比模型,证明了LS-DDI具有良好的性能。最后通过Torasemide,Cannabidiol和Dexamethasone三个药物的案例研究,证明了文章所提出模型在预测未知药物相互作用的有效性。 展开更多
关键词 长短期记忆网络 自注意力机制 药物相互作用 药物不良反应
在线阅读 下载PDF
基于改进HHO-LSTM-Self-Attention的质子交换膜燃料电池剩余使用寿命预测
10
作者 蒋剑 杜董生 苏林 《综合智慧能源》 2025年第6期47-56,共10页
质子交换膜燃料电池(PEMFC)在诸多领域有着广泛应用,但其性能衰退会降低功率输出和能源转换效率、缩短使用寿命,准确预测剩余使用寿命对维护系统、降低成本及保障供电稳定极为关键。基于PEMFC功率随时间的变化趋势,提出了一种结合改进... 质子交换膜燃料电池(PEMFC)在诸多领域有着广泛应用,但其性能衰退会降低功率输出和能源转换效率、缩短使用寿命,准确预测剩余使用寿命对维护系统、降低成本及保障供电稳定极为关键。基于PEMFC功率随时间的变化趋势,提出了一种结合改进的哈里斯鹰优化(HHO)算法、长短期记忆(LSTM)网络和自注意力(Self-Attention)机制的PEMFC剩余使用寿命预测模型。基于电流和电压数据关系得出时间-功率变化曲线,采用小波自适应去噪和指数平滑相结合的方法对时间-功率数据进行分解去噪和重构;针对LSTM训练参数过多、计算量大等不足,提出了一种Logistics混沌映射与HHO算法相结合来优化LSTM的方法,以提高模型的训练速度和预测精度;基于Self-Attention具有聚焦关键信息和提高模型训练准确率的优点,构建了HHO-LSTM-Self-Attention预测模型。试验结果表明,与HHO-LSTM,LSTM,麻雀搜索算法(SSA)-LSTM,粒子群优化(PSO)-LSTM等预测模型相比,该模型具有更高的预测精度。 展开更多
关键词 质子交换膜燃料电池 剩余使用寿命预测 哈里斯鹰优化算法 长短期记忆神经网络 自注意力机制
在线阅读 下载PDF
Hierarchical multihead self-attention for time-series-based fault diagnosis 被引量:3
11
作者 Chengtian Wang Hongbo Shi +1 位作者 Bing Song Yang Tao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期104-117,共14页
Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fa... Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fault diagnosis methods have been developed in recent years.However,the existing methods have the problem of long-term dependency and are difficult to train due to the sequential way of training.To overcome these problems,a novel fault diagnosis method based on time-series and the hierarchical multihead self-attention(HMSAN)is proposed for chemical process.First,a sliding window strategy is adopted to construct the normalized time-series dataset.Second,the HMSAN is developed to extract the time-relevant features from the time-series process data.It improves the basic self-attention model in both width and depth.With the multihead structure,the HMSAN can pay attention to different aspects of the complicated chemical process and obtain the global dynamic features.However,the multiple heads in parallel lead to redundant information,which cannot improve the diagnosis performance.With the hierarchical structure,the redundant information is reduced and the deep local time-related features are further extracted.Besides,a novel many-to-one training strategy is introduced for HMSAN to simplify the training procedure and capture the long-term dependency.Finally,the effectiveness of the proposed method is demonstrated by two chemical cases.The experimental results show that the proposed method achieves a great performance on time-series industrial data and outperforms the state-of-the-art approaches. 展开更多
关键词 self-attention mechanism Deep learning Chemical process Time-series Fault diagnosis
在线阅读 下载PDF
Aerial target threat assessment based on gated recurrent unit and self-attention mechanism 被引量:4
12
作者 CHEN Chen QUAN Wei SHAO Zhuang 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期361-373,共13页
Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties ... Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties in dealing with high dimensional time series target data, a threat assessment method based on self-attention mechanism and gated recurrent unit(SAGRU) is proposed. Firstly, a threat feature system including air combat situations and capability features is established. Moreover, a data augmentation process based on fractional Fourier transform(FRFT) is applied to extract more valuable information from time series situation features. Furthermore, aiming to capture key characteristics of battlefield evolution, a bidirectional GRU and SA mechanisms are designed for enhanced features.Subsequently, after the concatenation of the processed air combat situation and capability features, the target threat level will be predicted by fully connected neural layers and the softmax classifier. Finally, in order to validate this model, an air combat dataset generated by a combat simulation system is introduced for model training and testing. The comparison experiments show the proposed model has structural rationality and can perform threat assessment faster and more accurately than the other existing models based on deep learning. 展开更多
关键词 target threat assessment gated recurrent unit(GRU) self-attention(SA) fractional Fourier transform(FRFT)
在线阅读 下载PDF
SMSTracker:A Self-Calibration Multi-Head Self-Attention Transformer for Visual Object Tracking 被引量:1
13
作者 Zhongyang Wang Hu Zhu Feng Liu 《Computers, Materials & Continua》 SCIE EI 2024年第7期605-623,共19页
Visual object tracking plays a crucial role in computer vision.In recent years,researchers have proposed various methods to achieve high-performance object tracking.Among these,methods based on Transformers have becom... Visual object tracking plays a crucial role in computer vision.In recent years,researchers have proposed various methods to achieve high-performance object tracking.Among these,methods based on Transformers have become a research hotspot due to their ability to globally model and contextualize information.However,current Transformer-based object tracking methods still face challenges such as low tracking accuracy and the presence of redundant feature information.In this paper,we introduce self-calibration multi-head self-attention Transformer(SMSTracker)as a solution to these challenges.It employs a hybrid tensor decomposition self-organizing multihead self-attention transformermechanism,which not only compresses and accelerates Transformer operations but also significantly reduces redundant data,thereby enhancing the accuracy and efficiency of tracking.Additionally,we introduce a self-calibration attention fusion block to resolve common issues of attention ambiguities and inconsistencies found in traditional trackingmethods,ensuring the stability and reliability of tracking performance across various scenarios.By integrating a hybrid tensor decomposition approach with a self-organizingmulti-head self-attentive transformer mechanism,SMSTracker enhances the efficiency and accuracy of the tracking process.Experimental results show that SMSTracker achieves competitive performance in visual object tracking,promising more robust and efficient tracking systems,demonstrating its potential to providemore robust and efficient tracking solutions in real-world applications. 展开更多
关键词 Visual object tracking tensor decomposition TRANSFORMER self-attention
在线阅读 下载PDF
A Self-Attention Based Dynamic Resource Management for Satellite-Terrestrial Networks 被引量:1
14
作者 Lin Tianhao Luo Zhiyong 《China Communications》 SCIE CSCD 2024年第4期136-150,共15页
The satellite-terrestrial networks possess the ability to transcend geographical constraints inherent in traditional communication networks,enabling global coverage and offering users ubiquitous computing power suppor... The satellite-terrestrial networks possess the ability to transcend geographical constraints inherent in traditional communication networks,enabling global coverage and offering users ubiquitous computing power support,which is an important development direction of future communications.In this paper,we take into account a multi-scenario network model under the coverage of low earth orbit(LEO)satellite,which can provide computing resources to users in faraway areas to improve task processing efficiency.However,LEO satellites experience limitations in computing and communication resources and the channels are time-varying and complex,which makes the extraction of state information a daunting task.Therefore,we explore the dynamic resource management issue pertaining to joint computing,communication resource allocation and power control for multi-access edge computing(MEC).In order to tackle this formidable issue,we undertake the task of transforming the issue into a Markov decision process(MDP)problem and propose the self-attention based dynamic resource management(SABDRM)algorithm,which effectively extracts state information features to enhance the training process.Simulation results show that the proposed algorithm is capable of effectively reducing the long-term average delay and energy consumption of the tasks. 展开更多
关键词 mobile edge computing resource management satellite-terrestrial networks self-attention
在线阅读 下载PDF
Self-Attention Spatio-Temporal Deep Collaborative Network for Robust FDIA Detection in Smart Grids 被引量:1
15
作者 Tong Zu Fengyong Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1395-1417,共23页
False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work u... False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams.Data-driven features,however,cannot effectively capture the differences between noisy data and attack samples.As a result,slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks.To address this problem,this paper designs a deep collaborative self-attention network to achieve robust FDIA detection,in which the spatio-temporal features of cascaded FDIA attacks are fully integrated.Firstly,a high-order Chebyshev polynomials-based graph convolution module is designed to effectively aggregate the spatio information between grid nodes,and the spatial self-attention mechanism is involved to dynamically assign attention weights to each node,which guides the network to pay more attention to the node information that is conducive to FDIA detection.Furthermore,the bi-directional Long Short-Term Memory(LSTM)network is introduced to conduct time series modeling and long-term dependence analysis for power grid data and utilizes the temporal self-attention mechanism to describe the time correlation of data and assign different weights to different time steps.Our designed deep collaborative network can effectively mine subtle perturbations from spatiotemporal feature information,efficiently distinguish power grid noise from FDIA attacks,and adapt to diverse attack intensities.Extensive experiments demonstrate that our method can obtain an efficient detection performance over actual load data from New York Independent System Operator(NYISO)in IEEE 14,IEEE 39,and IEEE 118 bus systems,and outperforms state-of-the-art FDIA detection schemes in terms of detection accuracy and robustness. 展开更多
关键词 False data injection attacks smart grid deep learning self-attention mechanism spatio-temporal fusion
在线阅读 下载PDF
FCN-Attention:A deep learning UWB NLOS/LOS classification algorithm using fully convolution neural network with self-attention mechanism 被引量:3
16
作者 Yu Pei Ruizhi Chen +2 位作者 Deren Li Xiongwu Xiao Xingyu Zheng 《Geo-Spatial Information Science》 CSCD 2024年第4期1162-1181,共20页
The Ultra-Wideband(UWB)Location-Based Service is receiving more and more attention due to its high ranging accuracy and good time resolution.However,the None-Line-of-Sight(NLOS)propagation may reduce the ranging accur... The Ultra-Wideband(UWB)Location-Based Service is receiving more and more attention due to its high ranging accuracy and good time resolution.However,the None-Line-of-Sight(NLOS)propagation may reduce the ranging accuracy for UWB localization system in indoor environment.So it is important to identify LOS and NLOS propagations before taking proper measures to improve the UWB localization accuracy.In this paper,a deep learning-based UWB NLOS/LOS classification algorithm called FCN-Attention is proposed.The proposed FCN-Attention algorithm utilizes a Fully Convolution Network(FCN)for improving feature extraction ability and a self-attention mechanism for enhancing feature description from the data to improve the classification accuracy.The proposed algorithm is evaluated using an open-source dataset,a local collected dataset and a mixed dataset created from these two datasets.The experiment result shows that the proposed FCN-Attention algorithm achieves classification accuracy of 88.24%on the open-source dataset,100%on the local collected dataset and 92.01%on the mixed dataset,which is better than the results from other evaluated NLOS/LOS classification algorithms in most scenarios in this paper. 展开更多
关键词 Ultra Wideband(UWB) None-line-of-sight(NLOS)identification channel impulse response(CIR) deep learning fully convolution network self-attention mechanism
原文传递
An Aerial Target Recognition Algorithm Based on Self-Attention and LSTM
17
作者 Futai Liang Xin Chen +2 位作者 Song He Zihao Song Hao Lu 《Computers, Materials & Continua》 SCIE EI 2024年第10期1101-1121,共21页
In the application of aerial target recognition,on the one hand,the recognition error produced by the single measurement of the sensor is relatively large due to the impact of noise.On the other hand,it is difficult t... In the application of aerial target recognition,on the one hand,the recognition error produced by the single measurement of the sensor is relatively large due to the impact of noise.On the other hand,it is difficult to apply machine learning methods to improve the intelligence and recognition effect due to few or no actual measurement samples.Aiming at these problems,an aerial target recognition algorithm based on self-attention and Long Short-Term Memory Network(LSTM)is proposed.LSTM can effectively extract temporal dependencies.The attention mechanism calculates the weight of each input element and applies the weight to the hidden state of the LSTM,thereby adjusting the LSTM’s attention to the input.This combination retains the learning ability of LSTM and introduces the advantages of the attention mechanism,making the model have stronger feature extraction ability and adaptability when processing sequence data.In addition,based on the prior information of the multidimensional characteristics of the target,the three-point estimation method is adopted to simulate an aerial target recognition dataset to train the recognition model.The experimental results show that the proposed algorithm achieves more than 91%recognition accuracy,lower false alarm rate and higher robustness compared with the multi-attribute decision-making(MADM)based on fuzzy numbers. 展开更多
关键词 Aerial target recognition long short-term memory network self-attention three-point estimation
在线阅读 下载PDF
SACNN-IDS: A self-attention convolutional neural network for intrusion detection in industrial internet of things 被引量:1
18
作者 Mimonah Al Qathrady Safi Ullah +5 位作者 Mohammed S.Alshehri Jawad Ahmad Sultan Almakdi Samar M.Alqhtani Muazzam A.Khan Baraq Ghaleb 《CAAI Transactions on Intelligence Technology》 2024年第6期1398-1411,共14页
Industrial Internet of Things(IIoT)is a pervasive network of interlinked smart devices that provide a variety of intelligent computing services in industrial environments.Several IIoT nodes operate confidential data(s... Industrial Internet of Things(IIoT)is a pervasive network of interlinked smart devices that provide a variety of intelligent computing services in industrial environments.Several IIoT nodes operate confidential data(such as medical,transportation,military,etc.)which are reachable targets for hostile intruders due to their openness and varied structure.Intrusion Detection Systems(IDS)based on Machine Learning(ML)and Deep Learning(DL)techniques have got significant attention.However,existing ML and DL-based IDS still face a number of obstacles that must be overcome.For instance,the existing DL approaches necessitate a substantial quantity of data for effective performance,which is not feasible to run on low-power and low-memory devices.Imbalanced and fewer data potentially lead to low performance on existing IDS.This paper proposes a self-attention convolutional neural network(SACNN)architecture for the detection of malicious activity in IIoT networks and an appropriate feature extraction method to extract the most significant features.The proposed architecture has a self-attention layer to calculate the input attention and convolutional neural network(CNN)layers to process the assigned attention features for prediction.The performance evaluation of the proposed SACNN architecture has been done with the Edge-IIoTset and X-IIoTID datasets.These datasets encompassed the behaviours of contemporary IIoT communication protocols,the operations of state-of-the-art devices,various attack types,and diverse attack scenarios. 展开更多
关键词 convolutional neural network deep learning industrial internet of things intrusion detection self-attention
在线阅读 下载PDF
Missing Value Imputation for Radar-Derived Time-Series Tracks of Aerial Targets Based on Improved Self-Attention-Based Network
19
作者 Zihao Song Yan Zhou +2 位作者 Wei Cheng Futai Liang Chenhao Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第3期3349-3376,共28页
The frequent missing values in radar-derived time-series tracks of aerial targets(RTT-AT)lead to significant challenges in subsequent data-driven tasks.However,the majority of imputation research focuses on random mis... The frequent missing values in radar-derived time-series tracks of aerial targets(RTT-AT)lead to significant challenges in subsequent data-driven tasks.However,the majority of imputation research focuses on random missing(RM)that differs significantly from common missing patterns of RTT-AT.The method for solving the RM may experience performance degradation or failure when applied to RTT-AT imputation.Conventional autoregressive deep learning methods are prone to error accumulation and long-term dependency loss.In this paper,a non-autoregressive imputation model that addresses the issue of missing value imputation for two common missing patterns in RTT-AT is proposed.Our model consists of two probabilistic sparse diagonal masking self-attention(PSDMSA)units and a weight fusion unit.It learns missing values by combining the representations outputted by the two units,aiming to minimize the difference between the missing values and their actual values.The PSDMSA units effectively capture temporal dependencies and attribute correlations between time steps,improving imputation quality.The weight fusion unit automatically updates the weights of the output representations from the two units to obtain a more accurate final representation.The experimental results indicate that,despite varying missing rates in the two missing patterns,our model consistently outperforms other methods in imputation performance and exhibits a low frequency of deviations in estimates for specific missing entries.Compared to the state-of-the-art autoregressive deep learning imputation model Bidirectional Recurrent Imputation for Time Series(BRITS),our proposed model reduces mean absolute error(MAE)by 31%~50%.Additionally,the model attains a training speed that is 4 to 8 times faster when compared to both BRITS and a standard Transformer model when trained on the same dataset.Finally,the findings from the ablation experiments demonstrate that the PSDMSA,the weight fusion unit,cascade network design,and imputation loss enhance imputation performance and confirm the efficacy of our design. 展开更多
关键词 Missing value imputation time-series tracks probabilistic sparsity diagonal masking self-attention weight fusion
在线阅读 下载PDF
Prediction Method of Equipment Remaining Life Based on Self-Attention Long Short-Term Memory Neural Network 被引量:1
20
作者 曹现刚 雷卓 +2 位作者 李彦川 张梦园 段欣宇 《Journal of Shanghai Jiaotong university(Science)》 EI 2023年第5期652-664,共13页
Aiming at the problem of insufficient consideration of the correlation between components in the prediction of the remaining life of mechanical equipment,the method of remaining life prediction that combines the self-... Aiming at the problem of insufficient consideration of the correlation between components in the prediction of the remaining life of mechanical equipment,the method of remaining life prediction that combines the self-attention mechanism with the long short-term memory neural network(LSTM-NN)is proposed,called Self-Attention-LSTM.First,the auto-encoder is used to obtain the component-level state information;second,the state information of each component is input into the self-attention mechanism to learn the correlation between components;then,the multi-component correlation matrix is added to the LSTM input gate,and the LSTM-NN is used for life prediction.Finally,combined with the commercial modular aero-propulsion system simulation data set(C-MAPSS),the experiment was carried out and compared with the existing methods.Research results show that the proposed method can achieve better prediction accuracy and verify the feasibility of the method. 展开更多
关键词 equipment remaining life prediction self-attention long short-term memory neural network(LSTMNN) correlation analysis
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部