Janus films with asymmetric physical/chemical properties have attracted con siderable attention due to their promising applications in personal thermal management,electronic skin s,sensors,actuators,etc.However,tradit...Janus films with asymmetric physical/chemical properties have attracted con siderable attention due to their promising applications in personal thermal management,electronic skin s,sensors,actuators,etc.However,traditional methods for fabricating Janus films conventionally need the assistance of an interface or auxiliary equipment,which are usually complex and time-consuming.Herein,flexible poly(vinyl alcohol)(PVA)/graphene oxide(GO)/h-BN(recorded as PVA/GO/h-BN)Janus films with thermally,optically,and electrically anisotropic properties are fabricated by a simple density deposition self-assem bly method,which just utilizes the density difference between GO and h-BN during water evaporation.Experimental results show that the two sides of the acquired Janus films have obvious asymmetric characteristics.In the original state of the PVA/GO/h-BN Janus films,the thermal conductivity of the GO side(10.06 W·m^(-1)·K^(-1))is generally lower than that of the h-BN side(10.48W·m^(-1)·K^(-1)).But after GO is reduced,the thermal conductivity of the rGO side reaches 12.17 W·m^(-1)·K^(-1),surpassing that of the h-BN side.In addition,the relative reflectance of the h-BN side of Janus film is also significantly higher than that of the rGO side,and the su rface resistance difference between the two sides is about 4 orders of magnitude.The prepared PVA/GO/h-BN Janus films show great application potential in human thermal management,light conversion switches,and electronic skins.This study provides a simple and versatile strategy for fabricating Janus films with multifunctional(such as thermal,optical,and electrical)anisotropies.展开更多
Electrostatic self-assembly method (ESAM) was used to prepare bentonite supported-nano titanium dioxide photocatalysts. The materials were characterized by X-ray diffraction (XRD), fourier transform infrared spect...Electrostatic self-assembly method (ESAM) was used to prepare bentonite supported-nano titanium dioxide photocatalysts. The materials were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Methyl orange was used to estimate the photocatalytic activity of the materials. The effects of the calcination temperature and silane dosage on the photocatalytic activity of the samples were investigated. The experimental results show that the bentonite facilitates the formation of anatase and restrains the transformation of anatase to rutile. Part of nano-size TiO2 particles insert into the galleries of bentonite. The photocatalysts exhibit a synergistic effect of adsorption and photocatalysis on methyl orange. Photocatalysts prepared by ESAM method exhibit higher photocatalytic activity and better recycle ability than those of the traditional method.展开更多
Anionic surfactant sodium lauryl sulfate(SDS), cationic surfactant palmityl trimethyl ammonium chloride(CTAC) and TiO_2 were used to prepare multilayer films on quartz optic fibers by the electrostatic self-assembly (...Anionic surfactant sodium lauryl sulfate(SDS), cationic surfactant palmityl trimethyl ammonium chloride(CTAC) and TiO_2 were used to prepare multilayer films on quartz optic fibers by the electrostatic self-assembly (ESA) method. The whole self-assemble process, the function of surfactant and the effect of TiO_2 slurry′s concentration to the self-assemble were discussed. The isoelectric point of TiO_2 slurry measured by experiment is 6.8. The results show that whatever the concentration of the TiO_2 dispersion, a flat and compact adsorbed monolayer on the optic fiber can be built in a stable dispersion at lower pH. There is a adsorbed equilibrium on the substrate (fiber)/solution interface when enough time of incubation is given. A rough and loosen adsorbed layer is formed on the fiber surface by immersed the substrate in a high pH dispersion (pH>10) because the presence of hydroxyl on particle surface. Film thickness can be controlled by controlling the number of layers in the film.展开更多
Peroxymonosulfate(PMS)-assisted visible-light photocatalytic degradation of organic pollutants using graphitic carbon nitride(g-C_(3)N_(4))presents a promising and environmentally friendly approach.However,pristine g-...Peroxymonosulfate(PMS)-assisted visible-light photocatalytic degradation of organic pollutants using graphitic carbon nitride(g-C_(3)N_(4))presents a promising and environmentally friendly approach.However,pristine g-C_(3)N_(4) suffers from limited visible-light absorption and low charge-carrier mobility.In this study,a phosphorus-doped tubular carbon nitride(5P-TCN)was synthesized via a precursor self-assembly method using phosphoric acid and melamine as raw materials,eliminating the need for organic solvents or templates.The 5P-TCN catalyst demonstrated enhanced visible-light absorption,improved charge transfer capability,and a 5.25-fold increase in specific surface area(31.092 m^(2)/g),which provided abundant active sites to efficiently drive the PMS-assisted photocatalytic reaction.The 5P-TCN/vis/PMS system exhibited exceptional degradation performance for organic pollutants across a broad pH range(3–9),achieving over 92%degradation of Rhodamine B(RhB)within 15 min.Notably,the system retained>98%RhB degradation efficiency after three consecutive operational cycles,demonstrating robust operational stability and reusability.Moreover,key parameters influencing,active radi-cals,degradation pathways,and potential mechanisms for RhB degradation were systematically investigated.This work proposes a green and cost-effective strategy for developing high-efficiency photocatalysts,while demon-strating the exceptional capability of a PMS-assisted photocatalytic system for rapid degradation of RhB.展开更多
Dense,uniform ZnO nanowire(NW) networks are prepared by using a simple and sufficient selfassembly method.In this method,ZnO NWs are modified with aminopropyltriethoxysilane(APTES) to form positively charged amine...Dense,uniform ZnO nanowire(NW) networks are prepared by using a simple and sufficient selfassembly method.In this method,ZnO NWs are modified with aminopropyltriethoxysilane(APTES) to form positively charged amine-terminated surfaces.The modified ZnO NWs are adsorbed on negatively charged SiO_2/Si substrates to form ZnO NW networks by the electrostatic interaction in an aqueous solution.Field-effect transistors (FETs) are fabricated and studied based on the ZnO NW networks.For a typical device with an NW density of 2.8μm~^-2,it exhibits a current on/off ratio of 2.4×10^5,a transconductance of 336 nS,and a field-effect mobility of 27.4 cm^2/(V·s).展开更多
The self-assembled nanoparticles(SAN)formed during the decoction process of traditional Chinese medicine(TCM)exhibit non-uniform particle sizes and a tendency for aggregation.Our group found that the p H-driven method...The self-assembled nanoparticles(SAN)formed during the decoction process of traditional Chinese medicine(TCM)exhibit non-uniform particle sizes and a tendency for aggregation.Our group found that the p H-driven method can improve the self-assembly phenomenon of Herpetospermum caudigerum Wall.,and the SAN exhibited uniform particle size and demonstrated good stability.In this paper,we analyzed the interactions between the main active compound,herpetrione(Her),and its main carrier,Herpetospermum caudigerum Wall.polysaccharide(HCWP),along with their self-assembly mechanisms under different p H values.The binding constants of Her and HCWP increase with rising p H,leading to the formation of Her-HCWP SAN with a smaller particle size,higher zeta potential,and improved thermal stability.While the contributions of hydrogen bonding and electrostatic attraction to the formation of Her-HCWP SAN increase with rising p H,the hydrophobic force consistently plays a dominant role.This study enhances our scientific understanding of the self-assembly phenomenon of TCM improved by p H driven method.展开更多
Fabric composites are widely applied as self-lubricating liner for radial spherical plain bearings owing to their excellent mechanical and tribological properties.Nevertheless,the poor interfacial strength between fib...Fabric composites are widely applied as self-lubricating liner for radial spherical plain bearings owing to their excellent mechanical and tribological properties.Nevertheless,the poor interfacial strength between fibers and the resin matrix limits the performance of composites utilized as tribomaterials.To overcome this drawback,a mild layer-by-layer(LbL)self-assembly method was successfully used to construct hybrid fabric composites in the present work.In addition,this investigation addressed the effect of self-assembly cycles on the friction and wear behaviors of hybrid fabric composites under dry sliding condition.The results demonstrate that fabric composites with three or more self-assembly cycles have significantly enhanced surface activities and anti-wear performances.The results obtained in this work can provide guidance in the preparation of self-lubricating liner composites and highlight how the LbL self-assembly techniques could influence the properties of hybrid fabric composites.展开更多
Recently,hollow carbon nanospheres(HCSs)have garnered significant attention as potential Li metal hosts owing to their unique large voids and ease of fabrication.However,similar to other nanoscale hosts,their practica...Recently,hollow carbon nanospheres(HCSs)have garnered significant attention as potential Li metal hosts owing to their unique large voids and ease of fabrication.However,similar to other nanoscale hosts,their practical performance is limited by inhomogeneous agglomeration,increased binder requirements,and high tortuosity within the electrode.To overcome these problems and high tortuosity within the electrode,this study introduces a pomegranate-like carbon microcluster composed of primary HCSs(P-CMs)as a novel Li metal host.This unique nanostructure can be easily prepared using the spray-drying technique,enabling its mass production.Comprehensive analyses with various tools demonstrate that compared with HCS hosts,the P-CM host requires a smaller amount of binder to fabricate a sufficiently robust and even surface electrode.Furthermore,owing to reduced tortuosity,the well-designed P-CM electrode can provide continuous and shortened pathways for electron/ion transport,accelerating the Li-ion transfer kinetics and prohibiting preferential Li plating at the upper region of the electrode.Due to these characteristics,Li metal can be effectively encapsulated in the large inner voids of the primary HCSs constituting the P-CM,thereby enhancing the electrochemical performance of P-CM hosts in Li metal batteries.Specifically,the Coulombic efficiency of the P-CM host can be maintained at 97%over 100 cycles,with a high Li deposition areal capacity of 3 mAh·cm^(-2)and long cycle life(1000 h,1 mA·cm^(-2),and 1.0 mAh·cm^(-2)).Furthermore,a full cell incorporating a LiFePO4 cathode exhibits excellent cycle life.展开更多
Four glycoluril-based amphiphilic molecular clips(AMCs)M1~M4 have been prepared for intracellular delivery of short DNA.M1~M4 have two methyl groups on its convex surface and four cations on its aromatic side arm,whic...Four glycoluril-based amphiphilic molecular clips(AMCs)M1~M4 have been prepared for intracellular delivery of short DNA.M1~M4 have two methyl groups on its convex surface and four cations on its aromatic side arm,which can be used to construct self-assembled nanoparticles in aqueous solution driven by hydrophobic interaction.Dynamic light scattering experiments show that M1 and M2 can be driven hydrophobically to aggregate into extremely stable nanoparticles in water at the micromolar concentrations.Fluorescence titration and zeta potential experiments support that the nanoparticles formed by M1 and M2 are able to efficiently encapsulate short DNA(sDNA).Fluorescence imaging and flow cytometry studies reveal that their nano sizes enable intracellular delivery of the encapsulated sDNA into both normal and cancer cells,with delivery percentage reaching up to 94%,while in vitro experiments indicate that the two compounds have excellent biocompatibility and low cytotoxicity.展开更多
Zirconia nanoparticles were synthesized via hydrothermal method without any additives. This work focuses on the effect of preparation conditions1 such as the precursor preparation condition and crystallization time of...Zirconia nanoparticles were synthesized via hydrothermal method without any additives. This work focuses on the effect of preparation conditions1 such as the precursor preparation condition and crystallization time of nanocrystallite in autoclave on the properties of as-prepared products. The results indicated that the amount of tetragonal zirconia varied with the preparation conditions. It increased with the increase of the concentration of KOH solution in precursor producing process and reduced with the prolongation of crystallization time. At the same time, the particle size and morphology were also affected by the preparation conditions. In addition, the self-assembled spindle- like aggregates were observed in present works.展开更多
Gold colloid was prepared by chemical reduction of hydrogen tetrachloroaurate, polyelectrolyte/gold nanoparticle/silica nanoparticie composite films were fabricated via an electrostatic self-assembly multilayer method...Gold colloid was prepared by chemical reduction of hydrogen tetrachloroaurate, polyelectrolyte/gold nanoparticle/silica nanoparticie composite films were fabricated via an electrostatic self-assembly multilayer method, and composite films of gold nanoparticle dispersed in silica matrix were formed by heat-treating the polyelectrolyte/gold nanoparticle/silica nanoparticle composite films to eliminate the polyelectrolyte. The obtained composite films were investigated with UV-vis, TEM, AFM and XRD. The results show that the self-assembly multilayer method is a promising process to produce composite films of gold nanoparticle-dispersed in organic and/or inorganic matrixes.展开更多
Horseradish peroxidase monolayer was assembled on the surface of PET-CO2 substrate. The reaction kinetics of HRP/PET film and H2O2 in micro reactor was studied using improved spectrophotometer. The relative activity ...Horseradish peroxidase monolayer was assembled on the surface of PET-CO2 substrate. The reaction kinetics of HRP/PET film and H2O2 in micro reactor was studied using improved spectrophotometer. The relative activity of self-assembly HRP/PET film still remains above 80% after storing for 150 days at 4℃. When applied to determination of H2O2 in sample, the recoveries of H2O2 are 96.5%~101.1%.展开更多
Nowadays,high-stable and ultrasensitive heavy metal detection is of utmost importance in water quality monitoring.Nanoparticle-enhanced laser-induced breakdown spectroscopy(NELIBS)shows high potential in hazardous met...Nowadays,high-stable and ultrasensitive heavy metal detection is of utmost importance in water quality monitoring.Nanoparticle-enhanced laser-induced breakdown spectroscopy(NELIBS)shows high potential in hazardous metal detection,however,encounters unstable and weak signals due to nonuniform distribution of analytes.Herein,we developed an interface self-assembly(ISA)method to create a uniformly distributed gold nanolayer at a liquid-liquid interface for positive heavy metal ions capture and NELIBS analysis.The electrostatically selfassembled Au nanoparticles(NPs)-analytes membrane was prepared at the oil-water interface by injecting ethanol into the mixture of cyclohexane and Au NPs-analytes water solution.Then,the interface self-assembled Au NPs-analytes membrane was transformed onto a laser-processed superhydrophilic Si slide for detection.Three heavy metals(cadmium(Cd),barium(Ba),and chromium(Cr))were analyzed to evaluate the stability and sensitivity of the ISA method for NELIBS.The results(Cd:RSD=3.6%,LoD=0.654 mg/L;Ba:RSD=3.4%,LoD=0.236 mg/L;Cr:RSD=7.7%,LoD=1.367 mg/L)demonstrated signal enhancement and high-stable and ultrasensitive detection.The actual sample detection(Cd:RE=7.71%,Ba:RE=6.78%)illustrated great reliability.The ISA method,creating a uniform distribution of NP-analytes at the interface,has promising prospects in NELIBS.展开更多
Diphenylalanine and its analogs cause many concerns owing to their perfect self-assembly properties in the fields of biology,medicine,and nanotechnology.Experimental research has shown that diphenylalanine-based analo...Diphenylalanine and its analogs cause many concerns owing to their perfect self-assembly properties in the fields of biology,medicine,and nanotechnology.Experimental research has shown that diphenylalanine-based analogs with ethylenediamine linkers(PA,P=phenylalanine,and A=analog)can self-assemble into spherical assemblies,which can serve as novel anticancer drug carriers.In this work,to understand the assembly pathways,drug loading behavior,and formation mechanism of PA aggregates at the molecular level,we carried out dissipative particle dynamics(DPD)simulations of PA molecule systems.Our simulation results demonstrate that PA molecules spontaneously assemble into nanospheres and can self-assemble into drug-loaded nanospheres upon addition of the cancer chemotherapeutic agent doxorubicin(DOX).We also found that the hydrophobic side chain beads of PA molecules exhibited a unique onion-like distribution inside the nanospheres,which was not observed in the experiment.The onion-like nanospheres were verified by calculating the radial distribution function(RDF)of the DPD beads.Furthermore,based on the analysis of the percentages of different interaction components in the total nonbonded energies,main chain-side chain interactions between PA molecules may be important in the formation of onion-like nanospheres,and the synergistic effects of main chain-side chain,main chain-drug,side chain-drug,and main chain-solvent interactions are significant in the formation of drug-loaded nanospheres.These findings provide new insights into the structure and self-assembly pathway of PA assemblies,which may be helpful for the design of efficient and effective drug delivery systems.展开更多
The potential of metal nanoclusters in biomedical applications is limited due to aggregation-caused quenching(ACQ).In this study,an in situ self-assembled pitaya structure was proposed to obtain stable fluorescence em...The potential of metal nanoclusters in biomedical applications is limited due to aggregation-caused quenching(ACQ).In this study,an in situ self-assembled pitaya structure was proposed to obtain stable fluorescence emission through protein coronas-controlled distance between gold nanoclusters(Au NCs).Interestingly,the gold ion complexes coated with proteins of low isoelectric point(pI)nucleate at the secondary structure of proteins with high p I through ionic exchange within cells,generating fluorescent Au NCs.It is worth noting that due to the steric hindrance formed by the protein coronas on the surface of Au NCs,the distance between Au NCs can be controlled,avoiding electron transfer caused by close proximity of Au NCs and inhibiting fluorescence ACQ.This strategy can achieve fluorescence imaging of clinical tissue samples without observable side effects.Therefore,this study proposes a distance-controllable self-assembled pitaya structure to provide a new approach for Au NCs with stable fluorescence.展开更多
The development of new and efficient extractants plays a key role in the separation and recovery of rare earth elements.In this pape r,the extractant(N,N-methyl py ridineethyl-N',N'-dicyclohexyl-3-oxadiglycola...The development of new and efficient extractants plays a key role in the separation and recovery of rare earth elements.In this pape r,the extractant(N,N-methyl py ridineethyl-N',N'-dicyclohexyl-3-oxadiglycolamide,MPyEDChDGA) with a new structure was synthesized,and the pyridine group was successfully grafted onto the 3-oxadiglycolamide structure.Using MPyEDChDGA for efficient enrichment of rare earth ions,the self-assembled solids were recovered by simple filtration without further backextraction and final precipitation,achieving a one-step strategy for the recovery of rare earth ions.Several important parameters affecting the self-assembly extraction,including pH,diluent,temperature,and extractant concentration,were systematically evaluated using La(NO_(3))_(3),Tb(NO_(3))_(3),and Lu(NO_(3))_(3) as representatives.The self-assembled solids were investigated in detail by X-ray diffraction(XRD),scanning electron microscopy(SEM),1H nuclear magnetic resonance(1H NMR),Fourier transform infrared spectroscopy(FT-IR),Raman,and X-ray photoelectron spectroscopy(XPS) analyses.The stoichiometry of the extraction species was characterized using the Job's method and electrospray ionization mass spectrometry(ESI-MS).In addition,MPyEDChDGA was applied to the recovery of Sm in SmCoCu simulated liquid,and the results show that MPyEDChDGA has good selectivity of Sm from transition metals(Co,Cu).The separation factor of Sm/Co can reach 6281±117,which provides a new approach to recovering Sm from SmCoCu scrap magnets.This study presents an efficient and convenient new strategy for the recovery and separation of rare earth elements.展开更多
Self-assembled monolayers(SAMs)are widely used as hole transport materials in inverted perovskite solar cells,offering low parasitic absorption and suitability for semitransparent and tandem solar cells.While SAMs hav...Self-assembled monolayers(SAMs)are widely used as hole transport materials in inverted perovskite solar cells,offering low parasitic absorption and suitability for semitransparent and tandem solar cells.While SAMs have shown to be promising in small-area devices(≤1 cm^(2)),their application in larger areas has been limited by a lack of knowledge regarding alternative deposition methods beyond the common spin-coating approach.Here,we compare spin-coating and upscalable methods such as thermal evaporation and spray-coating for[2-(9H-carbazol-9-yl)ethyl]phosphonic acid(2PACz),one of the most common carbazole-based SAMs.The impact of these deposition methods on the device performance is investigated,revealing that the spray-coating technique yields higher device performance.Furthermore,our work provides guidelines for the deposition of SAM materials for the fabrication of perovskite solar modules.In addition,we provide an extensive characterization of 2PACz films focusing on thermal evaporation and spray-coating methods,which allow for thicker 2PACz deposition.It is found that the optimal 2PACz deposition conditions corresponding to the highest device performances do not always correlate with the monolayer characteristics.展开更多
Amphiphilic asymmetric brush copolymers(AABCs)possess unique self-assembly behaviors owing to their asymmetric brush architecture and multiple functionalities of multicomponent side chains.However,the synthesis of AAB...Amphiphilic asymmetric brush copolymers(AABCs)possess unique self-assembly behaviors owing to their asymmetric brush architecture and multiple functionalities of multicomponent side chains.However,the synthesis of AABCs presents challenges,which greatly limits the exploration of their self-assembly behaviors.In this work,we employed dissipative particle dynamics(DPD)simulations to investigate the self-assembly behaviors of AABCs in selective solution.By varying the copolymer concentration and structure,we conducted the self-assembly phase diagrams of AABCs,revealing complex morphologies such as channelized micelles with one or more solvophilic channels.Moreover,the number,surface area,and one-dimensional density distribution of the channelized micelles were calculated to demonstrate the internal structure and morphological transformation during the self-assembly process.Our findings indicate that the morphology of the internal solvophilic channels is greatly influenced by the copolymer structure,concentration,and interaction parameters between the different side chains.The simulation results are consistent with available experimental observations,which can offer theoretical insights into the self-assembly of AABCs.展开更多
The precise control over the hierarchical self-assembly of sophisticated structures with comparable complexities and functions relying on the modulation of basic building blocks is elusive and highly desirable.Here,we...The precise control over the hierarchical self-assembly of sophisticated structures with comparable complexities and functions relying on the modulation of basic building blocks is elusive and highly desirable.Here,we report a fluorinated N-heterocyclic carbene(NHC)–based pillarplex with a tunable quaternary structure,employed as an efficient building block for constructing hierarchical superstructures.Initially,multiple noncovalent interactions in the NHC-based pillarplex,particularly those between the fluorinated pillarplex and PF_(6)-anions,induce the formation of a supramolecular gel at high concentrations.Additionally,this hierarchical self-assembled structure can be regulated by adjusting anion types,facilitating the controlled transformation from a supramolecular gel into a supramolecular channel upon the introduction of four monocarboxylic acids as anions.The study provides insight into the construction and controlled regulation of superstructures based on NHC-based pillarplexes.展开更多
Mechanically interlocked molecules (MIMs) have unique properties with broad applications, yet constructing both knotted and linked topologies from the same ligand remains challenging due to their distinct geometric de...Mechanically interlocked molecules (MIMs) have unique properties with broad applications, yet constructing both knotted and linked topologies from the same ligand remains challenging due to their distinct geometric demands. To address this, we design and synthesize a conformationally adaptive ligand 4,7-bis(3-(pyridin-4-yl) phenyl) benzo[c][1,2,5]thiadiazole (L1) with a tunable torsional angle θ of N1C1C2N2 ranging from 7.5° to 108.9°. Utilizing coordination-driven self-assembly at ambient temperature, L1 selectively assembles with binuclear half-sandwich units RhB1, RhB2, RhB3, and RhB4 featuring Cp*^(Rh^(Ⅲ)) (Cp* = η^(5)-pentam-ethylcyclopentadienyl) into distinct topologies: Solomon links Rh-1, trefoil knots Rh-2, molecular tweezers Rh 3, and Rh-4, respectively. Crucially, the self-adaptability of ligand L1 directs topology formation through pro-gramming different combination of noncovalent interactions (π-x stacking, CH..π interaction, and lone pair-π interaction), thus navigating divergent assembly pathways by conformational switching, as evidenced by X-ray crystallography analysis, independent gradient model (IGM) analysis, detailed nuclear magnetic resonance (NMR) spectroscopy and electrospray ionization time-of-flight/mass spectrometry (ESI-TOF/MS). This strategy can also be extended to construct Cp*^(Irl^(Ⅲ)) analogs (Solomon links Ir-1, trefoil knots Ir-2, molecular tweezers Ir-3 and Ir-4), demonstrating metal-independent control and achieving intricate topologies in a high yield.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51373059)the Graphene Powder&Composite Materials Research Center of FujianXiamen Key Laboratory of Polymers and Electronic Materials。
文摘Janus films with asymmetric physical/chemical properties have attracted con siderable attention due to their promising applications in personal thermal management,electronic skin s,sensors,actuators,etc.However,traditional methods for fabricating Janus films conventionally need the assistance of an interface or auxiliary equipment,which are usually complex and time-consuming.Herein,flexible poly(vinyl alcohol)(PVA)/graphene oxide(GO)/h-BN(recorded as PVA/GO/h-BN)Janus films with thermally,optically,and electrically anisotropic properties are fabricated by a simple density deposition self-assem bly method,which just utilizes the density difference between GO and h-BN during water evaporation.Experimental results show that the two sides of the acquired Janus films have obvious asymmetric characteristics.In the original state of the PVA/GO/h-BN Janus films,the thermal conductivity of the GO side(10.06 W·m^(-1)·K^(-1))is generally lower than that of the h-BN side(10.48W·m^(-1)·K^(-1)).But after GO is reduced,the thermal conductivity of the rGO side reaches 12.17 W·m^(-1)·K^(-1),surpassing that of the h-BN side.In addition,the relative reflectance of the h-BN side of Janus film is also significantly higher than that of the rGO side,and the su rface resistance difference between the two sides is about 4 orders of magnitude.The prepared PVA/GO/h-BN Janus films show great application potential in human thermal management,light conversion switches,and electronic skins.This study provides a simple and versatile strategy for fabricating Janus films with multifunctional(such as thermal,optical,and electrical)anisotropies.
基金Funded by the Natural Science Foundation of Hebei Province, China (No. E2008000537)the Foundation for Development of Science and Technology of Hebei Province, China (No. 07215156)the Open Research Foundation of Key Laboratory of Advanced Civil Engineering Materials (Tongji University),Ministry of Education, China (No. 2010412)
文摘Electrostatic self-assembly method (ESAM) was used to prepare bentonite supported-nano titanium dioxide photocatalysts. The materials were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Methyl orange was used to estimate the photocatalytic activity of the materials. The effects of the calcination temperature and silane dosage on the photocatalytic activity of the samples were investigated. The experimental results show that the bentonite facilitates the formation of anatase and restrains the transformation of anatase to rutile. Part of nano-size TiO2 particles insert into the galleries of bentonite. The photocatalysts exhibit a synergistic effect of adsorption and photocatalysis on methyl orange. Photocatalysts prepared by ESAM method exhibit higher photocatalytic activity and better recycle ability than those of the traditional method.
文摘Anionic surfactant sodium lauryl sulfate(SDS), cationic surfactant palmityl trimethyl ammonium chloride(CTAC) and TiO_2 were used to prepare multilayer films on quartz optic fibers by the electrostatic self-assembly (ESA) method. The whole self-assemble process, the function of surfactant and the effect of TiO_2 slurry′s concentration to the self-assemble were discussed. The isoelectric point of TiO_2 slurry measured by experiment is 6.8. The results show that whatever the concentration of the TiO_2 dispersion, a flat and compact adsorbed monolayer on the optic fiber can be built in a stable dispersion at lower pH. There is a adsorbed equilibrium on the substrate (fiber)/solution interface when enough time of incubation is given. A rough and loosen adsorbed layer is formed on the fiber surface by immersed the substrate in a high pH dispersion (pH>10) because the presence of hydroxyl on particle surface. Film thickness can be controlled by controlling the number of layers in the film.
文摘Peroxymonosulfate(PMS)-assisted visible-light photocatalytic degradation of organic pollutants using graphitic carbon nitride(g-C_(3)N_(4))presents a promising and environmentally friendly approach.However,pristine g-C_(3)N_(4) suffers from limited visible-light absorption and low charge-carrier mobility.In this study,a phosphorus-doped tubular carbon nitride(5P-TCN)was synthesized via a precursor self-assembly method using phosphoric acid and melamine as raw materials,eliminating the need for organic solvents or templates.The 5P-TCN catalyst demonstrated enhanced visible-light absorption,improved charge transfer capability,and a 5.25-fold increase in specific surface area(31.092 m^(2)/g),which provided abundant active sites to efficiently drive the PMS-assisted photocatalytic reaction.The 5P-TCN/vis/PMS system exhibited exceptional degradation performance for organic pollutants across a broad pH range(3–9),achieving over 92%degradation of Rhodamine B(RhB)within 15 min.Notably,the system retained>98%RhB degradation efficiency after three consecutive operational cycles,demonstrating robust operational stability and reusability.Moreover,key parameters influencing,active radi-cals,degradation pathways,and potential mechanisms for RhB degradation were systematically investigated.This work proposes a green and cost-effective strategy for developing high-efficiency photocatalysts,while demon-strating the exceptional capability of a PMS-assisted photocatalytic system for rapid degradation of RhB.
基金Project supported by the National Science Foundation of China(Nos.50730008,60807008)the Doctoral Fund of Hebei Normal University of Science and Technology(No.2009YB007)
文摘Dense,uniform ZnO nanowire(NW) networks are prepared by using a simple and sufficient selfassembly method.In this method,ZnO NWs are modified with aminopropyltriethoxysilane(APTES) to form positively charged amine-terminated surfaces.The modified ZnO NWs are adsorbed on negatively charged SiO_2/Si substrates to form ZnO NW networks by the electrostatic interaction in an aqueous solution.Field-effect transistors (FETs) are fabricated and studied based on the ZnO NW networks.For a typical device with an NW density of 2.8μm~^-2,it exhibits a current on/off ratio of 2.4×10^5,a transconductance of 336 nS,and a field-effect mobility of 27.4 cm^2/(V·s).
基金supported by the National Natural Science Foundation of China(Nos.81873092,82174074)。
文摘The self-assembled nanoparticles(SAN)formed during the decoction process of traditional Chinese medicine(TCM)exhibit non-uniform particle sizes and a tendency for aggregation.Our group found that the p H-driven method can improve the self-assembly phenomenon of Herpetospermum caudigerum Wall.,and the SAN exhibited uniform particle size and demonstrated good stability.In this paper,we analyzed the interactions between the main active compound,herpetrione(Her),and its main carrier,Herpetospermum caudigerum Wall.polysaccharide(HCWP),along with their self-assembly mechanisms under different p H values.The binding constants of Her and HCWP increase with rising p H,leading to the formation of Her-HCWP SAN with a smaller particle size,higher zeta potential,and improved thermal stability.While the contributions of hydrogen bonding and electrostatic attraction to the formation of Her-HCWP SAN increase with rising p H,the hydrophobic force consistently plays a dominant role.This study enhances our scientific understanding of the self-assembly phenomenon of TCM improved by p H driven method.
基金National Nature Science Foundation of China(Nos.51805516 and 51675252).
文摘Fabric composites are widely applied as self-lubricating liner for radial spherical plain bearings owing to their excellent mechanical and tribological properties.Nevertheless,the poor interfacial strength between fibers and the resin matrix limits the performance of composites utilized as tribomaterials.To overcome this drawback,a mild layer-by-layer(LbL)self-assembly method was successfully used to construct hybrid fabric composites in the present work.In addition,this investigation addressed the effect of self-assembly cycles on the friction and wear behaviors of hybrid fabric composites under dry sliding condition.The results demonstrate that fabric composites with three or more self-assembly cycles have significantly enhanced surface activities and anti-wear performances.The results obtained in this work can provide guidance in the preparation of self-lubricating liner composites and highlight how the LbL self-assembly techniques could influence the properties of hybrid fabric composites.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2020R1C1C1003375)。
文摘Recently,hollow carbon nanospheres(HCSs)have garnered significant attention as potential Li metal hosts owing to their unique large voids and ease of fabrication.However,similar to other nanoscale hosts,their practical performance is limited by inhomogeneous agglomeration,increased binder requirements,and high tortuosity within the electrode.To overcome these problems and high tortuosity within the electrode,this study introduces a pomegranate-like carbon microcluster composed of primary HCSs(P-CMs)as a novel Li metal host.This unique nanostructure can be easily prepared using the spray-drying technique,enabling its mass production.Comprehensive analyses with various tools demonstrate that compared with HCS hosts,the P-CM host requires a smaller amount of binder to fabricate a sufficiently robust and even surface electrode.Furthermore,owing to reduced tortuosity,the well-designed P-CM electrode can provide continuous and shortened pathways for electron/ion transport,accelerating the Li-ion transfer kinetics and prohibiting preferential Li plating at the upper region of the electrode.Due to these characteristics,Li metal can be effectively encapsulated in the large inner voids of the primary HCSs constituting the P-CM,thereby enhancing the electrochemical performance of P-CM hosts in Li metal batteries.Specifically,the Coulombic efficiency of the P-CM host can be maintained at 97%over 100 cycles,with a high Li deposition areal capacity of 3 mAh·cm^(-2)and long cycle life(1000 h,1 mA·cm^(-2),and 1.0 mAh·cm^(-2)).Furthermore,a full cell incorporating a LiFePO4 cathode exhibits excellent cycle life.
文摘Four glycoluril-based amphiphilic molecular clips(AMCs)M1~M4 have been prepared for intracellular delivery of short DNA.M1~M4 have two methyl groups on its convex surface and four cations on its aromatic side arm,which can be used to construct self-assembled nanoparticles in aqueous solution driven by hydrophobic interaction.Dynamic light scattering experiments show that M1 and M2 can be driven hydrophobically to aggregate into extremely stable nanoparticles in water at the micromolar concentrations.Fluorescence titration and zeta potential experiments support that the nanoparticles formed by M1 and M2 are able to efficiently encapsulate short DNA(sDNA).Fluorescence imaging and flow cytometry studies reveal that their nano sizes enable intracellular delivery of the encapsulated sDNA into both normal and cancer cells,with delivery percentage reaching up to 94%,while in vitro experiments indicate that the two compounds have excellent biocompatibility and low cytotoxicity.
基金Supported by the project from Science and Technology Department of Zhejiang Province (2003C11027)
文摘Zirconia nanoparticles were synthesized via hydrothermal method without any additives. This work focuses on the effect of preparation conditions1 such as the precursor preparation condition and crystallization time of nanocrystallite in autoclave on the properties of as-prepared products. The results indicated that the amount of tetragonal zirconia varied with the preparation conditions. It increased with the increase of the concentration of KOH solution in precursor producing process and reduced with the prolongation of crystallization time. At the same time, the particle size and morphology were also affected by the preparation conditions. In addition, the self-assembled spindle- like aggregates were observed in present works.
基金This work was supported by the Natural Science Foundation of Hubei Province(Project No.2000J002)
文摘Gold colloid was prepared by chemical reduction of hydrogen tetrachloroaurate, polyelectrolyte/gold nanoparticle/silica nanoparticie composite films were fabricated via an electrostatic self-assembly multilayer method, and composite films of gold nanoparticle dispersed in silica matrix were formed by heat-treating the polyelectrolyte/gold nanoparticle/silica nanoparticle composite films to eliminate the polyelectrolyte. The obtained composite films were investigated with UV-vis, TEM, AFM and XRD. The results show that the self-assembly multilayer method is a promising process to produce composite films of gold nanoparticle-dispersed in organic and/or inorganic matrixes.
文摘Horseradish peroxidase monolayer was assembled on the surface of PET-CO2 substrate. The reaction kinetics of HRP/PET film and H2O2 in micro reactor was studied using improved spectrophotometer. The relative activity of self-assembly HRP/PET film still remains above 80% after storing for 150 days at 4℃. When applied to determination of H2O2 in sample, the recoveries of H2O2 are 96.5%~101.1%.
基金supported by the National Natural Science Foundation of China(No.62075069 and 52303092)the Water Conservancy Technology project of Hunan Province,China(XSKJ2021000-32)+1 种基金the City University of Hong Kong(#7005507)the Open Project of Yunnan Precious Metals Laboratory Co.,Ltd(grant number YPML-2023050278).
文摘Nowadays,high-stable and ultrasensitive heavy metal detection is of utmost importance in water quality monitoring.Nanoparticle-enhanced laser-induced breakdown spectroscopy(NELIBS)shows high potential in hazardous metal detection,however,encounters unstable and weak signals due to nonuniform distribution of analytes.Herein,we developed an interface self-assembly(ISA)method to create a uniformly distributed gold nanolayer at a liquid-liquid interface for positive heavy metal ions capture and NELIBS analysis.The electrostatically selfassembled Au nanoparticles(NPs)-analytes membrane was prepared at the oil-water interface by injecting ethanol into the mixture of cyclohexane and Au NPs-analytes water solution.Then,the interface self-assembled Au NPs-analytes membrane was transformed onto a laser-processed superhydrophilic Si slide for detection.Three heavy metals(cadmium(Cd),barium(Ba),and chromium(Cr))were analyzed to evaluate the stability and sensitivity of the ISA method for NELIBS.The results(Cd:RSD=3.6%,LoD=0.654 mg/L;Ba:RSD=3.4%,LoD=0.236 mg/L;Cr:RSD=7.7%,LoD=1.367 mg/L)demonstrated signal enhancement and high-stable and ultrasensitive detection.The actual sample detection(Cd:RE=7.71%,Ba:RE=6.78%)illustrated great reliability.The ISA method,creating a uniform distribution of NP-analytes at the interface,has promising prospects in NELIBS.
基金financially supported by the National Natural Science Foundation of China(Nos.20904047 and 12074151)the Natural Science Foundation of Zhejiang Province(Nos.LY17A040001 and LY19F03004)。
文摘Diphenylalanine and its analogs cause many concerns owing to their perfect self-assembly properties in the fields of biology,medicine,and nanotechnology.Experimental research has shown that diphenylalanine-based analogs with ethylenediamine linkers(PA,P=phenylalanine,and A=analog)can self-assemble into spherical assemblies,which can serve as novel anticancer drug carriers.In this work,to understand the assembly pathways,drug loading behavior,and formation mechanism of PA aggregates at the molecular level,we carried out dissipative particle dynamics(DPD)simulations of PA molecule systems.Our simulation results demonstrate that PA molecules spontaneously assemble into nanospheres and can self-assemble into drug-loaded nanospheres upon addition of the cancer chemotherapeutic agent doxorubicin(DOX).We also found that the hydrophobic side chain beads of PA molecules exhibited a unique onion-like distribution inside the nanospheres,which was not observed in the experiment.The onion-like nanospheres were verified by calculating the radial distribution function(RDF)of the DPD beads.Furthermore,based on the analysis of the percentages of different interaction components in the total nonbonded energies,main chain-side chain interactions between PA molecules may be important in the formation of onion-like nanospheres,and the synergistic effects of main chain-side chain,main chain-drug,side chain-drug,and main chain-solvent interactions are significant in the formation of drug-loaded nanospheres.These findings provide new insights into the structure and self-assembly pathway of PA assemblies,which may be helpful for the design of efficient and effective drug delivery systems.
基金supported by the National Natural Science Foundation of China(Nos.82061148012,82027806,21974019)SEU Innovation Capability Enhancement Plan for Doctoral Students(No.CXJH_SEU 24138)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX24_0469)。
文摘The potential of metal nanoclusters in biomedical applications is limited due to aggregation-caused quenching(ACQ).In this study,an in situ self-assembled pitaya structure was proposed to obtain stable fluorescence emission through protein coronas-controlled distance between gold nanoclusters(Au NCs).Interestingly,the gold ion complexes coated with proteins of low isoelectric point(pI)nucleate at the secondary structure of proteins with high p I through ionic exchange within cells,generating fluorescent Au NCs.It is worth noting that due to the steric hindrance formed by the protein coronas on the surface of Au NCs,the distance between Au NCs can be controlled,avoiding electron transfer caused by close proximity of Au NCs and inhibiting fluorescence ACQ.This strategy can achieve fluorescence imaging of clinical tissue samples without observable side effects.Therefore,this study proposes a distance-controllable self-assembled pitaya structure to provide a new approach for Au NCs with stable fluorescence.
基金Project supported by the Natural Science Foundation of Shandong Province (ZR2022QB067)。
文摘The development of new and efficient extractants plays a key role in the separation and recovery of rare earth elements.In this pape r,the extractant(N,N-methyl py ridineethyl-N',N'-dicyclohexyl-3-oxadiglycolamide,MPyEDChDGA) with a new structure was synthesized,and the pyridine group was successfully grafted onto the 3-oxadiglycolamide structure.Using MPyEDChDGA for efficient enrichment of rare earth ions,the self-assembled solids were recovered by simple filtration without further backextraction and final precipitation,achieving a one-step strategy for the recovery of rare earth ions.Several important parameters affecting the self-assembly extraction,including pH,diluent,temperature,and extractant concentration,were systematically evaluated using La(NO_(3))_(3),Tb(NO_(3))_(3),and Lu(NO_(3))_(3) as representatives.The self-assembled solids were investigated in detail by X-ray diffraction(XRD),scanning electron microscopy(SEM),1H nuclear magnetic resonance(1H NMR),Fourier transform infrared spectroscopy(FT-IR),Raman,and X-ray photoelectron spectroscopy(XPS) analyses.The stoichiometry of the extraction species was characterized using the Job's method and electrospray ionization mass spectrometry(ESI-MS).In addition,MPyEDChDGA was applied to the recovery of Sm in SmCoCu simulated liquid,and the results show that MPyEDChDGA has good selectivity of Sm from transition metals(Co,Cu).The separation factor of Sm/Co can reach 6281±117,which provides a new approach to recovering Sm from SmCoCu scrap magnets.This study presents an efficient and convenient new strategy for the recovery and separation of rare earth elements.
基金supported by funding from the Energy Materials and Surface Sciences Unit of the Okinawa Institute of Science and Technology Graduate University,the OIST R&D Cluster Research Program,the OIST Proof of Concept(POC)Program,the JSPS KAKENHI Grant Number JP21F21754 and Alexander von Humboldt Foundation。
文摘Self-assembled monolayers(SAMs)are widely used as hole transport materials in inverted perovskite solar cells,offering low parasitic absorption and suitability for semitransparent and tandem solar cells.While SAMs have shown to be promising in small-area devices(≤1 cm^(2)),their application in larger areas has been limited by a lack of knowledge regarding alternative deposition methods beyond the common spin-coating approach.Here,we compare spin-coating and upscalable methods such as thermal evaporation and spray-coating for[2-(9H-carbazol-9-yl)ethyl]phosphonic acid(2PACz),one of the most common carbazole-based SAMs.The impact of these deposition methods on the device performance is investigated,revealing that the spray-coating technique yields higher device performance.Furthermore,our work provides guidelines for the deposition of SAM materials for the fabrication of perovskite solar modules.In addition,we provide an extensive characterization of 2PACz films focusing on thermal evaporation and spray-coating methods,which allow for thicker 2PACz deposition.It is found that the optimal 2PACz deposition conditions corresponding to the highest device performances do not always correlate with the monolayer characteristics.
基金supported by the National Science Foundation for Distinguished Young Scholars(No.52325308)the National Natural Science Foundation of China(Nos.52273008 and 52073092)+1 种基金Shanghai Scientific and Technological Innovation Projects(No.22ZR1479300)Shanghai Rising-Star Program(No.23QA1402500).
文摘Amphiphilic asymmetric brush copolymers(AABCs)possess unique self-assembly behaviors owing to their asymmetric brush architecture and multiple functionalities of multicomponent side chains.However,the synthesis of AABCs presents challenges,which greatly limits the exploration of their self-assembly behaviors.In this work,we employed dissipative particle dynamics(DPD)simulations to investigate the self-assembly behaviors of AABCs in selective solution.By varying the copolymer concentration and structure,we conducted the self-assembly phase diagrams of AABCs,revealing complex morphologies such as channelized micelles with one or more solvophilic channels.Moreover,the number,surface area,and one-dimensional density distribution of the channelized micelles were calculated to demonstrate the internal structure and morphological transformation during the self-assembly process.Our findings indicate that the morphology of the internal solvophilic channels is greatly influenced by the copolymer structure,concentration,and interaction parameters between the different side chains.The simulation results are consistent with available experimental observations,which can offer theoretical insights into the self-assembly of AABCs.
基金financial support from the National Natural Science Fund for Distinguished Young Scholars of China(No.22025107)Shaanxi Fundamental Science Research Project for Chemistry&Biology(No.22JHZ003)+2 种基金the Key International Scientific and Technological Cooperation and Exchange Project of Shaanxi Province(No.2023-GHZD-15)the National Youth Top-notch Talent Support Program of Chinathe FM&EM International Joint Laboratory of Northwest University。
文摘The precise control over the hierarchical self-assembly of sophisticated structures with comparable complexities and functions relying on the modulation of basic building blocks is elusive and highly desirable.Here,we report a fluorinated N-heterocyclic carbene(NHC)–based pillarplex with a tunable quaternary structure,employed as an efficient building block for constructing hierarchical superstructures.Initially,multiple noncovalent interactions in the NHC-based pillarplex,particularly those between the fluorinated pillarplex and PF_(6)-anions,induce the formation of a supramolecular gel at high concentrations.Additionally,this hierarchical self-assembled structure can be regulated by adjusting anion types,facilitating the controlled transformation from a supramolecular gel into a supramolecular channel upon the introduction of four monocarboxylic acids as anions.The study provides insight into the construction and controlled regulation of superstructures based on NHC-based pillarplexes.
基金Department of Chemistry,Fudan Uni-versity,the National Natural Science Foundation of China(22031003,21720102004)the Shanghai Science Technology Committee(19DZ227010O)the Alexander von Humboldt Foundation for a Humboldt Research Award.
文摘Mechanically interlocked molecules (MIMs) have unique properties with broad applications, yet constructing both knotted and linked topologies from the same ligand remains challenging due to their distinct geometric demands. To address this, we design and synthesize a conformationally adaptive ligand 4,7-bis(3-(pyridin-4-yl) phenyl) benzo[c][1,2,5]thiadiazole (L1) with a tunable torsional angle θ of N1C1C2N2 ranging from 7.5° to 108.9°. Utilizing coordination-driven self-assembly at ambient temperature, L1 selectively assembles with binuclear half-sandwich units RhB1, RhB2, RhB3, and RhB4 featuring Cp*^(Rh^(Ⅲ)) (Cp* = η^(5)-pentam-ethylcyclopentadienyl) into distinct topologies: Solomon links Rh-1, trefoil knots Rh-2, molecular tweezers Rh 3, and Rh-4, respectively. Crucially, the self-adaptability of ligand L1 directs topology formation through pro-gramming different combination of noncovalent interactions (π-x stacking, CH..π interaction, and lone pair-π interaction), thus navigating divergent assembly pathways by conformational switching, as evidenced by X-ray crystallography analysis, independent gradient model (IGM) analysis, detailed nuclear magnetic resonance (NMR) spectroscopy and electrospray ionization time-of-flight/mass spectrometry (ESI-TOF/MS). This strategy can also be extended to construct Cp*^(Irl^(Ⅲ)) analogs (Solomon links Ir-1, trefoil knots Ir-2, molecular tweezers Ir-3 and Ir-4), demonstrating metal-independent control and achieving intricate topologies in a high yield.