Self-assembled nano-phase silane-based particle coating was prepared through sol-gel technique.Tetramethoxysilane and 3-glycidoxypropyltrimethoxysilane were used as precursors for the self-assembled sol-gel coatings.T...Self-assembled nano-phase silane-based particle coating was prepared through sol-gel technique.Tetramethoxysilane and 3-glycidoxypropyltrimethoxysilane were used as precursors for the self-assembled sol-gel coatings.The silane colloidal particle size was analyzed by laser particle size measurement.The results indicate that the particle size is in nano-scale and the diameter of particles deceases with increasing dilution times.Gel permeation chromatography proves that the relative molecular mass of macromolecule in a referenced sol solution is 1220-1240 amu.A simulation model was proposed to study the siloxane structure.Fourier transform infrared spectra of solution and film prove the disappearing of epoxy bond.The results of solid-state 13C and 29Si nuclear magnetic resonance experiments indicate the formation of Si-O-Si network.Potentiodynamic analysis shows that the self-assembled coating has excellent corrosion resistance.Salt fog tests prove that 2-methyl piperidine as inhibitor significantly improves the corrosion resistance of the self-assembled coating.展开更多
Black nickel coatings have emerged as a research hotspot in materials science due to their excellent performance and broad application prospects.In this study,nickel-based black coatings were fabricated on low-carbon ...Black nickel coatings have emerged as a research hotspot in materials science due to their excellent performance and broad application prospects.In this study,nickel-based black coatings were fabricated on low-carbon steel substrates via photo-assisted electrodeposition.A systematic investigation was conducted on the effects of cerium ion concentration and nano-ceria(CeO_(2))particle content in the electrolyte on the coating properties,along with an analysis of the temporal evolution of coating’s corrosion resistance.When the cerium ion concentration in the electrolyte was 0.05 mol/L,the coating exhibited a uniform black appearance with a light absorption rate of 95%,an emissivity of 0.87,maximum impedance,and the lowest corrosion tendency,demonstrating optimal comprehensive performance.The coating prepared with a nano-ceria concentration of 6 g/L in the electrolyte exhibited an emissivity of 0.9,achieved a 5B adhesion grade(ASTM D3359-09),and demonstrated a one-order-of-magnitude reduction in corrosion current density compared to coatings fabricated without nano-ceria in the electrolyte.With prolonged storage time,the coating's impedance slightly increased,leading to improved corrosion resistance.展开更多
To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretre...To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretreatment was employed to construct a Ta_(2)O_(5)ceramic layer on the Ta12W alloy surface.Subsequently,a slurry spraying-vacuum sintering method was used to prepare a Si-Cr-Ti-Zr coating on the pretreated substrate.Comparative studies were conducted on the microstructure,phase composition,and isothermal oxidation resistance(at 1600℃)of the as-prepared coatings with and without the micro-arc oxidation ceramic layer.The results show that the Ta_(2)O_(5)layer prepared at 400 V is more continuous and has smaller pores than that prepared at 350 V.After microarc oxidation pretreatment,the Si-Cr-Ti-Zr coating on Ta12W alloy consists of three distinct layers:an upper layer dominated by Ti_(5)Si_(3),Ta_(5)Si_(3),and ZrSi;a middle layer dominated by TaSi_(2);a coating/substrate interfacial reaction layer dominated by Ta_(5)Si_(3).Both the Si-Cr-Ti-Zr coatings with and without the Ta_(2)O_(5)ceramic layer do not fail after isothermal oxidation at 1600℃for 5 h.Notably,the addition of the Ta2O5 ceramic layer reduces the high-temperature oxidation rate of the coating.展开更多
Intrinsic topological superconductors have garnered significant attention for their potential to harbor novel quantum phenomena.However,the limited availability of suitable material systems has hindered progress in th...Intrinsic topological superconductors have garnered significant attention for their potential to harbor novel quantum phenomena.However,the limited availability of suitable material systems has hindered progress in this field.Here,we present the synthesis and characterization of high-quality self-assembled SnS/TaS_(2)(SnTaS_(3))superlattice,which exhibits superconductivity alongside non-trivial band topology.Temperature-dependent magnetization susceptibility and electrical transport results confirm SnTaS_(3) as a type-Ⅱ superconductor with a critical transition temperature Tc of 3 K.Interestingly,this superconductivity can be turned off via an innovative solid proton gate technique,and a new superconducting state with a Tc of~2.3 K emerges when the gating voltage reaches-9.47 V.Heat capacity measurements reveal strong electronic correlations within this material,which is further supported by angle-resolved photoemission spectroscopy and first-principles calculations,underscoring the effect of topological flat bands and Van Hove singularity.Our research introduces a promising self-assembled material platform,adeptly positioned to delve into the quest for topological superconductors.展开更多
TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing Ti...TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance.展开更多
The Sn−2Al filler metal was utilized to bond W90 tungsten heavy alloys by the ultrasonic-assisted coating technology in atmospheric environment at 250℃.The effects of ultrasonic power and ultrasonic time on microstru...The Sn−2Al filler metal was utilized to bond W90 tungsten heavy alloys by the ultrasonic-assisted coating technology in atmospheric environment at 250℃.The effects of ultrasonic power and ultrasonic time on microstructure and interfacial strength of Sn−2Al/W90 interface were investigated.The ultrasound improved the wettability of Sn−2Al filler metal on W90 surface.As the ultrasonic power increased and ultrasonic time increased,the size of Al phase in seam decreased.The maximum value of Sn−2Al/W90 interfacial strength reached 30.1 MPa.Based on the acoustic pressure simulation and bubble dynamics,the intensity of cavitation effect was proportional to ultrasonic power.The generated high temperature and high pressure by cavitation effect reached 83799.6 K and 1.26×10^(14) Pa,respectively.展开更多
Contamination resulting from microbial adhesion on magnesium alloys is very common in many applications. Self-assembly technology was employed to prepare an antibacterial composite coating by fixing silver nanoparticl...Contamination resulting from microbial adhesion on magnesium alloys is very common in many applications. Self-assembly technology was employed to prepare an antibacterial composite coating by fixing silver nanoparticles (AgNPs) onto the surface of magnesium alloys. The AgNPs were immobilized on the surface of 3-aminopropyltrimethoxysilane (APTMS)-modified magnesium alloy AZ31 (APTMS/Mg) through electrosta- tic inter-attraction between partially protonated amino groups and negatively charged citrate-capped AgNPs, resulting in the AgNPs attached APTMS/Mg (AgNPs/APTMS/Mg) substrate. The prepared Ag colloid and functionalized AZ31 alloy were characterized by ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and electrochemical methods. Finally, the bactericidal activity of AgNPs/APTMS/Mg substrate against Escherichia coli was assessed by the inhibition zone. The results demonstrated that Si-O-Si covalent bonds existed on the substrate with the formation of inorganic Si-O-Mg bonds. AgNPs were immobilized and well-dispersed, forming a uniform submonolayer on the silane film in two dimensions. The AgNPs/APTMS-pretreated AZ31 alloys exhibited better corrosion resistance and excellent antibacterial performance.展开更多
Core-shell colloidal particles with a polymer layer have broad applications in different areas.Herein,we developed a two-step method combining aqueous surface-initiated photoinduced polymerization-induced self-assembl...Core-shell colloidal particles with a polymer layer have broad applications in different areas.Herein,we developed a two-step method combining aqueous surface-initiated photoinduced polymerization-induced self-assembly and photoinduced seeded reversible addition-fragmentation chain transfer(RAFT)polymerization to prepare a diverse set of core-shell colloidal particles with a well-defined polymer layer.Chemical compositions,structures,and thicknesses of polymer layers could be conveniently regulated by using different types of monomers and feed[monomer]/[chain transfer agent]ratios during seeded RAFT polymerization.展开更多
Conventional nanoparticles incorporated into epoxy coatings suffer from poor compatibility and insufficient corrosion improvement,hindering their practical applications.A dual-strategy approach integrating in-situ hos...Conventional nanoparticles incorporated into epoxy coatings suffer from poor compatibility and insufficient corrosion improvement,hindering their practical applications.A dual-strategy approach integrating in-situ host–vip nanoconfinement and surface self-assembly was devised to fabricate 8HQ@ZIF-8/PDA smart nanocontainers.The vip 8-hydroxyquinoline(8HQ)was encapsulated within the zeolitic imidazolate framework-8(ZIF-8)host,leveraging nanoconfinement effects.A bioinspired polydopamine(PDA)layer was then self-assembled on the 8HQ@ZIF-8 surface through dopamine oxidative self-polymerization,resulting in a robust nanocontainer architecture.Density functional theory(DFT)calculations verify that the molecular interactions between the PDA and the ZIF-8 surface was the chemical adsorption.The resultant 8HQ@ZIF-8/PDA retained the rhombic dodecahedral morphology and crystallinity of ZIF-8,demonstrating controlled pH-responsive release behavior.When incorporated into an epoxy(EP)resin matrix on magnesium alloy,the 8HQ@ZIF-8/PDA/EP smart composite coatings exhibited outstanding interfacial compatibility and long-term stability,achieving a low-frequency impedance(|Z|_(n.n1Hz))of 2.49×10^(7)Ωcm^(2),a maximum phase angle of 82.8°,and a breakpoint frequency(f_(b))of 63.34 Hz after 50 days of immersion in a 3.5 wt%NaCl solution.These findings highlight the exceptional self-healing and corrosion-resistant properties of the 8HQ@ZIF-8/PDA/EP smart composite coatings,underscoring its potential for protecting magnesium alloys in aggressive environments.展开更多
The development of advanced materials and construction of multilayer structure contribute to enhancing the performance of protective coatings,further improving the industrial productivity and conserving energy.In this...The development of advanced materials and construction of multilayer structure contribute to enhancing the performance of protective coatings,further improving the industrial productivity and conserving energy.In this paper,the self-assembled high-entropy nitride(HEN)AlCrNbSiTiN multilayer coating was designed by harnessing the plasma distribution characteristics and depos-ited by arc ion plating using single target.展开更多
Magnesium(Mg)and its alloys are considered as ideal biodegradable materials due to their excellent mechanical properties and biocompatibility.In order to improve the surface properties to allow better adaptation to th...Magnesium(Mg)and its alloys are considered as ideal biodegradable materials due to their excellent mechanical properties and biocompatibility.In order to improve the surface properties to allow better adaptation to the surrounding tissue of the body,surface modification has played a significant role in satisfying multiple clinical requirements such as corrosion resistance,biocompatibility,and antibacterial ability.Here,layer-by-layer(LbL)self-assembly,which can be applied for biodegradable Mg alloys due to its extensive choice of usable units,holds great promise among all the surface techniques.In this review,the mechanisms of the driving force(i.e.,electrostatic interaction,hydrogen bonding,charge transfer interaction and covalent bonding),cuttingedge advances in preparation methods(e.g.,dipping,spraying,and spinning)and the functional properties(corrosion resistance,antibacterial activity,and biocompatibility)that could be achieved by the LbL coatings are summarized.A reasonable trend of the potential development of LbL for bioMg alloys is also proposed at the end of this article.展开更多
The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ...The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.展开更多
Mimicry of nature drives the development of bionic materials.Bionic superhydrophobic materials are a kind of high-efficiency materials to handle oil spills and water pollution.However,the stability of surface coatings...Mimicry of nature drives the development of bionic materials.Bionic superhydrophobic materials are a kind of high-efficiency materials to handle oil spills and water pollution.However,the stability of surface coatings of the superhydrophobic materials remains a challenge.Herein,a new category of self-assembly bionic superhydrophobic surface coating was prepared via one-step condensation/copolymerization of vinyltriethoxysilane(VTES)and divinylbenzene(DVB),which realized the close combination of covalent bonds between organic(e.g.DVB)and inorganic matter(e.g.VTES),and avoided the swelling of polydivinylbenzene(PDVB)in the process of collection of oil from water.This organic-inorganic hybrid polymer could self-assembly deposit on the surface of sponge even other substrates.For example,P(VTES-DVB)-Si0_(2)/MS obtained by assembling P(VTES-DVB)-Si0_(2)on the surface of Melamine Sponge(MS)exhibited superhydrophobicity with a Water Contact Angle(WCA)of 157.3,the optimal adsorption capacity of 77 g g 136 g g-1 for diverse oils,and an excellent separation efficiency of 99.3%.Besides,the excellent acid and alkali resistance of P(VTES-DVB)-Si0_(2)/MS suggested the potential value in practical oil-water separation.P(VTES-DVB)-Si0_(2)showed the outstanding hydrophobic performance by using as coating on different substrates.This work provided a new idea about the stable combination of organic and inorganic matter in the surface modification.展开更多
Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,a...Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,as well as the wear resistance of the coatings.Besides,the effect of changing the laser melting process on the coatings was also investigated.The oxidation mass gain at 800–1200℃and the high-temperature oxidation behavior during high-temperature treatment for 1 h of two coated Zr alloy samples were studied.Results show that the Co coating and the Co-T800 coating have better resistance against high-temperature oxidation.After oxidizing at 1000℃for 1 h,the thickness of the oxide layer of the uncoated sample was 241.0μm,whereas that of the sample with Co-based coating is only 11.8–35.5μm.The friction wear test shows that the depth of the abrasion mark of the coated sample is only 1/2 of that of the substrate,indicating that the hardness and wear resistance of the Zr substrate are greatly improved.The disadvantage of Co-based coatings is the inferior corrosion resistance in 3.5wt%NaCl solution.展开更多
Proton exchange membrane water electrolysis(PEMWE)is one of the most promising strategies to pro-duce green hydrogen energy,and it is crucial to exploit highly conductive and good corrosion-resistant coatings on bipol...Proton exchange membrane water electrolysis(PEMWE)is one of the most promising strategies to pro-duce green hydrogen energy,and it is crucial to exploit highly conductive and good corrosion-resistant coatings on bipolar plates(BPs),one of the core components in PEMWE cells.In this work,NbN coatings are deposited on Ti BPs by magnetron sputtering to improve the corrosion resistance and conductivity,for which the critical process parameters,such as the working pressure,partial nitrogen pressure and de-position temperature are well optimized.It is found that the compact microstructure,highly conductive δ-NbN and uniform nanoparticles play a dominant role in the synergistic improvement of the corrosion resistance and electrical conductivity of NbN coatings.The optimized NbN coatings exhibit excellent cor-rosion resistance with the low corrosion current density of 1.1×10^(-8) A cm^(-2),a high potential value of-0.005 V vs.SCE and a low ICR value of 15.8 mΩcm2@1.5 MPa.Accordingly,NbN coatings can be a promising candidate for the development of the low-cost and high-anti-corrosion Ti BPs of PEMWE.展开更多
Thrombosis is the major stumbling block to the clinical application of blood-contacting devices.Herein,a quick and easy surface engineering strategy of hydrogel coating with the therapeutic gas nitric oxide(NO)generat...Thrombosis is the major stumbling block to the clinical application of blood-contacting devices.Herein,a quick and easy surface engineering strategy of hydrogel coating with the therapeutic gas nitric oxide(NO)generation was reported to realize up-regulation of cyclic guanosine monophosphate(c GMP)and improve hemocompatibility for diverse metal materials.We first introduce the active centre selenocysteine of glutathione peroxidase(GPx)to the self-assembling peptide(RADA)4,obtaining a functionalized hydrogel.Then the hydrogel is directly coated on the 316L stainless steel(SS)for catalytically generating NO from endogenous s-nitrosothiols(RSNO).The generated NO endows the coated surface with regulation of platelet behavior and reduction of plasmatic coagulation activation and complement system activation,hence improving antithrombotic ability in vitro and ex vivo.Overall,our NO-generating hydrogel coating surface engineering strategy provides a novel solution to remove the obstacle about thrombosis of blood-contacting devices in clinic.展开更多
The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has...The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.展开更多
Multicomponent(Hf-Zr-Ta)B_(2)potentially provides improved ablation resistance compared with silicon-based ceramics.Here we deposited(Hf_(0.5-x/2)Zr_(0.5-x/2)Ta_(x))B_(2)(x=0,0.1,and 0.2)coatings onto C/C com-posites,...Multicomponent(Hf-Zr-Ta)B_(2)potentially provides improved ablation resistance compared with silicon-based ceramics.Here we deposited(Hf_(0.5-x/2)Zr_(0.5-x/2)Ta_(x))B_(2)(x=0,0.1,and 0.2)coatings onto C/C com-posites,and investigated their ablation behaviors under an oxyacetylene torch with a heat flux of 2.4 MW m^(-2).It was observed that the x=0.1 oxide scale bulged but was denser,and the x=0.2 oxide scale was blown away due to the formation of excessive liquid.Based on these findings,we further de-veloped a duplex(Hf-Zr-Ta)B_(2)coating that showed a linear recession rate close to zero(0.11μm s^(-1))after two 120-s ablation cycles.It is identified that the resulting oxide scale is mainly composed of(Hf,Zr)_(6)Ta_(2)O_(17)and(Hf,Zr,Ta)O_(2)by performing aberration-corrected(scanning)transmission electron microscopy.The protective mechanism is related to the peritectic transformation of orthorhombic-(Hf,Zr)_(6)Ta_(2)O_(17)to tetragonal-(Hf,Zr,Ta)O_(2)plus Ta-dominated liquid.This study contributes to the develop-ment of Ta-containing multicomponent UHTC bulk and coatings for ultra-high temperature applications.展开更多
The self-assembled nanoparticles(SAN)formed during the decoction process of traditional Chinese medicine(TCM)exhibit non-uniform particle sizes and a tendency for aggregation.Our group found that the p H-driven method...The self-assembled nanoparticles(SAN)formed during the decoction process of traditional Chinese medicine(TCM)exhibit non-uniform particle sizes and a tendency for aggregation.Our group found that the p H-driven method can improve the self-assembly phenomenon of Herpetospermum caudigerum Wall.,and the SAN exhibited uniform particle size and demonstrated good stability.In this paper,we analyzed the interactions between the main active compound,herpetrione(Her),and its main carrier,Herpetospermum caudigerum Wall.polysaccharide(HCWP),along with their self-assembly mechanisms under different p H values.The binding constants of Her and HCWP increase with rising p H,leading to the formation of Her-HCWP SAN with a smaller particle size,higher zeta potential,and improved thermal stability.While the contributions of hydrogen bonding and electrostatic attraction to the formation of Her-HCWP SAN increase with rising p H,the hydrophobic force consistently plays a dominant role.This study enhances our scientific understanding of the self-assembly phenomenon of TCM improved by p H driven method.展开更多
Diamond coatings possess numerous excellent properties,making them desirable materials for high-performance surface applications.However,without a revolutionary surface modification method,the surface roughness and fr...Diamond coatings possess numerous excellent properties,making them desirable materials for high-performance surface applications.However,without a revolutionary surface modification method,the surface roughness and friction behavior of diamond coatings can impede their ability to meet the demanding requirements of advanced engineering surfaces.This study proposed the thermal stress control at coating interfaces and demonstrated a novel process of precise graphenization on conventional diamond coatings surface through laser induction and mechanical cleavage,without causing damage to the metal substrate.Through experiments and simulations,the influence mechanism of surface graphitization and interfacial thermal stress was elucidated,ultimately enabling rapid conversion of the diamond coating surface to graphene while controlling the coating’s thickness and roughness.Compared to the original diamond coatings,the obtained surfaces exhibited a 63%-72%reduction in friction coefficients,all of which were below 0.1,with a minimum of 0.06,and a 59%-67%decrease in specific wear rates.Moreover,adhesive wear in the friction counterpart was significantly inhibited,resulting in a reduction in wear by 49%-83%.This demonstrated a significant improvement in lubrication and inhibition of mechanochemical wear properties.This study provides an effective and cost-efficient avenue to overcome the application bottleneck of engineered diamond surfaces,with the potential to significantly enhance the performance and expand the application range of diamond-coated components.展开更多
基金Project(51001109) supported by the National Natural Science Foundation of ChinaProjects(2009BAE70B01, 2009BAE70B02) supported by the National Key Technology R&D Program of China
文摘Self-assembled nano-phase silane-based particle coating was prepared through sol-gel technique.Tetramethoxysilane and 3-glycidoxypropyltrimethoxysilane were used as precursors for the self-assembled sol-gel coatings.The silane colloidal particle size was analyzed by laser particle size measurement.The results indicate that the particle size is in nano-scale and the diameter of particles deceases with increasing dilution times.Gel permeation chromatography proves that the relative molecular mass of macromolecule in a referenced sol solution is 1220-1240 amu.A simulation model was proposed to study the siloxane structure.Fourier transform infrared spectra of solution and film prove the disappearing of epoxy bond.The results of solid-state 13C and 29Si nuclear magnetic resonance experiments indicate the formation of Si-O-Si network.Potentiodynamic analysis shows that the self-assembled coating has excellent corrosion resistance.Salt fog tests prove that 2-methyl piperidine as inhibitor significantly improves the corrosion resistance of the self-assembled coating.
文摘Black nickel coatings have emerged as a research hotspot in materials science due to their excellent performance and broad application prospects.In this study,nickel-based black coatings were fabricated on low-carbon steel substrates via photo-assisted electrodeposition.A systematic investigation was conducted on the effects of cerium ion concentration and nano-ceria(CeO_(2))particle content in the electrolyte on the coating properties,along with an analysis of the temporal evolution of coating’s corrosion resistance.When the cerium ion concentration in the electrolyte was 0.05 mol/L,the coating exhibited a uniform black appearance with a light absorption rate of 95%,an emissivity of 0.87,maximum impedance,and the lowest corrosion tendency,demonstrating optimal comprehensive performance.The coating prepared with a nano-ceria concentration of 6 g/L in the electrolyte exhibited an emissivity of 0.9,achieved a 5B adhesion grade(ASTM D3359-09),and demonstrated a one-order-of-magnitude reduction in corrosion current density compared to coatings fabricated without nano-ceria in the electrolyte.With prolonged storage time,the coating's impedance slightly increased,leading to improved corrosion resistance.
基金National Natural Science Foundation of China(52071274)Key Research and Development Projects of Shaanxi Province(2023-YBGY-442)Science and Technology Nova Project-Innovative Talent Promotion Program of Shaanxi Province(2020KJXX-062)。
文摘To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretreatment was employed to construct a Ta_(2)O_(5)ceramic layer on the Ta12W alloy surface.Subsequently,a slurry spraying-vacuum sintering method was used to prepare a Si-Cr-Ti-Zr coating on the pretreated substrate.Comparative studies were conducted on the microstructure,phase composition,and isothermal oxidation resistance(at 1600℃)of the as-prepared coatings with and without the micro-arc oxidation ceramic layer.The results show that the Ta_(2)O_(5)layer prepared at 400 V is more continuous and has smaller pores than that prepared at 350 V.After microarc oxidation pretreatment,the Si-Cr-Ti-Zr coating on Ta12W alloy consists of three distinct layers:an upper layer dominated by Ti_(5)Si_(3),Ta_(5)Si_(3),and ZrSi;a middle layer dominated by TaSi_(2);a coating/substrate interfacial reaction layer dominated by Ta_(5)Si_(3).Both the Si-Cr-Ti-Zr coatings with and without the Ta_(2)O_(5)ceramic layer do not fail after isothermal oxidation at 1600℃for 5 h.Notably,the addition of the Ta2O5 ceramic layer reduces the high-temperature oxidation rate of the coating.
基金supported by Innovation Program for Quantum Science and Technology(No.2021ZD0302800)the National Natural Science Foundation of China(Nos.52373309 and 12004357)+2 种基金the National Key R&D Program of China(No.2023YFA1610100)the financial support from U.S.Department of Energy Office of Science-The Basic Energy Sciences program(DOE-BES)(No.DE-FG02-04ER46148)the financial support from the National Natural Science Foundation of China(No.12574210).
文摘Intrinsic topological superconductors have garnered significant attention for their potential to harbor novel quantum phenomena.However,the limited availability of suitable material systems has hindered progress in this field.Here,we present the synthesis and characterization of high-quality self-assembled SnS/TaS_(2)(SnTaS_(3))superlattice,which exhibits superconductivity alongside non-trivial band topology.Temperature-dependent magnetization susceptibility and electrical transport results confirm SnTaS_(3) as a type-Ⅱ superconductor with a critical transition temperature Tc of 3 K.Interestingly,this superconductivity can be turned off via an innovative solid proton gate technique,and a new superconducting state with a Tc of~2.3 K emerges when the gating voltage reaches-9.47 V.Heat capacity measurements reveal strong electronic correlations within this material,which is further supported by angle-resolved photoemission spectroscopy and first-principles calculations,underscoring the effect of topological flat bands and Van Hove singularity.Our research introduces a promising self-assembled material platform,adeptly positioned to delve into the quest for topological superconductors.
基金supported by the Original Exploratory Program of the National Natural Science Foundation of China(No.52450012)。
文摘TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance.
基金supported by the National Natural Science Foundation of China(Nos.52105330,52175307)the Natural Science Foundation of Shandong Province,China(No.ZR2023JQ021)。
文摘The Sn−2Al filler metal was utilized to bond W90 tungsten heavy alloys by the ultrasonic-assisted coating technology in atmospheric environment at 250℃.The effects of ultrasonic power and ultrasonic time on microstructure and interfacial strength of Sn−2Al/W90 interface were investigated.The ultrasound improved the wettability of Sn−2Al filler metal on W90 surface.As the ultrasonic power increased and ultrasonic time increased,the size of Al phase in seam decreased.The maximum value of Sn−2Al/W90 interfacial strength reached 30.1 MPa.Based on the acoustic pressure simulation and bubble dynamics,the intensity of cavitation effect was proportional to ultrasonic power.The generated high temperature and high pressure by cavitation effect reached 83799.6 K and 1.26×10^(14) Pa,respectively.
基金supported by National Natural Science Foundation of China(No.51241001)NSF of Shandong Province(No.ZR2011EMM004)+2 种基金open foundation of State Key Laboratory for Corrosion and Protection(NoSKLCP21012KF03)Taishan Scholarship Project of Shandong Province(No.TS20110828)Basic Research Project of Qingdao Science and Technology Program(No.13-1-4-171-jch)
文摘Contamination resulting from microbial adhesion on magnesium alloys is very common in many applications. Self-assembly technology was employed to prepare an antibacterial composite coating by fixing silver nanoparticles (AgNPs) onto the surface of magnesium alloys. The AgNPs were immobilized on the surface of 3-aminopropyltrimethoxysilane (APTMS)-modified magnesium alloy AZ31 (APTMS/Mg) through electrosta- tic inter-attraction between partially protonated amino groups and negatively charged citrate-capped AgNPs, resulting in the AgNPs attached APTMS/Mg (AgNPs/APTMS/Mg) substrate. The prepared Ag colloid and functionalized AZ31 alloy were characterized by ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and electrochemical methods. Finally, the bactericidal activity of AgNPs/APTMS/Mg substrate against Escherichia coli was assessed by the inhibition zone. The results demonstrated that Si-O-Si covalent bonds existed on the substrate with the formation of inorganic Si-O-Mg bonds. AgNPs were immobilized and well-dispersed, forming a uniform submonolayer on the silane film in two dimensions. The AgNPs/APTMS-pretreated AZ31 alloys exhibited better corrosion resistance and excellent antibacterial performance.
基金support from the Science and Technology Program of Guangzhou(No.2024A04J2821)the National Natural Science Foundation of China(Nos.52222301,22171055)the Guangdong Natural Science Foundation for Distinguished Young Scholar(No.2022B1515020078)。
文摘Core-shell colloidal particles with a polymer layer have broad applications in different areas.Herein,we developed a two-step method combining aqueous surface-initiated photoinduced polymerization-induced self-assembly and photoinduced seeded reversible addition-fragmentation chain transfer(RAFT)polymerization to prepare a diverse set of core-shell colloidal particles with a well-defined polymer layer.Chemical compositions,structures,and thicknesses of polymer layers could be conveniently regulated by using different types of monomers and feed[monomer]/[chain transfer agent]ratios during seeded RAFT polymerization.
基金the Natural Science Foundation of Hunan Province(2024JJ6364)the National Natural Science Foundation of China(52271073)+1 种基金the Sichuan Science and Technology Program(2024NSFJQ0034)the Innovation Team Funds of China West Normal University(KCXTD2024-1).
文摘Conventional nanoparticles incorporated into epoxy coatings suffer from poor compatibility and insufficient corrosion improvement,hindering their practical applications.A dual-strategy approach integrating in-situ host–vip nanoconfinement and surface self-assembly was devised to fabricate 8HQ@ZIF-8/PDA smart nanocontainers.The vip 8-hydroxyquinoline(8HQ)was encapsulated within the zeolitic imidazolate framework-8(ZIF-8)host,leveraging nanoconfinement effects.A bioinspired polydopamine(PDA)layer was then self-assembled on the 8HQ@ZIF-8 surface through dopamine oxidative self-polymerization,resulting in a robust nanocontainer architecture.Density functional theory(DFT)calculations verify that the molecular interactions between the PDA and the ZIF-8 surface was the chemical adsorption.The resultant 8HQ@ZIF-8/PDA retained the rhombic dodecahedral morphology and crystallinity of ZIF-8,demonstrating controlled pH-responsive release behavior.When incorporated into an epoxy(EP)resin matrix on magnesium alloy,the 8HQ@ZIF-8/PDA/EP smart composite coatings exhibited outstanding interfacial compatibility and long-term stability,achieving a low-frequency impedance(|Z|_(n.n1Hz))of 2.49×10^(7)Ωcm^(2),a maximum phase angle of 82.8°,and a breakpoint frequency(f_(b))of 63.34 Hz after 50 days of immersion in a 3.5 wt%NaCl solution.These findings highlight the exceptional self-healing and corrosion-resistant properties of the 8HQ@ZIF-8/PDA/EP smart composite coatings,underscoring its potential for protecting magnesium alloys in aggressive environments.
基金financially supported by Shenzhen Science and Technology Program(No.JCYJ20220530140601002)the National Natural Science Foundation of China(No.52371073)+1 种基金Wuhan University Sino-Foreign Cooperative Research Fund(No.WHUZZJJ202223)Open Fund of Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration(Wuhan University)(No.EMPI2023018)。
文摘The development of advanced materials and construction of multilayer structure contribute to enhancing the performance of protective coatings,further improving the industrial productivity and conserving energy.In this paper,the self-assembled high-entropy nitride(HEN)AlCrNbSiTiN multilayer coating was designed by harnessing the plasma distribution characteristics and depos-ited by arc ion plating using single target.
基金supported by the National Natural Science Foundation of China(52071191)Shandong University of Science and Technology(SDUST)Research Fund(2014TDJH104)the Science and Technology Innovation Fund of SDUST for graduate students(SDKDYC180371)。
文摘Magnesium(Mg)and its alloys are considered as ideal biodegradable materials due to their excellent mechanical properties and biocompatibility.In order to improve the surface properties to allow better adaptation to the surrounding tissue of the body,surface modification has played a significant role in satisfying multiple clinical requirements such as corrosion resistance,biocompatibility,and antibacterial ability.Here,layer-by-layer(LbL)self-assembly,which can be applied for biodegradable Mg alloys due to its extensive choice of usable units,holds great promise among all the surface techniques.In this review,the mechanisms of the driving force(i.e.,electrostatic interaction,hydrogen bonding,charge transfer interaction and covalent bonding),cuttingedge advances in preparation methods(e.g.,dipping,spraying,and spinning)and the functional properties(corrosion resistance,antibacterial activity,and biocompatibility)that could be achieved by the LbL coatings are summarized.A reasonable trend of the potential development of LbL for bioMg alloys is also proposed at the end of this article.
基金financially supported by the National Natural Science Foundation of China(No.52371049)the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(YESS,No.2020QNRC001)the National Science and Technology Resources Investigation Program of China(Nos.2021FY100603 and 2019FY101404)。
文摘The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.22008092,21822807 and 51803080)Postgraduate Research&Practice Innovation Program of Jiangsu Prov ince(KYCX19_1592)Science and Technology Planning Social Development Project of Zhenjiang City(SH2020003).
文摘Mimicry of nature drives the development of bionic materials.Bionic superhydrophobic materials are a kind of high-efficiency materials to handle oil spills and water pollution.However,the stability of surface coatings of the superhydrophobic materials remains a challenge.Herein,a new category of self-assembly bionic superhydrophobic surface coating was prepared via one-step condensation/copolymerization of vinyltriethoxysilane(VTES)and divinylbenzene(DVB),which realized the close combination of covalent bonds between organic(e.g.DVB)and inorganic matter(e.g.VTES),and avoided the swelling of polydivinylbenzene(PDVB)in the process of collection of oil from water.This organic-inorganic hybrid polymer could self-assembly deposit on the surface of sponge even other substrates.For example,P(VTES-DVB)-Si0_(2)/MS obtained by assembling P(VTES-DVB)-Si0_(2)on the surface of Melamine Sponge(MS)exhibited superhydrophobicity with a Water Contact Angle(WCA)of 157.3,the optimal adsorption capacity of 77 g g 136 g g-1 for diverse oils,and an excellent separation efficiency of 99.3%.Besides,the excellent acid and alkali resistance of P(VTES-DVB)-Si0_(2)/MS suggested the potential value in practical oil-water separation.P(VTES-DVB)-Si0_(2)showed the outstanding hydrophobic performance by using as coating on different substrates.This work provided a new idea about the stable combination of organic and inorganic matter in the surface modification.
基金National Natural Science Foundation of China(52071126)Natural Science Foundation of Tianjin City,China(22JCQNJC01240)+2 种基金Central Guidance on Local Science and Technology Development Fund of Hebei Province(226Z1009G)Special Funds for Science and Technology Innovation in Hebei(2022X19)Anhui Provincial Natural Science Foundation(2308085ME135)。
文摘Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,as well as the wear resistance of the coatings.Besides,the effect of changing the laser melting process on the coatings was also investigated.The oxidation mass gain at 800–1200℃and the high-temperature oxidation behavior during high-temperature treatment for 1 h of two coated Zr alloy samples were studied.Results show that the Co coating and the Co-T800 coating have better resistance against high-temperature oxidation.After oxidizing at 1000℃for 1 h,the thickness of the oxide layer of the uncoated sample was 241.0μm,whereas that of the sample with Co-based coating is only 11.8–35.5μm.The friction wear test shows that the depth of the abrasion mark of the coated sample is only 1/2 of that of the substrate,indicating that the hardness and wear resistance of the Zr substrate are greatly improved.The disadvantage of Co-based coatings is the inferior corrosion resistance in 3.5wt%NaCl solution.
基金supported by the National Key Re-search and Development Program of China(No.2022YFB4002100)the National Natural Science Foundation of China(No.52271136)the Natural Science Foundation of Shaanxi Province(Nos.2019TD-020 and 2021JC-06).
文摘Proton exchange membrane water electrolysis(PEMWE)is one of the most promising strategies to pro-duce green hydrogen energy,and it is crucial to exploit highly conductive and good corrosion-resistant coatings on bipolar plates(BPs),one of the core components in PEMWE cells.In this work,NbN coatings are deposited on Ti BPs by magnetron sputtering to improve the corrosion resistance and conductivity,for which the critical process parameters,such as the working pressure,partial nitrogen pressure and de-position temperature are well optimized.It is found that the compact microstructure,highly conductive δ-NbN and uniform nanoparticles play a dominant role in the synergistic improvement of the corrosion resistance and electrical conductivity of NbN coatings.The optimized NbN coatings exhibit excellent cor-rosion resistance with the low corrosion current density of 1.1×10^(-8) A cm^(-2),a high potential value of-0.005 V vs.SCE and a low ICR value of 15.8 mΩcm2@1.5 MPa.Accordingly,NbN coatings can be a promising candidate for the development of the low-cost and high-anti-corrosion Ti BPs of PEMWE.
基金financially supported by the National Natural Science Foundation of China(Nos.82072072,32171326 and 31800795)the International Cooperation Project by the Science and Technology Department of Sichuan Province(No.2021YFH0056)+1 种基金the Sichuan Science and Technology Program(No.2021JDRC0160)the High-level Talents Research and Development Program of Affiliated Dongguan Hospital(No.K202102)。
文摘Thrombosis is the major stumbling block to the clinical application of blood-contacting devices.Herein,a quick and easy surface engineering strategy of hydrogel coating with the therapeutic gas nitric oxide(NO)generation was reported to realize up-regulation of cyclic guanosine monophosphate(c GMP)and improve hemocompatibility for diverse metal materials.We first introduce the active centre selenocysteine of glutathione peroxidase(GPx)to the self-assembling peptide(RADA)4,obtaining a functionalized hydrogel.Then the hydrogel is directly coated on the 316L stainless steel(SS)for catalytically generating NO from endogenous s-nitrosothiols(RSNO).The generated NO endows the coated surface with regulation of platelet behavior and reduction of plasmatic coagulation activation and complement system activation,hence improving antithrombotic ability in vitro and ex vivo.Overall,our NO-generating hydrogel coating surface engineering strategy provides a novel solution to remove the obstacle about thrombosis of blood-contacting devices in clinic.
文摘The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.
基金supported by the National Key R&D Pro-gram of China(Grant No.2021YFA0715803)the National Natural Science Foundation of China(Grant Nos.52293373,52130205,and 52302091)+1 种基金the Joint Fund of Henan Province Science and Technol-ogy R&D Program(No.225200810002)the ND Basic Research Funds of Northwestern Polytechnical University(No.G2022WD).
文摘Multicomponent(Hf-Zr-Ta)B_(2)potentially provides improved ablation resistance compared with silicon-based ceramics.Here we deposited(Hf_(0.5-x/2)Zr_(0.5-x/2)Ta_(x))B_(2)(x=0,0.1,and 0.2)coatings onto C/C com-posites,and investigated their ablation behaviors under an oxyacetylene torch with a heat flux of 2.4 MW m^(-2).It was observed that the x=0.1 oxide scale bulged but was denser,and the x=0.2 oxide scale was blown away due to the formation of excessive liquid.Based on these findings,we further de-veloped a duplex(Hf-Zr-Ta)B_(2)coating that showed a linear recession rate close to zero(0.11μm s^(-1))after two 120-s ablation cycles.It is identified that the resulting oxide scale is mainly composed of(Hf,Zr)_(6)Ta_(2)O_(17)and(Hf,Zr,Ta)O_(2)by performing aberration-corrected(scanning)transmission electron microscopy.The protective mechanism is related to the peritectic transformation of orthorhombic-(Hf,Zr)_(6)Ta_(2)O_(17)to tetragonal-(Hf,Zr,Ta)O_(2)plus Ta-dominated liquid.This study contributes to the develop-ment of Ta-containing multicomponent UHTC bulk and coatings for ultra-high temperature applications.
基金supported by the National Natural Science Foundation of China(Nos.81873092,82174074)。
文摘The self-assembled nanoparticles(SAN)formed during the decoction process of traditional Chinese medicine(TCM)exhibit non-uniform particle sizes and a tendency for aggregation.Our group found that the p H-driven method can improve the self-assembly phenomenon of Herpetospermum caudigerum Wall.,and the SAN exhibited uniform particle size and demonstrated good stability.In this paper,we analyzed the interactions between the main active compound,herpetrione(Her),and its main carrier,Herpetospermum caudigerum Wall.polysaccharide(HCWP),along with their self-assembly mechanisms under different p H values.The binding constants of Her and HCWP increase with rising p H,leading to the formation of Her-HCWP SAN with a smaller particle size,higher zeta potential,and improved thermal stability.While the contributions of hydrogen bonding and electrostatic attraction to the formation of Her-HCWP SAN increase with rising p H,the hydrophobic force consistently plays a dominant role.This study enhances our scientific understanding of the self-assembly phenomenon of TCM improved by p H driven method.
基金support from the National Natural Science Foundation of China(NSFC)[No.52475464,52475463]National Natural Science Foundation of Jiangsu Province(No.BK20231442)+4 种基金the Fundamental Research Funds for the Central Universities(No.NS2024032)the International Joint Laboratory of Sustainable Manufacturing,Ministry of Education and the Fundamental Research Funds for the Central Universities(No.NG2024007)China Scholarship Council(No.202206830048)the Foundation of the Graduate Innovation Center,Nanjing University of Aeronautics and Astronautics(No.kfjj20200510)Funding for Outstanding Doctoral Dissertation in NUAA(No.BCXJ23-09)。
文摘Diamond coatings possess numerous excellent properties,making them desirable materials for high-performance surface applications.However,without a revolutionary surface modification method,the surface roughness and friction behavior of diamond coatings can impede their ability to meet the demanding requirements of advanced engineering surfaces.This study proposed the thermal stress control at coating interfaces and demonstrated a novel process of precise graphenization on conventional diamond coatings surface through laser induction and mechanical cleavage,without causing damage to the metal substrate.Through experiments and simulations,the influence mechanism of surface graphitization and interfacial thermal stress was elucidated,ultimately enabling rapid conversion of the diamond coating surface to graphene while controlling the coating’s thickness and roughness.Compared to the original diamond coatings,the obtained surfaces exhibited a 63%-72%reduction in friction coefficients,all of which were below 0.1,with a minimum of 0.06,and a 59%-67%decrease in specific wear rates.Moreover,adhesive wear in the friction counterpart was significantly inhibited,resulting in a reduction in wear by 49%-83%.This demonstrated a significant improvement in lubrication and inhibition of mechanochemical wear properties.This study provides an effective and cost-efficient avenue to overcome the application bottleneck of engineered diamond surfaces,with the potential to significantly enhance the performance and expand the application range of diamond-coated components.