Affine projection algorithm(APA)has been used to estimate the parameters of interior permanent magnet synchronous motor(IPMSM).However,there is not a strict guideline of choosing the stepsize of this algorithm to make...Affine projection algorithm(APA)has been used to estimate the parameters of interior permanent magnet synchronous motor(IPMSM).However,there is not a strict guideline of choosing the stepsize of this algorithm to make sure that the results of parameter estimation are convergent.In order to solve such problem,self-adaptive stepsize affine projection algorithm for parameter estimation of IPMSM is proposed in this paper.Compared with traditional affine projection algorithm,this method can obtain the stepsize automatically based on the operation condition,which can ensure the convergence and celerity of the process of parameter estimation.Then,on the basis of self-adaptive stepsize affine projection algorithm,a novel parameter estimation method based on square-wave current injection is proposed.By this method,the error of estimated parameter caused by stator resistance,linkage magnetic flux and dead-time voltage can be reduced effectively.Finally,the proposed parameter estimation method is verified by experiments on a 2.2-kW IPMSM drive platform.展开更多
Octopuses,due to their flexible arms,marvelous adaptability,and powerful suckers,are able to effortlessly grasp and disengage various objects in the marine surrounding without causing devastation.However,manipulating ...Octopuses,due to their flexible arms,marvelous adaptability,and powerful suckers,are able to effortlessly grasp and disengage various objects in the marine surrounding without causing devastation.However,manipulating delicate objects such as soft and fragile foods underwater require gentle contact and stable adhesion,which poses a serious challenge to now available soft grippers.Inspired by the sucker infundibulum structure and flexible tentacles of octopus,herein we developed a hydraulically actuated hydrogel soft gripper with adaptive maneuverability by coupling multiple hydrogen bond-mediated supramolecular hydrogels and vat polymerization three-dimensional printing,in which hydrogel bionic sucker is composed of a tunable curvature membrane,a negative pressure cavity,and a pneumatic chamber.The design of the sucker structure with the alterable curvature membrane is conducive to realize the reliable and gentle switchable adhesion of the hydrogel soft gripper.As a proof-of-concept,the adaptive hydrogel soft gripper is capable of implement diversified underwater tasks,including gingerly grasping fragile foods like egg yolks and tofu,as well as underwater robots and vehicles that station-keeping and crawling based on switchable adhesion.This study therefore provides a transformative strategy for the design of novel soft grippers that will render promising utilities for underwater exploration soft robotics.展开更多
Solid lubricating coatings play a crucial role in preventing friction and wear failure of the hot-end sliding components in aviation engines.In this study,VAlN/Ag multi-layer coatings with excellent interfacial matchi...Solid lubricating coatings play a crucial role in preventing friction and wear failure of the hot-end sliding components in aviation engines.In this study,VAlN/Ag multi-layer coatings with excellent interfacial matching were fabricated using a hybrid magnetron sputtering technique.The type and energy of discharge plasmas were analyzed to comprehend their effects on depositing coatings.The coatings exhibit self-adaptive lubrication properties during the designed consecutive friction with stepwise heating from 25℃to 650℃.The microstructure evolution during early friction facilitates sufficient tribo-chemical reaction at 650℃,leading to the formation of a distinctive"ball-on-rail"structure that significantly reduces friction coefficient.Based on the first-principles calculations,it was found that the bond energy of Ag-O is lower than that of V-O in both AgVO_(3)and Ag_(3)VO_(4),which promotes slipping along the(110)crystal plane and contributes to exceptional tribological properties.The fatigue wear failure mechanism of hard coatings under the thermal-force coupling effects has been elucidated,alongside an exploration of consecutive tribology mechanism at atomic scales over a wide temperature range.展开更多
Gecko-inspired van der Waals force-based adhesion technology demonstrates significant potential for robotic operations.While superior adhesion is achieved under parallel contact during testing,engineering operations o...Gecko-inspired van der Waals force-based adhesion technology demonstrates significant potential for robotic operations.While superior adhesion is achieved under parallel contact during testing,engineering operations often involve non-parallel contact,weakening adhesion,and compromising task stability and efficiency.Stable attachment under such non-parallel contacts remains challenging.Inspired by the soft muscle and rigid bone in the gecko’s sole,this study proposes a self-adaptive core-shell dry adhesive by embedding a thin,rigid piece into a soft,thick elastomer comprising a top adhesion tip with a mushroom-like geometry for interfacial adhesion based on the van der Waals force and a bottom core-shell configuration for interface stress regulation.Unlike traditional core-shell structures with a fixed“dead core,”the proposed“live core”rotates within the soft shell,mimicking skeletal joints.This enables stress equalization at the interface and facilitates adaptive contact to macroscopic interfacial angle errors.This innovative core-shell configuration demonstrates an adhesion strength 100 times higher than conventional homogeneous structures under non-parallel contact and offers anti-overturning ability by mitigating torsional effects.The proposed strategy can advance the development of gecko-inspired adhesion-based devices and systems.展开更多
Upgrading of abundant cellulosic biomass to isosorbide can reduce the dependence on limited fossil resources and provide a sustainable way to produce isosorbide,utilized for polymers,medicine and health care product s...Upgrading of abundant cellulosic biomass to isosorbide can reduce the dependence on limited fossil resources and provide a sustainable way to produce isosorbide,utilized for polymers,medicine and health care product synth-esis.This review comprehensively examines the key steps and catalytic systems involved in the conversion of cel-lulose to isosorbide.Initially,the reaction pathway from cellulose to isosorbide is elucidated,emphasizing three critical steps:cellulose hydrolysis,glucose hydrogenation,and the two-step dehydration of sorbitol to produce isosorbide.Additionally,the activation energy and acidic sites during cellulose hydrolysis,the impact of metal particle size and catalyst support on hydrogenation,and the effects of catalyst acidity,pore structure,and reaction conditions on sorbitol dehydration have been thoroughly examined.Finally,the progress made in cellulose con-version to isosorbide is summarized,current challenges are highlighted,and future development trends are pro-jected in this review.展开更多
Most of the carbonate formation are highly heterogeneous with cavities of different sizes, which makes the prediction of cavity-filled reservoir in carbonate rocks difficult. Large cavities in carbonate formations pos...Most of the carbonate formation are highly heterogeneous with cavities of different sizes, which makes the prediction of cavity-filled reservoir in carbonate rocks difficult. Large cavities in carbonate formations pose serious threat to drilling operations. Logging-whiledrilling (LWD) is currently used to accurately identify and evaluate cavities in reservoirs during drilling. In this study, we use the self-adaptive hp-FEM algorithm simulate and calculate the LWD resistivity responses of fracture-cavity reservoir cavities. Compared with the traditional h-FEM method, the self-adaptive hp-FEM algorithm has the characteristics of the self-adaptive mesh refinement and the calculations exponentially converge to highly accurate solutions. Using numerical simulations, we investigated the effect of the cavity size, distance between cavity and borehole, and transmitted frequency on the LWD resistivity response. Based on the results, a method for recognizing cavities is proposed. This research can provide the theoretical basis for the accurate identification and quantitative evaluation of various carbonate reservoirs with cavities encountered in practice.展开更多
Effective guidance is one of the most important tasks to the performance of air-to-air missile. The fuzzy logic controller is able to perform effectively even in situations where the information about the plant is ina...Effective guidance is one of the most important tasks to the performance of air-to-air missile. The fuzzy logic controller is able to perform effectively even in situations where the information about the plant is inaccurate and the operating conditions are uncertain. Based on the proportional navigation, the fuzzy logic and the genetic algorithm are combined to develop an evolutionary fuzzy navigation law with self-adapt region for the air-to-air missile guidance. The line of sight (LOS) rate and the closing speed between the missile and the target are inputs of the fuzzy controller. The output of the fuzzy controller is the commanded acceleration. Then a nonlinear function based on the conventional fuzzy logic control is imported to change the region. This nonlinear function can be changed with the input variables. So the dynamic change of the fuzzy variable region is achieved. The guidance law is optimized by the genetic algorithm. Simulation results of air-to-air missile attack using MATLAB show that the method needs less acceleration and shorter flying time, and its realization is simple.[KH*3/4D]展开更多
Future manufacturing systems need to cope with frequent changes and disturbances, therefore their control architectures require constant adaptability, agility, stability, self-organization, intelligence, and robustnes...Future manufacturing systems need to cope with frequent changes and disturbances, therefore their control architectures require constant adaptability, agility, stability, self-organization, intelligence, and robustness. Bio-inspired manufacturing system can well satisfy these requirements. For this purpose, by referencing the biological organization structure and the mechanism, a bio-inspired manufacturing cell is presented from a novel view, and then a bio-inspired self-adaptive manufacturing model is established based on the ultra-short feedback mechanism of the neuro-endocrine system. A hio-inspired self-adaptive manufacturing system coordinated model is also established based on the neuro-endocrine-immunity system (NEIS). Finally, an example based on pheromone communication mechanism indicates that the robustness of the whole manufacturing system is improved by bio-inspired technologies.展开更多
文摘Affine projection algorithm(APA)has been used to estimate the parameters of interior permanent magnet synchronous motor(IPMSM).However,there is not a strict guideline of choosing the stepsize of this algorithm to make sure that the results of parameter estimation are convergent.In order to solve such problem,self-adaptive stepsize affine projection algorithm for parameter estimation of IPMSM is proposed in this paper.Compared with traditional affine projection algorithm,this method can obtain the stepsize automatically based on the operation condition,which can ensure the convergence and celerity of the process of parameter estimation.Then,on the basis of self-adaptive stepsize affine projection algorithm,a novel parameter estimation method based on square-wave current injection is proposed.By this method,the error of estimated parameter caused by stator resistance,linkage magnetic flux and dead-time voltage can be reduced effectively.Finally,the proposed parameter estimation method is verified by experiments on a 2.2-kW IPMSM drive platform.
基金the financial support from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0470303)the National Key Research and Development Program of China (2022YFB4600101)+5 种基金the National Natural Science Foundation of China (52175201)the Research Program of Science and Technology Department of Gansu Province (24JRRA059, 24JRRA044, and 24YFFA014)the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai (AMGM2024F12)the Major Program (ZYFZFX-2) of the Lanzhou Institute of Chemical Physics, CASthe Special Research Assistant Project of the Chinese Academy of Sciencesthe Oasis Scholar of Shihezi University
文摘Octopuses,due to their flexible arms,marvelous adaptability,and powerful suckers,are able to effortlessly grasp and disengage various objects in the marine surrounding without causing devastation.However,manipulating delicate objects such as soft and fragile foods underwater require gentle contact and stable adhesion,which poses a serious challenge to now available soft grippers.Inspired by the sucker infundibulum structure and flexible tentacles of octopus,herein we developed a hydraulically actuated hydrogel soft gripper with adaptive maneuverability by coupling multiple hydrogen bond-mediated supramolecular hydrogels and vat polymerization three-dimensional printing,in which hydrogel bionic sucker is composed of a tunable curvature membrane,a negative pressure cavity,and a pneumatic chamber.The design of the sucker structure with the alterable curvature membrane is conducive to realize the reliable and gentle switchable adhesion of the hydrogel soft gripper.As a proof-of-concept,the adaptive hydrogel soft gripper is capable of implement diversified underwater tasks,including gingerly grasping fragile foods like egg yolks and tofu,as well as underwater robots and vehicles that station-keeping and crawling based on switchable adhesion.This study therefore provides a transformative strategy for the design of novel soft grippers that will render promising utilities for underwater exploration soft robotics.
基金supported by the National Natural Science Foundation of China(No.52025014)Natural Science Foundation of Zhejiang Province(No.LQ23E010002)+1 种基金Natural Science Foundation of Ningbo(No.2023QL049)Major Special Project of Ningbo(No.2023Z022).
文摘Solid lubricating coatings play a crucial role in preventing friction and wear failure of the hot-end sliding components in aviation engines.In this study,VAlN/Ag multi-layer coatings with excellent interfacial matching were fabricated using a hybrid magnetron sputtering technique.The type and energy of discharge plasmas were analyzed to comprehend their effects on depositing coatings.The coatings exhibit self-adaptive lubrication properties during the designed consecutive friction with stepwise heating from 25℃to 650℃.The microstructure evolution during early friction facilitates sufficient tribo-chemical reaction at 650℃,leading to the formation of a distinctive"ball-on-rail"structure that significantly reduces friction coefficient.Based on the first-principles calculations,it was found that the bond energy of Ag-O is lower than that of V-O in both AgVO_(3)and Ag_(3)VO_(4),which promotes slipping along the(110)crystal plane and contributes to exceptional tribological properties.The fatigue wear failure mechanism of hard coatings under the thermal-force coupling effects has been elucidated,alongside an exploration of consecutive tribology mechanism at atomic scales over a wide temperature range.
基金supported by the National Natural Science Foundation(52025055,52175546,and 52405624)the Shaanxi University Youth Innovation Team.
文摘Gecko-inspired van der Waals force-based adhesion technology demonstrates significant potential for robotic operations.While superior adhesion is achieved under parallel contact during testing,engineering operations often involve non-parallel contact,weakening adhesion,and compromising task stability and efficiency.Stable attachment under such non-parallel contacts remains challenging.Inspired by the soft muscle and rigid bone in the gecko’s sole,this study proposes a self-adaptive core-shell dry adhesive by embedding a thin,rigid piece into a soft,thick elastomer comprising a top adhesion tip with a mushroom-like geometry for interfacial adhesion based on the van der Waals force and a bottom core-shell configuration for interface stress regulation.Unlike traditional core-shell structures with a fixed“dead core,”the proposed“live core”rotates within the soft shell,mimicking skeletal joints.This enables stress equalization at the interface and facilitates adaptive contact to macroscopic interfacial angle errors.This innovative core-shell configuration demonstrates an adhesion strength 100 times higher than conventional homogeneous structures under non-parallel contact and offers anti-overturning ability by mitigating torsional effects.The proposed strategy can advance the development of gecko-inspired adhesion-based devices and systems.
文摘Upgrading of abundant cellulosic biomass to isosorbide can reduce the dependence on limited fossil resources and provide a sustainable way to produce isosorbide,utilized for polymers,medicine and health care product synth-esis.This review comprehensively examines the key steps and catalytic systems involved in the conversion of cel-lulose to isosorbide.Initially,the reaction pathway from cellulose to isosorbide is elucidated,emphasizing three critical steps:cellulose hydrolysis,glucose hydrogenation,and the two-step dehydration of sorbitol to produce isosorbide.Additionally,the activation energy and acidic sites during cellulose hydrolysis,the impact of metal particle size and catalyst support on hydrogenation,and the effects of catalyst acidity,pore structure,and reaction conditions on sorbitol dehydration have been thoroughly examined.Finally,the progress made in cellulose con-version to isosorbide is summarized,current challenges are highlighted,and future development trends are pro-jected in this review.
基金supported by the National Natural Science Foundation of China(No. 41074099)
文摘Most of the carbonate formation are highly heterogeneous with cavities of different sizes, which makes the prediction of cavity-filled reservoir in carbonate rocks difficult. Large cavities in carbonate formations pose serious threat to drilling operations. Logging-whiledrilling (LWD) is currently used to accurately identify and evaluate cavities in reservoirs during drilling. In this study, we use the self-adaptive hp-FEM algorithm simulate and calculate the LWD resistivity responses of fracture-cavity reservoir cavities. Compared with the traditional h-FEM method, the self-adaptive hp-FEM algorithm has the characteristics of the self-adaptive mesh refinement and the calculations exponentially converge to highly accurate solutions. Using numerical simulations, we investigated the effect of the cavity size, distance between cavity and borehole, and transmitted frequency on the LWD resistivity response. Based on the results, a method for recognizing cavities is proposed. This research can provide the theoretical basis for the accurate identification and quantitative evaluation of various carbonate reservoirs with cavities encountered in practice.
文摘Effective guidance is one of the most important tasks to the performance of air-to-air missile. The fuzzy logic controller is able to perform effectively even in situations where the information about the plant is inaccurate and the operating conditions are uncertain. Based on the proportional navigation, the fuzzy logic and the genetic algorithm are combined to develop an evolutionary fuzzy navigation law with self-adapt region for the air-to-air missile guidance. The line of sight (LOS) rate and the closing speed between the missile and the target are inputs of the fuzzy controller. The output of the fuzzy controller is the commanded acceleration. Then a nonlinear function based on the conventional fuzzy logic control is imported to change the region. This nonlinear function can be changed with the input variables. So the dynamic change of the fuzzy variable region is achieved. The guidance law is optimized by the genetic algorithm. Simulation results of air-to-air missile attack using MATLAB show that the method needs less acceleration and shorter flying time, and its realization is simple.[KH*3/4D]
基金Supported by the National Natural Science Foundation of China (50505017)Fok Ying Tung Edu-cation Foundation (111056)+1 种基金the Innovative and Excellent Foundation for Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics (BCXJ08-07)the New Century Excellent Talents in University,China (NCET-08)~~
文摘Future manufacturing systems need to cope with frequent changes and disturbances, therefore their control architectures require constant adaptability, agility, stability, self-organization, intelligence, and robustness. Bio-inspired manufacturing system can well satisfy these requirements. For this purpose, by referencing the biological organization structure and the mechanism, a bio-inspired manufacturing cell is presented from a novel view, and then a bio-inspired self-adaptive manufacturing model is established based on the ultra-short feedback mechanism of the neuro-endocrine system. A hio-inspired self-adaptive manufacturing system coordinated model is also established based on the neuro-endocrine-immunity system (NEIS). Finally, an example based on pheromone communication mechanism indicates that the robustness of the whole manufacturing system is improved by bio-inspired technologies.