期刊文献+
共找到56,091篇文章
< 1 2 250 >
每页显示 20 50 100
Generalized Self-Adaptive Genetic Algorithms
1
作者 Bin Wu Xuyan Tu +1 位作者 Jian Wu Information Engineering School, University of Science and Technology Beijing, Beijing 100083, China Department of Information and Control Engineering, Southwest Institute of Technology, Mianyang 621002, China 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2000年第1期72-75,共4页
In order to solve the problem between searching performance and convergence of genetic algorithms, a fast genetic algorithm generalized self-adaptive genetic algorithm (GSAGA) is presented. (1) Evenly distributed init... In order to solve the problem between searching performance and convergence of genetic algorithms, a fast genetic algorithm generalized self-adaptive genetic algorithm (GSAGA) is presented. (1) Evenly distributed initial population is generated. (2) Superior individuals are not broken because of crossover and mutation operation for they are sent to subgeneration directly. (3) High quality im- migrants are introduced according to the condition of the population schema. (4) Crossover and mutation are operated on self-adaptation. Therefore, GSAGA solves the coordination problem between convergence and searching performance. In GSAGA, the searching per- formance and global convergence are greatly improved compared with many existing genetic algorithms. Through simulation, the val- idity of this modified genetic algorithm is proved. 展开更多
关键词 generalized self-adaptive genetic algorithm initial population IMMIGRATION fitness function
在线阅读 下载PDF
Self-adaptive PID controller of microwave drying rotary device tuning on-line by genetic algorithms 被引量:6
2
作者 杨彪 梁贵安 +5 位作者 彭金辉 郭胜惠 李玮 张世敏 李英伟 白松 《Journal of Central South University》 SCIE EI CAS 2013年第10期2685-2692,共8页
The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and wi... The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design. 展开更多
关键词 industrial microwave DRYING ROTARY device self-adaptive PID controller genetic algorithm ON-LINE tuning SELENIUM-ENRICHED SLAG
在线阅读 下载PDF
Undrained uplift capacity prediction of open-caisson anchors in anisotropic clays using XGBoost integrated with mutation-based genetic algorithms
3
作者 Rungroad Suppakul Wittaya Jitchaijaroen +2 位作者 Suraparb Keawsawasvong Sutasinee Intui Shinya Inazumi 《Artificial Intelligence in Geosciences》 2025年第2期467-480,共14页
This study evaluates the undrained uplift capacity of open-caisson anchors embedded in anisotropic clay using Finite Element Limit Analysis(FELA)and a hybrid machine learning framework.The FELA simulations inves-tigat... This study evaluates the undrained uplift capacity of open-caisson anchors embedded in anisotropic clay using Finite Element Limit Analysis(FELA)and a hybrid machine learning framework.The FELA simulations inves-tigate the influence of the radius ratio(R/B),anisotropic ratio(re),interface roughness factor(α),and inclination angle(β).Specifically,the results reveal that increasingβsignificantly enhances Nc,especially as soil behavior approaches isotropy.Higherαimproves resistance at steeper inclinations by mobilizing greater interface shear.Nc increases with re,reflecting enhanced strength under isotropic conditions.To enhance predictive accuracy and generalization,a hybrid machine learning model was developed by integrating Extreme Gradient Boosting(XGBoost)with Genetic Algorithm(GA)and Mutation-Based Genetic Algorithm(MGA)for hyperparameter tuning.Among the models,MGA-XGBoost outperformed GA-XGBoost,achieving higher predictive accuracy(R^(2)=0.996 training,0.993 testing).Furthermore,SHAP analysis consistently identified anisotropic ratio(re)as the most influential factor in predicting uplift capacity,followed by interface roughness factor(α),inclination angle(β),and radius ratio(R/B).The proposed framework serves as a scalable decision-support tool adaptable to various soil types and foundation geometries,offering a more efficient and data-driven approach to uplift-resistant design in anisotropic cohesive soils. 展开更多
关键词 Open-caisson anchor Mutation-based genetic algorithms genetic algorithms XGBoost FELA
在线阅读 下载PDF
Fuzzy Logic Based Evaluation of Hybrid Termination Criteria in the Genetic Algorithms for the Wind Farm Layout Design Problem
4
作者 Salman A.Khan Mohamed Mohandes +2 位作者 Shafiqur Rehman Ali Al-Shaikhi Kashif Iqbal 《Computers, Materials & Continua》 2025年第7期553-581,共29页
Wind energy has emerged as a potential replacement for fossil fuel-based energy sources.To harness maximum wind energy,a crucial decision in the development of an efficient wind farm is the optimal layout design.This ... Wind energy has emerged as a potential replacement for fossil fuel-based energy sources.To harness maximum wind energy,a crucial decision in the development of an efficient wind farm is the optimal layout design.This layout defines the specific locations of the turbines within the wind farm.The process of finding the optimal locations of turbines,in the presence of various technical and technological constraints,makes the wind farm layout design problem a complex optimization problem.This problem has traditionally been solved with nature-inspired algorithms with promising results.The performance and convergence of nature-inspired algorithms depend on several parameters,among which the algorithm termination criterion plays a crucial role.Timely convergence is an important aspect of efficient algorithm design because an inefficient algorithm results in wasted computational resources,unwarranted electricity consumption,and hardware stress.This study provides an in-depth analysis of several termination criteria while using the genetic algorithm as a test bench,with its application to the wind farm layout design problem while considering various wind scenarios.The performance of six termination criteria is empirically evaluated with respect to the quality of solutions produced and the execution time involved.Due to the conflicting nature of these two attributes,fuzzy logic-based multi-attribute decision-making is employed in the decision process.Results for the fuzzy decision approach indicate that among the various criteria tested,the criterion Phi achieves an improvement in the range of 2.44%to 32.93%for wind scenario 1.For scenario 2,Best-worst termination criterion performed well compared to the other criteria evaluated,with an improvement in the range of 1.2%to 9.64%.For scenario 3,Hitting bound was the best performer with an improvement of 1.16%to 20.93%. 展开更多
关键词 Wind energy wind farm layout design performance evaluation genetic algorithms fuzzy logic multi-attribute decision-making
在线阅读 下载PDF
Modified Self-adaptive Immune Genetic Algorithm for Optimization of Combustion Side Reaction of p-Xylene Oxidation 被引量:1
5
作者 陶莉莉 孔祥东 +1 位作者 钟伟民 钱锋 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1047-1052,共6页
In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation fa... In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation factor suffers from the problem of premature convergence. In this study, a modified self-adaptive immune genetic algorithm (MSIGA) with two memory bases, in which immune concepts are applied to determine the mutation parameters, is proposed to improve the searching ability of the algorithm and maintain population diversity. Performance comparisons with other well-known population-based iterative algorithms show that the proposed method converges quickly to the global optimum and overcomes premature problem. This algorithm is applied to optimize a feed forward neural network to measure the content of products in the combustion side reaction of p-xylene oxidation, and satisfactory results are obtained. 展开更多
关键词 self-adaptive immune genetic algorithm artificial neural network measurement p-xylene oxidation process
在线阅读 下载PDF
Self-adaptive Bat Algorithm With Genetic Operations 被引量:5
6
作者 Jing Bi Haitao Yuan +2 位作者 Jiahui Zhai MengChu Zhou H.Vincent Poor 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第7期1284-1294,共11页
Swarm intelligence in a bat algorithm(BA)provides social learning.Genetic operations for reproducing individuals in a genetic algorithm(GA)offer global search ability in solving complex optimization problems.Their int... Swarm intelligence in a bat algorithm(BA)provides social learning.Genetic operations for reproducing individuals in a genetic algorithm(GA)offer global search ability in solving complex optimization problems.Their integration provides an opportunity for improved search performance.However,existing studies adopt only one genetic operation of GA,or design hybrid algorithms that divide the overall population into multiple subpopulations that evolve in parallel with limited interactions only.Differing from them,this work proposes an improved self-adaptive bat algorithm with genetic operations(SBAGO)where GA and BA are combined in a highly integrated way.Specifically,SBAGO performs their genetic operations of GA on previous search information of BA solutions to produce new exemplars that are of high-diversity and high-quality.Guided by these exemplars,SBAGO improves both BA’s efficiency and global search capability.We evaluate this approach by using 29 widely-adopted problems from four test suites.SBAGO is also evaluated by a real-life optimization problem in mobile edge computing systems.Experimental results show that SBAGO outperforms its widely-used and recently proposed peers in terms of effectiveness,search accuracy,local optima avoidance,and robustness. 展开更多
关键词 Bat algorithm(BA) genetic algorithm(GA) hybrid algorithm learning mechanism meta-heuristic optimization algorithms
在线阅读 下载PDF
Multisensor Fuzzy Stochastic Fusion Based on Genetic Algorithms 被引量:3
7
作者 胡昌振 谭惠民 《Journal of Beijing Institute of Technology》 EI CAS 2000年第1期49-54,共6页
To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the ... To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the fusion parameter coding, initial population and fitness function establishing, and fuzzy logic controller designing for genetic operations and probability choosing were completed. The discussion on the highly dimensional fusion was given. For a moving target with the division of 1 64 (velocity) and 1 75 (acceleration), the precision of fusion is 0 94 and 0 98 respectively. The fusion approach can improve the reliability and decision precision effectively. 展开更多
关键词 MULTISENSOR data fusion fuzzy random genetic algorithm
在线阅读 下载PDF
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
8
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 Artificial neural network genetic algorithms Back propagation model (BP model) OPTIMIZATION
在线阅读 下载PDF
A Self-Adaptive Quantum Genetic Algorithm for Network Flow Vehicle Scheduling Problem
9
作者 Aimei Xiao 《Journal of Computer and Communications》 2021年第7期43-54,共12页
Bicycle sharing scheduling is a complex mathematical optimization problem, and it is challenging to design a general algorithm to solve it well due to the uncertainty of its influencing factors. This paper creatively ... Bicycle sharing scheduling is a complex mathematical optimization problem, and it is challenging to design a general algorithm to solve it well due to the uncertainty of its influencing factors. This paper creatively establishes a new mathematical model to determine the appropriate number of vehicles to be placed at each placement point by calculating the traffic weights of the placement points and optimizes the hyperparameters in the algorithm by adaptive quantum genetic algorithm, and at the same time combines the network flow algorithm in graph theory to calculate the most suitable scheduling scheme for shared bicycles by establishing the minimum cost maximum flow network. Through experimental validation, the network flow-based algorithm proposed in this paper allows for a more convenient calculation of the daily bike-sharing scheduling scheme compared to previous algorithms. An adaptive quantum genetic algorithm optimizes the hyperparameters appearing in the algorithm. The experimental results show that the algorithm achieves good results as the transportation cost is only 1/15th of the GA algorithm and 1/9th of the QGA algorithm. 展开更多
关键词 Network Coding Quantum genetic algorithm Multicast Networks OPTIMIZATION
在线阅读 下载PDF
DENSE DISPARITY MAP ESTIMATION USING GENETIC ALGORITHMS 被引量:1
10
作者 王彪 沈春林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第2期184-191,共8页
An approach to addressing the stereo correspondence problem is presented using genetic algorithms (GAs) to obtain a dense disparity map. Different from previous methods, this approach casts the stereo matching as a mu... An approach to addressing the stereo correspondence problem is presented using genetic algorithms (GAs) to obtain a dense disparity map. Different from previous methods, this approach casts the stereo matching as a multi-extrema optimization problem such that finding the fittest solution from a set of potential disparity maps. Among a wide variety of optimization techniques, GAs are proven to be potentially effective methods for the global optimization problems with large search space. With this idea, each disparity map is viewed as an individual and the disparity values are encoded as chromosomes, so each individual has lots of chromosomes in the approach. Then, several matching constraints are formulated into an objective function, and GAs are used to search the global optimal solution for the problem. Furthermore, the coarse-to-fine strategy has been embedded in the approach so as to reduce the matching ambiguity and the time consumption. Finally, experimental results on synthetic and real images show the performance of the work. 展开更多
关键词 stereo correspondence disparity map genetic algorithms coarse-to-fine strategy
在线阅读 下载PDF
APPROXIMATION TECHNIQUES FOR APPLICATION OF GENETIC ALGORITHMS TO STRUCTURAL OPTIMIZATION 被引量:1
11
作者 金海波 丁运亮 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第2期147-154,共8页
Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex str... Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model. 展开更多
关键词 approximation techniques segment approximation model genetic algorithms structural optimization sensitivity analysis
在线阅读 下载PDF
Optimization of Linear Antenna Arrays Based on Genetic Algorithms
12
作者 王宏建 高本庆 刘瑞祥 《Journal of Beijing Institute of Technology》 EI CAS 2002年第2期180-183,共4页
The methods of moment and genetic algorithm (GA) are combined to optimize the Yagi Uda antenna array and Log periodic dipole antenna (LPDA) array. The element lengths and spacing are optimized for the Yagi Uda arra... The methods of moment and genetic algorithm (GA) are combined to optimize the Yagi Uda antenna array and Log periodic dipole antenna (LPDA) array. The element lengths and spacing are optimized for the Yagi Uda array; while the ratio factor of spacing to length as well as the ratio of length to diameter of the elements are optimized for LPDA array. The results show that the main parameters, such as gain and pattern, have been improved apparently; and the high back lobe level of LPDA can be reduced greatly, therefore, GA is a very competent method for optimizing the linear array as well as in other fields. 展开更多
关键词 GAIN front to back ratio genetic algorithm OPTIMIZATION Yagi Uda antenna Log periodic dipole antenna
在线阅读 下载PDF
A Genetic Algorithm Approach for Location-Specific Calibration of Rainfed Maize Cropping in the Context of Smallholder Farming in West Africa
13
作者 Moussa Waongo Patrick Laux +2 位作者 Jan Bliefernicht Amadou Coulibaly Seydou B. Traore 《Agricultural Sciences》 2025年第1期89-111,共23页
Smallholder farming in West Africa faces various challenges, such as limited access to seeds, fertilizers, modern mechanization, and agricultural climate services. Crop productivity obtained under these conditions var... Smallholder farming in West Africa faces various challenges, such as limited access to seeds, fertilizers, modern mechanization, and agricultural climate services. Crop productivity obtained under these conditions varies significantly from one farmer to another, making it challenging to accurately estimate crop production through crop models. This limitation has implications for the reliability of using crop models as agricultural decision-making support tools. To support decision making in agriculture, an approach combining a genetic algorithm (GA) with the crop model AquaCrop is proposed for a location-specific calibration of maize cropping. In this approach, AquaCrop is used to simulate maize crop yield while the GA is used to derive optimal parameters set at grid cell resolution from various combinations of cultivar parameters and crop management in the process of crop and management options calibration. Statistics on pairwise simulated and observed yields indicate that the coefficient of determination varies from 0.20 to 0.65, with a yield deviation ranging from 8% to 36% across Burkina Faso (BF). An analysis of the optimal parameter sets shows that regardless of the climatic zone, a base temperature of 10˚C and an upper temperature of 32˚C is observed in at least 50% of grid cells. The growing season length and the harvest index vary significantly across BF, with the highest values found in the Soudanian zone and the lowest values in the Sahelian zone. Regarding management strategies, the fertility mean rate is approximately 35%, 39%, and 49% for the Sahelian, Soudano-sahelian, and Soudanian zones, respectively. The mean weed cover is around 36%, with the Sahelian and Soudano-sahelian zones showing the highest variability. The proposed approach can be an alternative to the conventional one-size-fits-all approach commonly used for regional crop modeling. Moreover, it has the potential to explore the performance of cropping strategies to adapt to changing climate conditions. 展开更多
关键词 Smallholder Farming AquaCrop genetics algorithm Optimization MAIZE Burkina Faso
在线阅读 下载PDF
Optimal Planning of Multiple PV-DG in Radial Distribution Systems Using Loss Sensitivity Analysis and Genetic Algorithm
14
作者 A. Elkholy 《Journal of Power and Energy Engineering》 2025年第2期1-22,共22页
This paper introduces an optimized planning approach for integrating photovoltaic as distributed generation (PV-DG) into the radial distribution power systems, utilizing exhaustive load flow (ELF), loss sensitivity fa... This paper introduces an optimized planning approach for integrating photovoltaic as distributed generation (PV-DG) into the radial distribution power systems, utilizing exhaustive load flow (ELF), loss sensitivity factor (LSF), genetic algorithms (GA) methods, and numerical method based on LSF. The methodology aims to determine the optimal allocation and sizing of multiple PV-DG to minimize power loss through time series power flow analysis. An approach utilizing continuous sensitivity analysis is developed and inherently leverages power flow and loss equations to compute LSF of all buses in the system towards employing a dynamic PV-DG model for more accurate results. The algorithm uses a numerical grid search method to optimize PV-DG placement in a power distribution system, focusing on minimizing system losses. It combines iterative analysis, sensitivity assessment, and comprehensive visualization to identify and present the optimal PV-DG configurations. The present-ed algorithms are verified through co-simulation framework combining MATLAB and OpenDSS to carry out analysis for 12-bus radial distribution test system. The proposed numerical method is compared with other algorithms, such as ELF, LSF methods, and Genetic Algorithms (GA). Results show that the proposed numerical method performs well in comparison with LSF and ELF solutions. 展开更多
关键词 Photovoltaic Systems Distributed Generation Multiple Allocation and Sizing Power Losses Radial Distribution System genetic algorithm
在线阅读 下载PDF
Probabilistic Assessment of PV-DG for Optimal Multi-Locations and Sizing Using Genetic Algorithm and Sequential-Time Power Flow
15
作者 A. Elkholy 《Journal of Power and Energy Engineering》 2025年第2期23-42,共20页
This paper presents an optimized strategy for multiple integrations of photovoltaic distributed generation (PV-DG) within radial distribution power systems. The proposed methodology focuses on identifying the optimal ... This paper presents an optimized strategy for multiple integrations of photovoltaic distributed generation (PV-DG) within radial distribution power systems. The proposed methodology focuses on identifying the optimal allocation and sizing of multiple PV-DG units to minimize power losses using a probabilistic PV model and time-series power flow analysis. Addressing the uncertainties in PV output due to weather variability and diurnal cycles is critical. A probabilistic assessment offers a more robust analysis of DG integration’s impact on the grid, potentially leading to more reliable system planning. The presented approach employs a genetic algorithm (GA) and a determined PV output profile and probabilistic PV generation profile based on experimental measurements for one year of solar radiation in Cairo, Egypt. The proposed algorithms are validated using a co-simulation framework that integrates MATLAB and OpenDSS, enabling analysis on a 33-bus test system. This framework can act as a guideline for creating other co-simulation algorithms to enhance computing platforms for contemporary modern distribution systems within smart grids concept. The paper presents comparisons with previous research studies and various interesting findings such as the considered hours for developing the probabilistic model presents different results. 展开更多
关键词 Photovoltaic Distributed Generation PROBABILITY genetic algorithm Radial Distribution Systems Time Series Power Flow
在线阅读 下载PDF
An Asynchronous Genetic Algorithm for Multi-agent Path Planning Inspired by Biomimicry
16
作者 Bin Liu Shikai Jin +3 位作者 Yuzhu Li Zhuo Wang Donglai Zhao Wenjie Ge 《Journal of Bionic Engineering》 2025年第2期851-865,共15页
To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic ... To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic Algorithm (AGA) to solve multi-agent path planning problems effectively. To enhance the real-time performance and computational efficiency of Multi-Agent Systems (MAS) in path planning, the AGA incorporates an Equal-Size Clustering Algorithm (ESCA) based on the K-means clustering method. The ESCA divides the primary task evenly into a series of subtasks, thereby reducing the gene length in the subsequent GA process. The algorithm then employs GA to solve each subtask sequentially. To evaluate the effectiveness of the proposed method, a simulation program was designed to perform path planning for 100 trajectories, and the results were compared with those of State-Of-The-Art (SOTA) methods. The simulation results demonstrate that, although the solutions provided by AGA are suboptimal, it exhibits significant advantages in terms of execution speed and solution stability compared to other algorithms. 展开更多
关键词 Multi-agent path planning Asynchronous genetic algorithm Equal-size clustering genetic algorithm
在线阅读 下载PDF
Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speed, Part Ⅰ–Aerodynamic optimization using genetic, bee colony and gradient descent algorithms 被引量:13
17
作者 Andreea Koreanschi Oliviu Sugar Gabor +5 位作者 Joran Acotto Guillaume Brianchon Gregoire Portier Ruxandra Mihaela Botez Mahmoud Mamou Youssef Mebarki 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第1期149-163,共15页
In this paper, an ‘in-house' genetic algorithm is described and applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The algorithm's ... In this paper, an ‘in-house' genetic algorithm is described and applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The algorithm's performances were studied from the convergence point of view, in accordance with design conditions. The algorithm was compared to two other optimization methods,namely the artificial bee colony and a gradient method, for two optimization objectives, and the results of the optimizations with each of the three methods were plotted on response surfaces obtained with the Monte Carlo method, to show that they were situated in the global optimum region. The optimization results for 16 wind tunnel test cases and 2 objective functions were presented. The 16 cases used for the optimizations were included in the experimental test plan for the morphing wing-tip demonstrator, and the results obtained using the displacements given by the optimizations were evaluated. 展开更多
关键词 Artificial bee colony Airfoil optimization genetic algorithm Morphing wing OPTIMIZATION
原文传递
RESEARCH ON THE MINIMUM ZONE CYLINDRICITY EVALUATION BASED ON GENETIC ALGORITHMS 被引量:9
18
作者 Cui ChangcaiChe RenshengYe DongHuang QingchengDepartment of Automatic Measurement and Control,Harbin Institute of Technology, Harbin 150001, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第2期167-170,共4页
A genetic algorithm (GA)-based method is proposed to solve the nonlinearoptimization problem of minimum zone cylindricity evaluation. First, the background of the problemis introduced. Then the mathematical model and ... A genetic algorithm (GA)-based method is proposed to solve the nonlinearoptimization problem of minimum zone cylindricity evaluation. First, the background of the problemis introduced. Then the mathematical model and the fitness function are derived from themathematical definition of dimensioning and tolerancing principles. Thirdly with the least squaressolution as the initial values, the whole implementation process of the algorithm is realized inwhich some key techniques, for example, variables representing, population initializing and suchbasic operations as selection, crossover and mutation, are discussed in detail. Finally, examplesare quoted to verify the proposed algorithm. The computation results indicate that the GA-basedoptimization method performs well on cylindricity evaluation. The outstanding advantages concludehigh accuracy, high efficiency and capabilities of solving complicated nonlinear and large spaceproblems. 展开更多
关键词 genetic algorithm (GA) CYLINDRICITY form error minimum zone
在线阅读 下载PDF
Research on Optimization of Microperforated Acoustic Structures Based on Genetic Algorithm
19
作者 Yang Yu Ruilin Mu 《Journal of Electronic Research and Application》 2025年第2期110-116,共7页
Microperforated panels(MPP)are widely used in noise control applications due to their excellent sound absorption performance.However,traditional single-layer MPPs suffer from a narrow sound absorption bandwidth,making... Microperforated panels(MPP)are widely used in noise control applications due to their excellent sound absorption performance.However,traditional single-layer MPPs suffer from a narrow sound absorption bandwidth,making it difficult to meet the demands for broadband sound absorption.To address this limitation,this study proposes a design approach for double-layer MPPs optimized using a genetic algorithm(GA).By optimizing structural parameters such as perforation diameter,panel thickness,perforation ratio,and cavity depth,the sound absorption performance of the double-layer MPP is significantly enhanced.The results demonstrate that the optimized double-layer MPP achieves an average sound absorption coefficient of 0.71 across the 100-5000 Hz frequency range,with a peak absorption coefficient exceeding 0.8 at 500 Hz,outperforming conventional sound-absorbing products of the same category. 展开更多
关键词 Microperforated panels genetic algorithm SOUND-ABSORPTION
在线阅读 下载PDF
Optimal Sensor Placement for Bridge Using the Improved Genetic Algorithm
20
作者 ZHANG Ziyang LI Xianghong DAN Danhui 《施工技术(中英文)》 2025年第21期64-71,130,共9页
The increase in bridge structure span and the complex stress characteristics directly affect the optimization of sensor placement,which in turn influences the data acquisition performance of the monitoring system.The ... The increase in bridge structure span and the complex stress characteristics directly affect the optimization of sensor placement,which in turn influences the data acquisition performance of the monitoring system.The key to the information acquisition of a bridge monitoring system is to obtain data that meets the health monitoring requirements of the bridge with a limited number of measurement points.To address this,a hybrid method based on multiple optimization criteria is proposed for optimal sensor placement(OSP).First,the minimum number of modes required for bridge monitoring is determined using the information entropy criterion(IE).Then,the number of measurement points is determined using a sequence method combined with the modal assurance criterion(MAC).Finally,the sensor placement is optimized using the generalized genetic algorithm(GGA)combined with double-structure encoding,and the optimization results are validated through finite element model analysis.The research results show that the hybrid method based on multiple optimization criteria can effectively determine the number of measurement points for bridge structures and optimize sensor placement,with a significant improvement in computational speed. 展开更多
关键词 BRIDGES health monitoring SENSORS optimal placement generalized genetic algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部