In wind power transmission via modular multilevel converter based high voltage direct current(MMCHVDC)systems,under traditional control strategies,MMC-HVDCcannot provide inertia support to the receiving-end grid(REG)d...In wind power transmission via modular multilevel converter based high voltage direct current(MMCHVDC)systems,under traditional control strategies,MMC-HVDCcannot provide inertia support to the receiving-end grid(REG)during disturbances.Moreover,due to the frequency decoupling between the two ends of the MMCHVDC,the sending-end wind farm(SEWF)cannot obtain the frequency variation information of the REG to provide inertia response.Therefore,this paper proposes a novel coordinated source-network-storage inertia control strategy based on wind power transmission via MMC-HVDC system.First,the grid-side MMC station(GS-MMC)maps the frequency variations of the REG to direct current(DC)voltage variations through the frequency mapping control,and uses submodule capacitor energy to provide inertial power.Then,the wind farm-side MMC station(WF-MMC)restores the DC voltage variations to frequency variations through the frequency restoration control and power loss compensation,providing real-time frequency information for the wind farm.Finally,based on real-time frequency information,thewind farmutilizes the rotor kinetic energy and energy storage to provide fast and lasting power support through the wind-storage coordinated inertia control strategy.Meanwhile,when the wind turbines withdraw from the inertia response phase,the energy storage can increase the power output to compensate for the power deficit,preventing secondary frequency drops.Furthermore,this paper uses small-signal analysis to determine the appropriate values for the key parameters of the proposed control strategy.A simulation model of the wind power transmission via MMCHVDC system is built in MATLAB/Simulink environment to validate and evaluate the proposed method.The results show that the proposed coordinated control strategy can effectively improve the system inertia level and avoid the secondary frequency drop under the load sudden increase condition.展开更多
Grid-Forming(GFM)converters are prone to fault-induced overcurrent and power angle instability during grid fault-induced voltage sags.To address this,this paper develops a multi-loop coordinated fault ridethrough(FRT)...Grid-Forming(GFM)converters are prone to fault-induced overcurrent and power angle instability during grid fault-induced voltage sags.To address this,this paper develops a multi-loop coordinated fault ridethrough(FRT)control strategy based on a power outer loop and voltage-current inner loops,aiming to enhance the stability and current-limiting capability of GFM converters during grid fault conditions.During voltage sags,the GFM converter’s voltage source behavior is maintained by dynamically adjusting the reactive power reference to provide voltage support,thereby effectively suppressing the steady-state component of the fault current.To address the active power imbalance induced by voltage sags,a dynamic active power reference correction method based on apparent power is designed to mitigate power angle oscillations and limit transient current.Moreover,an adaptive virtual impedance loop is implemented to enhance dynamic transient current-limiting performance during the fault initiation phase.This approach improves the responsiveness of the inner loop and ensures safe system operation under various fault severities.Under asymmetric fault conditions,a negative-sequence reactive current compensation strategy is incorporated to further suppress negative-sequence voltage and improve voltage symmetry.The proposed control scheme enables coordinated operation of multiple control objectives,including voltage support,current suppression,and power angle stability,across different fault scenarios.Finally,MATLAB/Simulink simulation results validate the effectiveness of the proposed strategy,showcasing its superior performance in current limiting and power angle stability,thereby significantly enhancing the system’s fault ride-through capability.展开更多
The precise tuning of magnetic nanoparticle size and magnetic domains,thereby shaping magnetic properties.However,the dynamic evolution mechanisms of magnetic domain configurations in relation to electromagnetic(EM)at...The precise tuning of magnetic nanoparticle size and magnetic domains,thereby shaping magnetic properties.However,the dynamic evolution mechanisms of magnetic domain configurations in relation to electromagnetic(EM)attenuation behavior remain poorly understood.To address this gap,a thermodynamically controlled periodic coordination strategy is proposed to achieve precise modulation of magnetic nanoparticle spacing.This approach unveils the evolution of magnetic domain configurations,progressing from individual to coupled and ultimately to crosslinked domain configurations.A unique magnetic coupling phenomenon surpasses the Snoek limit in low-frequency range,which is observed through micromagnetic simulation.The crosslinked magnetic configuration achieves effective low-frequency EM wave absorption at 3.68 GHz,encompassing nearly the entire C-band.This exceptional magnetic interaction significantly enhances radar camouflage and thermal insulation properties.Additionally,a robust gradient metamaterial design extends coverage across the full band(2–40 GHz),effectively mitigating the impact of EM pollution on human health and environment.This comprehensive study elucidates the evolution mechanisms of magnetic domain configurations,addresses gaps in dynamic magnetic modulation,and provides novel insights for the development of high-performance,low-frequency EM wave absorption materials.展开更多
Dear Editor,This letter is concerned with a coordinated path following control method for multiple unmanned underwater vehicles(UUVs)to carry out maritime search and rescue(MSR)missions.The kinetic model parameters of...Dear Editor,This letter is concerned with a coordinated path following control method for multiple unmanned underwater vehicles(UUVs)to carry out maritime search and rescue(MSR)missions.The kinetic model parameters of each UUV is totally unknown.Firstly,a kinematic control law is constructed by designing a vertical line-of-sight(LOS)guidance scheme.展开更多
Conventional coordinated control strategies for DC bus voltage signal(DBS)in islanded DC microgrids(IDCMGs)struggle with coordinating multiple distributed generators(DGs)and cannot effectively incorporate state of cha...Conventional coordinated control strategies for DC bus voltage signal(DBS)in islanded DC microgrids(IDCMGs)struggle with coordinating multiple distributed generators(DGs)and cannot effectively incorporate state of charge(SOC)information of the energy storage system,thereby reducing the system flexibility.In this study,we propose an adaptive coordinated control strategy that employs a two-layer fuzzy neural network controller(FNNC)to adapt to varying operating conditions in an IDCMG with multiple PV and battery energy storage system(BESS)units.The first-layer FNNC generates optimal operating mode commands for each DG,thereby avoiding the requirement for complex operating modes based on SOC segmentation.An optimal switching sequence logic prioritizes the most appropriate units during mode transitions.The second-layer FNNC dynamically adjusts the droop power to overcome power distribution challenges among DG groups.This helps in preventing the PV power from exceeding the limits and mitigating the risk of BESS overcharging or over-discharging.The simulation results indicate that the proposed strategy enhances the coordinated operation of multi-DG IDCMGs,thereby ensuring the efficient and safe utilization of PV and BESS.展开更多
This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter...This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter-satellite distance of space-based laser interferometers are first modeled.Subject to the delayed communication behaviors,a new delay-dependent attitude-orbit coordinated controller is designed.Moreover,by reconstructing the less conservative Lyapunov-Krasovskii functional and free-weight matrices,sufficient criteria are derived to ensure the exponential stability of the closed-loop relative translation and attitude error system.Finally,a simulation example is employed to illustrate the numerical validity of the proposed controller for in-orbit detection missions.展开更多
In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of un...In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of unknown external disturbances.Firstly,VTs are constructed for each QUAV,and the QUAV is restricted into the corresponding VT by the artificial potential field,which is distributed around the boundary of the VT.Thus,the collisions between QUAVs are avoided.Besides,the boundaries of the VTs are flexible by the modification signals,which are generated by the self-regulating auxiliary systems,to make the repulsive force smaller and give more buffer space for QUAVs without collision.Then,a novel ET mechanism is designed by introducing the concept of prediction to the traditional fixed threshold ET mechanism.Furthermore,a disturbance observer is proposed to deal with the adverse effects of the unknown external disturbance.On this basis,a distributed ET collision avoidance coordinated controller is proposed.Then,the proposed controller is quantized by the hysteresis uniform quantizer and then sent to the actuator only at the ET instants.The boundedness of the closed-loop signals is verified by the Lyapunov method.Finally,simulation and experimental results are performed to demonstrate the superiority of the proposed control method.展开更多
The intertwined challenges of air pollution and climate change represent a critical environmental dilemma of our time.These issues are inextricably linked through shared emission sources,coupled physical and chemical ...The intertwined challenges of air pollution and climate change represent a critical environmental dilemma of our time.These issues are inextricably linked through shared emission sources,coupled physical and chemical processes,and a common solution space in the transition to a sustainable future.Advanced atmospheric and Earth system modeling is therefore an indispensable tool for developing coordinated strategies that maximize co-benefits.This special issue,“Atmospheric and Earth System Modeling towards Coordinated Pollution Control and Climate Change Mitigation,”showcases cutting-edge research that enhances our modeling capabilities to address this complex nexus.The contributions collectively advance model fidelity and integration across scales,from fundamental particle properties to regional pollution transport and climate impacts.展开更多
To investigate the control of morphing wings by means of interacting effectors,this article proposes a distributed coordinated control scheme with sampled communication on the basis of a simple morphing wing model,est...To investigate the control of morphing wings by means of interacting effectors,this article proposes a distributed coordinated control scheme with sampled communication on the basis of a simple morphing wing model,established with arrayed agents. The control scheme can change the shape of airfoil into an expected one and keep it smooth during morphing. As the interconnection of communication network and the agents would make the behavior of the morphing wing system complicated,a diagrammatic stability analysis method is put forward to ensure the system stability. Two simulations are carried out on the morphing wing system by using MATLAB. The results stand witness to the feasibility of the distributed coordinated control scheme and the effectiveness of the diagrammatic stability analysis method.展开更多
Future manufacturing systems need to cope with frequent changes and disturbances, therefore their control architectures require constant adaptability, agility, stability, self-organization, intelligence, and robustnes...Future manufacturing systems need to cope with frequent changes and disturbances, therefore their control architectures require constant adaptability, agility, stability, self-organization, intelligence, and robustness. Bio-inspired manufacturing system can well satisfy these requirements. For this purpose, by referencing the biological organization structure and the mechanism, a bio-inspired manufacturing cell is presented from a novel view, and then a bio-inspired self-adaptive manufacturing model is established based on the ultra-short feedback mechanism of the neuro-endocrine system. A hio-inspired self-adaptive manufacturing system coordinated model is also established based on the neuro-endocrine-immunity system (NEIS). Finally, an example based on pheromone communication mechanism indicates that the robustness of the whole manufacturing system is improved by bio-inspired technologies.展开更多
Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy b...Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy based on a support vector machine (SVM) with inverse identification was proposed and applied to research simulating coordinated control systems. This method combines SVM inverse control and fuzzy control, taking advantage of the merits of SVM inverse controls which can be designed easily and have high reliability, and those of fuzzy controls, which respond rapidly and have good anti-jamming capability and robustness. It ensures the controller can be controlled with near instantaneous adjustments to maintain a steady state, even if the SVM is not trained well. The simulation results show that the control quality of this fuzzy-SVM compound control algorithm is high, with good performance in dynamic response speed, static stability, restraint of overshoot, and robustness.展开更多
In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on obje...In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on object position and internal force are derived. Then a hybrid position/force coordinated learning control scheme is presented and its convergence is proved. The scheme can improve the system performance by modifying the control input of the system after each iterative learning. Simulation results of two planar robot manipulators holding an object show the effectiveness of this control scheme.展开更多
An X-by-wire chassis can improve the kinematic characteristics of human-vehicle closed-loop system and thus active safety especially under emergency scenarios via enabling chassis coordinated control.This paper aims t...An X-by-wire chassis can improve the kinematic characteristics of human-vehicle closed-loop system and thus active safety especially under emergency scenarios via enabling chassis coordinated control.This paper aims to provide a complete and systematic survey on chassis coordinated control methods for full X-by-wire vehicles,with the primary goal of summarizing recent reserch advancements and stimulating innovative thoughts.Driving condition identification including driver’s operation intention,critical vehicle states and road adhesion condition and integrated control of X-by-wire chassis subsystems constitute the main framework of a chassis coordinated control scheme.Under steering and braking maneuvers,different driving condition identification methods are described in this paper.These are the trigger conditions and the basis for the implementation of chassis coordinated control.For the vehicles equipped with steering-by-wire,braking-by-wire and/or wire-controlled-suspension systems,state-of-the-art chassis coordinated control methods are reviewed including the coordination of any two or three chassis subsystems.Finally,the development trends are discussed.展开更多
The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and wi...The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.展开更多
Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utili...Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utilizing the reactive power capability of PV inverters to mitigate voltage deviations is being promoted.In recent years,droop control of inverter-based distributed energy resources has emerged as an essential tool for use in this study.The participation of PV systems in voltage regulation and its coordination with existing controllers,such as on-load tap changers,is paramount for controlling the voltage within specified limits.In this work,control strategies are presented that can be coordinated with the existing controls in a distributed manner.The effectiveness of the proposed method was demonstrated through simulation results on a distribution system.展开更多
Coordinated taxiing planning for multiple aircraft on flight deck is of vital importance which can dramatically improve the dispatching efficiency.In this paper,first,the coordinated taxiing path planning problem is t...Coordinated taxiing planning for multiple aircraft on flight deck is of vital importance which can dramatically improve the dispatching efficiency.In this paper,first,the coordinated taxiing path planning problem is transformed into a centralized optimal control problem where collision-free conditions and mechanical limits are considered.Since the formulated optimal control problem is of large state space and highly nonlinear,an efficient hierarchical initialization technique based on the Dubins-curve method is proposed.Then,a model predictive controller is designed to track the obtained reference trajectory in the presence of initial state error and external disturbances.Numerical experiments demonstrate that the proposed“offline planningþonline tracking”framework can achieve efficient and robust coordinated taxiing planning and tracking even in the presence of initial state error and continuous external disturbances.展开更多
It is a striking fact that the path tracking accuracy of autonomous vehicles based on active front wheel steering is poor under high-speed and large-curvature conditions.In this study,an adaptive path tracking control...It is a striking fact that the path tracking accuracy of autonomous vehicles based on active front wheel steering is poor under high-speed and large-curvature conditions.In this study,an adaptive path tracking control strategy that coordinates active front wheel steering and direct yaw moment is proposed based on model predictive control algorithm.The recursive least square method with a forgetting factor is used to identify the rear tire cornering stiffness and update the path tracking system prediction model.To adaptively adjust the priorities of path tracking accuracy and vehicle stability,an adaptive strategy based on fuzzy rules is applied to change the weight coefficients in the cost function.An adaptive control strategy for coordinating active front steering and direct yaw moment is proposed to improve the path tracking accuracy under high-speed and large-curvature conditions.To ensure vehicle stability,the sideslip angle,yaw rate and zero moment methods are used to construct optimization constraints based on the model predictive control frame.It is verified through simulation experiments that the proposed adaptive coordinated control strategy can improve the path tracking accuracy and ensure vehicle stability under high-speed and largecurvature conditions.展开更多
The coordinated control of PM_(2.5)and ozone has become the strategic goal of national air pollution control.Considering the gradual decline in PM_(2.5)concentration and the aggravation of ozone pollution,a better und...The coordinated control of PM_(2.5)and ozone has become the strategic goal of national air pollution control.Considering the gradual decline in PM_(2.5)concentration and the aggravation of ozone pollution,a better understanding of the coordinated control of PM_(2.5)and ozone is urgently needed.Here,we collected and sorted air pollutant data for 337 cities from 2015 to 2020 to explore the characteristics of PM_(2.5)and ozone pollution based on China’s five major air pollution regions.The results show that it is necessary to continue to strengthen the emission reduction in PM_(2.5)and ozone precursors,and control NO_(x) and VOCs while promoting a dramatic emission reduction in PM_(2.5).The primary method of curbing ozone pollution is to strengthen the emission control of VOCs,with a long-term strategy of achieving substantial emission reductions in NO_(x),because VOCs and NO_(x) are also precursors to PM_(2.5);hence,their reductions also contribute to the reduction in PM_(2.5).Therefore,the implementation of a multipollutant emission reduction control strategy aimed at the prevention and control of PM_(2.5)and ozone pollution is the only means to realize the coordinated control of PM_(2.5)and ozone.展开更多
This paper proposes a new distributed coordinated control scheme based on heterogeneous roles for Unmanned Aerial Vehicle(UAV)swarm to achieve formation control.First,the framework of the distributed coordinated contr...This paper proposes a new distributed coordinated control scheme based on heterogeneous roles for Unmanned Aerial Vehicle(UAV)swarm to achieve formation control.First,the framework of the distributed coordinated control scheme is designed on the basis of Distributed Model Predictive Control(DMPC).Then,the effect of heterogeneous roles including leader,coordinator and follower is discussed,and the role-based cost functions are developed to improve the performance of coordinated control for UAV swarm.Furthermore,a group of coordination strategies are proposed for UAVs with different roles to achieve swarm conflict resolution.Numerical simulations demonstrate that the presented distributed coordinated control scheme is effective to formulate and maintain the desired formation for the UAV swarm.展开更多
In this paper, the control problem of auxiliary power unit (APU) for hybrid electric vehicles is investigated. An adaptive controller is provided to achieve the coordinated control between the engine speed and the b...In this paper, the control problem of auxiliary power unit (APU) for hybrid electric vehicles is investigated. An adaptive controller is provided to achieve the coordinated control between the engine speed and the battery charging voltage. The proposed adaptive coordinated control laws for the throttle angle of the engine and the voltage of the power-converter can guarantee not only the asymptotic tracking performance of the engine speed and the regulation of the battery charging voltage, but also the robust stability of the closed loop system under external load changes. Simulation results are given to verify the performance of the proposed adaptive controller.展开更多
基金funded by State Grid Corporation of China Central Branch Technology Project(52140024000C).
文摘In wind power transmission via modular multilevel converter based high voltage direct current(MMCHVDC)systems,under traditional control strategies,MMC-HVDCcannot provide inertia support to the receiving-end grid(REG)during disturbances.Moreover,due to the frequency decoupling between the two ends of the MMCHVDC,the sending-end wind farm(SEWF)cannot obtain the frequency variation information of the REG to provide inertia response.Therefore,this paper proposes a novel coordinated source-network-storage inertia control strategy based on wind power transmission via MMC-HVDC system.First,the grid-side MMC station(GS-MMC)maps the frequency variations of the REG to direct current(DC)voltage variations through the frequency mapping control,and uses submodule capacitor energy to provide inertial power.Then,the wind farm-side MMC station(WF-MMC)restores the DC voltage variations to frequency variations through the frequency restoration control and power loss compensation,providing real-time frequency information for the wind farm.Finally,based on real-time frequency information,thewind farmutilizes the rotor kinetic energy and energy storage to provide fast and lasting power support through the wind-storage coordinated inertia control strategy.Meanwhile,when the wind turbines withdraw from the inertia response phase,the energy storage can increase the power output to compensate for the power deficit,preventing secondary frequency drops.Furthermore,this paper uses small-signal analysis to determine the appropriate values for the key parameters of the proposed control strategy.A simulation model of the wind power transmission via MMCHVDC system is built in MATLAB/Simulink environment to validate and evaluate the proposed method.The results show that the proposed coordinated control strategy can effectively improve the system inertia level and avoid the secondary frequency drop under the load sudden increase condition.
文摘Grid-Forming(GFM)converters are prone to fault-induced overcurrent and power angle instability during grid fault-induced voltage sags.To address this,this paper develops a multi-loop coordinated fault ridethrough(FRT)control strategy based on a power outer loop and voltage-current inner loops,aiming to enhance the stability and current-limiting capability of GFM converters during grid fault conditions.During voltage sags,the GFM converter’s voltage source behavior is maintained by dynamically adjusting the reactive power reference to provide voltage support,thereby effectively suppressing the steady-state component of the fault current.To address the active power imbalance induced by voltage sags,a dynamic active power reference correction method based on apparent power is designed to mitigate power angle oscillations and limit transient current.Moreover,an adaptive virtual impedance loop is implemented to enhance dynamic transient current-limiting performance during the fault initiation phase.This approach improves the responsiveness of the inner loop and ensures safe system operation under various fault severities.Under asymmetric fault conditions,a negative-sequence reactive current compensation strategy is incorporated to further suppress negative-sequence voltage and improve voltage symmetry.The proposed control scheme enables coordinated operation of multiple control objectives,including voltage support,current suppression,and power angle stability,across different fault scenarios.Finally,MATLAB/Simulink simulation results validate the effectiveness of the proposed strategy,showcasing its superior performance in current limiting and power angle stability,thereby significantly enhancing the system’s fault ride-through capability.
基金supported by the National Natural Science Foundation of China(22265021,52231007,and 12327804)the Aeronautical Science Foundation of China(2020Z056056003)Jiangxi Provincial Natural Science Foundation(20232BAB212004).
文摘The precise tuning of magnetic nanoparticle size and magnetic domains,thereby shaping magnetic properties.However,the dynamic evolution mechanisms of magnetic domain configurations in relation to electromagnetic(EM)attenuation behavior remain poorly understood.To address this gap,a thermodynamically controlled periodic coordination strategy is proposed to achieve precise modulation of magnetic nanoparticle spacing.This approach unveils the evolution of magnetic domain configurations,progressing from individual to coupled and ultimately to crosslinked domain configurations.A unique magnetic coupling phenomenon surpasses the Snoek limit in low-frequency range,which is observed through micromagnetic simulation.The crosslinked magnetic configuration achieves effective low-frequency EM wave absorption at 3.68 GHz,encompassing nearly the entire C-band.This exceptional magnetic interaction significantly enhances radar camouflage and thermal insulation properties.Additionally,a robust gradient metamaterial design extends coverage across the full band(2–40 GHz),effectively mitigating the impact of EM pollution on human health and environment.This comprehensive study elucidates the evolution mechanisms of magnetic domain configurations,addresses gaps in dynamic magnetic modulation,and provides novel insights for the development of high-performance,low-frequency EM wave absorption materials.
基金supported by the National Science and Technology Major Project(2022ZD0119902)the Doctoral Scientific Research Foundation of Liaoning Province(2023-BS-077)+2 种基金the Postdoctoral Research Foundation of China(2024M751980)the Open Project of State Key Laboratory of Maritime Technology and Safety(SKLMTA-DMU2024Y3)Bolian Research Funds of Dalian Maritime University/Fundamental Research Funds for the Central Universities(3132023616).
文摘Dear Editor,This letter is concerned with a coordinated path following control method for multiple unmanned underwater vehicles(UUVs)to carry out maritime search and rescue(MSR)missions.The kinetic model parameters of each UUV is totally unknown.Firstly,a kinematic control law is constructed by designing a vertical line-of-sight(LOS)guidance scheme.
基金supported by National Key R&D Program of ChinaunderGrant,(2021YFB2601403).
文摘Conventional coordinated control strategies for DC bus voltage signal(DBS)in islanded DC microgrids(IDCMGs)struggle with coordinating multiple distributed generators(DGs)and cannot effectively incorporate state of charge(SOC)information of the energy storage system,thereby reducing the system flexibility.In this study,we propose an adaptive coordinated control strategy that employs a two-layer fuzzy neural network controller(FNNC)to adapt to varying operating conditions in an IDCMG with multiple PV and battery energy storage system(BESS)units.The first-layer FNNC generates optimal operating mode commands for each DG,thereby avoiding the requirement for complex operating modes based on SOC segmentation.An optimal switching sequence logic prioritizes the most appropriate units during mode transitions.The second-layer FNNC dynamically adjusts the droop power to overcome power distribution challenges among DG groups.This helps in preventing the PV power from exceeding the limits and mitigating the risk of BESS overcharging or over-discharging.The simulation results indicate that the proposed strategy enhances the coordinated operation of multi-DG IDCMGs,thereby ensuring the efficient and safe utilization of PV and BESS.
基金supported by the Na⁃tional Key R&D Program of China(No.2022YFC2204800)the Graduate Student Independent Exploration and Innovation Program of Central South University(No.2024ZZTS 0767).
文摘This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter-satellite distance of space-based laser interferometers are first modeled.Subject to the delayed communication behaviors,a new delay-dependent attitude-orbit coordinated controller is designed.Moreover,by reconstructing the less conservative Lyapunov-Krasovskii functional and free-weight matrices,sufficient criteria are derived to ensure the exponential stability of the closed-loop relative translation and attitude error system.Finally,a simulation example is employed to illustrate the numerical validity of the proposed controller for in-orbit detection missions.
基金supported in part by the National Key R&D Program of China(No.2023YFB4704400)in part by the National Natural Science Foundation of China(Nos.U23B2036,U2013201).
文摘In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of unknown external disturbances.Firstly,VTs are constructed for each QUAV,and the QUAV is restricted into the corresponding VT by the artificial potential field,which is distributed around the boundary of the VT.Thus,the collisions between QUAVs are avoided.Besides,the boundaries of the VTs are flexible by the modification signals,which are generated by the self-regulating auxiliary systems,to make the repulsive force smaller and give more buffer space for QUAVs without collision.Then,a novel ET mechanism is designed by introducing the concept of prediction to the traditional fixed threshold ET mechanism.Furthermore,a disturbance observer is proposed to deal with the adverse effects of the unknown external disturbance.On this basis,a distributed ET collision avoidance coordinated controller is proposed.Then,the proposed controller is quantized by the hysteresis uniform quantizer and then sent to the actuator only at the ET instants.The boundedness of the closed-loop signals is verified by the Lyapunov method.Finally,simulation and experimental results are performed to demonstrate the superiority of the proposed control method.
文摘The intertwined challenges of air pollution and climate change represent a critical environmental dilemma of our time.These issues are inextricably linked through shared emission sources,coupled physical and chemical processes,and a common solution space in the transition to a sustainable future.Advanced atmospheric and Earth system modeling is therefore an indispensable tool for developing coordinated strategies that maximize co-benefits.This special issue,“Atmospheric and Earth System Modeling towards Coordinated Pollution Control and Climate Change Mitigation,”showcases cutting-edge research that enhances our modeling capabilities to address this complex nexus.The contributions collectively advance model fidelity and integration across scales,from fundamental particle properties to regional pollution transport and climate impacts.
基金National Natural Science Foundation of China (90605007)
文摘To investigate the control of morphing wings by means of interacting effectors,this article proposes a distributed coordinated control scheme with sampled communication on the basis of a simple morphing wing model,established with arrayed agents. The control scheme can change the shape of airfoil into an expected one and keep it smooth during morphing. As the interconnection of communication network and the agents would make the behavior of the morphing wing system complicated,a diagrammatic stability analysis method is put forward to ensure the system stability. Two simulations are carried out on the morphing wing system by using MATLAB. The results stand witness to the feasibility of the distributed coordinated control scheme and the effectiveness of the diagrammatic stability analysis method.
基金Supported by the National Natural Science Foundation of China (50505017)Fok Ying Tung Edu-cation Foundation (111056)+1 种基金the Innovative and Excellent Foundation for Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics (BCXJ08-07)the New Century Excellent Talents in University,China (NCET-08)~~
文摘Future manufacturing systems need to cope with frequent changes and disturbances, therefore their control architectures require constant adaptability, agility, stability, self-organization, intelligence, and robustness. Bio-inspired manufacturing system can well satisfy these requirements. For this purpose, by referencing the biological organization structure and the mechanism, a bio-inspired manufacturing cell is presented from a novel view, and then a bio-inspired self-adaptive manufacturing model is established based on the ultra-short feedback mechanism of the neuro-endocrine system. A hio-inspired self-adaptive manufacturing system coordinated model is also established based on the neuro-endocrine-immunity system (NEIS). Finally, an example based on pheromone communication mechanism indicates that the robustness of the whole manufacturing system is improved by bio-inspired technologies.
文摘Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy based on a support vector machine (SVM) with inverse identification was proposed and applied to research simulating coordinated control systems. This method combines SVM inverse control and fuzzy control, taking advantage of the merits of SVM inverse controls which can be designed easily and have high reliability, and those of fuzzy controls, which respond rapidly and have good anti-jamming capability and robustness. It ensures the controller can be controlled with near instantaneous adjustments to maintain a steady state, even if the SVM is not trained well. The simulation results show that the control quality of this fuzzy-SVM compound control algorithm is high, with good performance in dynamic response speed, static stability, restraint of overshoot, and robustness.
文摘In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on object position and internal force are derived. Then a hybrid position/force coordinated learning control scheme is presented and its convergence is proved. The scheme can improve the system performance by modifying the control input of the system after each iterative learning. Simulation results of two planar robot manipulators holding an object show the effectiveness of this control scheme.
基金Supported in part by Ministry of Science and Technology of the People’s Republic of China(Grant No.2017YFB0103600)Beijing Municipal Science and Technology Commission via the Beijing Nova Program(Grant No.Z201100006820007).
文摘An X-by-wire chassis can improve the kinematic characteristics of human-vehicle closed-loop system and thus active safety especially under emergency scenarios via enabling chassis coordinated control.This paper aims to provide a complete and systematic survey on chassis coordinated control methods for full X-by-wire vehicles,with the primary goal of summarizing recent reserch advancements and stimulating innovative thoughts.Driving condition identification including driver’s operation intention,critical vehicle states and road adhesion condition and integrated control of X-by-wire chassis subsystems constitute the main framework of a chassis coordinated control scheme.Under steering and braking maneuvers,different driving condition identification methods are described in this paper.These are the trigger conditions and the basis for the implementation of chassis coordinated control.For the vehicles equipped with steering-by-wire,braking-by-wire and/or wire-controlled-suspension systems,state-of-the-art chassis coordinated control methods are reviewed including the coordination of any two or three chassis subsystems.Finally,the development trends are discussed.
基金Project(51090385) supported by the Major Program of National Natural Science Foundation of ChinaProject(2011IB001) supported by Yunnan Provincial Science and Technology Program,China+1 种基金Project(2012DFA70570) supported by the International Science & Technology Cooperation Program of ChinaProject(2011IA004) supported by the Yunnan Provincial International Cooperative Program,China
文摘The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.
基金by a project under the scheme entitled“Developing Policies&Adaptation Strategies to Climate Change in the Baltic Sea Region”(ASTRA),Project No.ASTRA6-4(2014-2020.4.01.16-0032).
文摘Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utilizing the reactive power capability of PV inverters to mitigate voltage deviations is being promoted.In recent years,droop control of inverter-based distributed energy resources has emerged as an essential tool for use in this study.The participation of PV systems in voltage regulation and its coordination with existing controllers,such as on-load tap changers,is paramount for controlling the voltage within specified limits.In this work,control strategies are presented that can be coordinated with the existing controls in a distributed manner.The effectiveness of the proposed method was demonstrated through simulation results on a distribution system.
文摘Coordinated taxiing planning for multiple aircraft on flight deck is of vital importance which can dramatically improve the dispatching efficiency.In this paper,first,the coordinated taxiing path planning problem is transformed into a centralized optimal control problem where collision-free conditions and mechanical limits are considered.Since the formulated optimal control problem is of large state space and highly nonlinear,an efficient hierarchical initialization technique based on the Dubins-curve method is proposed.Then,a model predictive controller is designed to track the obtained reference trajectory in the presence of initial state error and external disturbances.Numerical experiments demonstrate that the proposed“offline planningþonline tracking”framework can achieve efficient and robust coordinated taxiing planning and tracking even in the presence of initial state error and continuous external disturbances.
基金Supported by the Foundation of Key Laboratory of Vehicle Advanced ManufacturingMeasuring and Control Technology(Beijing Jiaotong University)+1 种基金Ministry of Education,China(Grant No.014062522006)National Key Research Development Program of China(Grant No.2017YFB0103701)。
文摘It is a striking fact that the path tracking accuracy of autonomous vehicles based on active front wheel steering is poor under high-speed and large-curvature conditions.In this study,an adaptive path tracking control strategy that coordinates active front wheel steering and direct yaw moment is proposed based on model predictive control algorithm.The recursive least square method with a forgetting factor is used to identify the rear tire cornering stiffness and update the path tracking system prediction model.To adaptively adjust the priorities of path tracking accuracy and vehicle stability,an adaptive strategy based on fuzzy rules is applied to change the weight coefficients in the cost function.An adaptive control strategy for coordinating active front steering and direct yaw moment is proposed to improve the path tracking accuracy under high-speed and large-curvature conditions.To ensure vehicle stability,the sideslip angle,yaw rate and zero moment methods are used to construct optimization constraints based on the model predictive control frame.It is verified through simulation experiments that the proposed adaptive coordinated control strategy can improve the path tracking accuracy and ensure vehicle stability under high-speed and largecurvature conditions.
基金supported by the National Natural Science Foundation of China(No.91844301)by the Beijing Municipal Natural Science Fund(No.JQ21030)。
文摘The coordinated control of PM_(2.5)and ozone has become the strategic goal of national air pollution control.Considering the gradual decline in PM_(2.5)concentration and the aggravation of ozone pollution,a better understanding of the coordinated control of PM_(2.5)and ozone is urgently needed.Here,we collected and sorted air pollutant data for 337 cities from 2015 to 2020 to explore the characteristics of PM_(2.5)and ozone pollution based on China’s five major air pollution regions.The results show that it is necessary to continue to strengthen the emission reduction in PM_(2.5)and ozone precursors,and control NO_(x) and VOCs while promoting a dramatic emission reduction in PM_(2.5).The primary method of curbing ozone pollution is to strengthen the emission control of VOCs,with a long-term strategy of achieving substantial emission reductions in NO_(x),because VOCs and NO_(x) are also precursors to PM_(2.5);hence,their reductions also contribute to the reduction in PM_(2.5).Therefore,the implementation of a multipollutant emission reduction control strategy aimed at the prevention and control of PM_(2.5)and ozone pollution is the only means to realize the coordinated control of PM_(2.5)and ozone.
基金co-supported by the National Natural Science Foundation of China(Nos.61803009,61903084)Fundamental Research Funds for the Central Universities of China(No.YWF-20-BJ-J-542)the National Science Foundation of Jiangsu Province,China(No.BK20180358).
文摘This paper proposes a new distributed coordinated control scheme based on heterogeneous roles for Unmanned Aerial Vehicle(UAV)swarm to achieve formation control.First,the framework of the distributed coordinated control scheme is designed on the basis of Distributed Model Predictive Control(DMPC).Then,the effect of heterogeneous roles including leader,coordinator and follower is discussed,and the role-based cost functions are developed to improve the performance of coordinated control for UAV swarm.Furthermore,a group of coordination strategies are proposed for UAVs with different roles to achieve swarm conflict resolution.Numerical simulations demonstrate that the presented distributed coordinated control scheme is effective to formulate and maintain the desired formation for the UAV swarm.
文摘In this paper, the control problem of auxiliary power unit (APU) for hybrid electric vehicles is investigated. An adaptive controller is provided to achieve the coordinated control between the engine speed and the battery charging voltage. The proposed adaptive coordinated control laws for the throttle angle of the engine and the voltage of the power-converter can guarantee not only the asymptotic tracking performance of the engine speed and the regulation of the battery charging voltage, but also the robust stability of the closed loop system under external load changes. Simulation results are given to verify the performance of the proposed adaptive controller.