Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinizat...Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinization problems. According to the relative position of two different individual vectors selected to generate a difference vector in the searching place, a self-adapting strategy for the scale factor F of the difference vector is proposed. In terms of the convergence status of the target vector in the current population, a self-adapting crossover probability constant CR strategy is proposed. Therefore, good target vectors have a lower CFI while worse target vectors have a large CFI. At the same time, the mutation operator is modified to improve the convergence speed. The performance of these proposed approaches are studied with the use of some benchmark problems and applied to the trajectory planning of a three-joint redundant manipulator. Finally, the experiment results show that the proposed approaches can greatly improve robustness and convergence speed.展开更多
A suit of online self-adapting control (OSAC) approach has been developed to predict and optimize annealing craft system. The approach consists of three critical parts including prediction module, self-adapting opti...A suit of online self-adapting control (OSAC) approach has been developed to predict and optimize annealing craft system. The approach consists of three critical parts including prediction module, self-adapting optimization module, and self-learning amendment module. Firstly, the prediction module and self- adapting optimization module are based on the modeling methods. The self-adapting optimization module consists of two parts including "reappearance of annealed process" and "optimization of subsequent annealing process". Secondly, the self-learning amendment module, based on furnace atmosphere, equipment performance, and compensation coefficients, is designed to improve the accuracy of optimization results. The results obtained from the proposed approach, usually finished in about 3 min, are in good agreement with the test values, such as the deviation of temperature for hot-spot and cold-spot are within 10 K, the relative errors are within 1.1%, and the accuracy of annealing for heating period is increased by using self-learning amendment module.展开更多
The aim of this paper is to achieve the radio frequency stealth(RFS) during the course of tracking by controlling the radiation energy and the interval of a radar. Firstly, we build the model of probability of interce...The aim of this paper is to achieve the radio frequency stealth(RFS) during the course of tracking by controlling the radiation energy and the interval of a radar. Firstly, we build the model of probability of interception with the once radiation during the course of tracking. Secondly, we establish the model of the cumulative probability of interception to describe the effect of RFS throughout the tracking process and obtain two solutions that are minimizing the probability of interception and the radiation times to reduce the cumulative probability of interception. Thirdly, we propose a self-adapting radiation energy control method(SARE)to minimize the probability of interception. Fourthly, we propose a self-adapting radiation interval control method(SARI) to minimize radiation times. Fifthly, combining SARE with SARI, we propose a SARE-SARI control method(SAEI) during the course of tracking.Finally, we compare SAEI with two others by simulation, and the results show the effect of RFS of SAEI is better than the other two,but we have to make a trade-off between the ability of RFS and the effect of tracking.展开更多
A new admission control algorithm considering the network self-similar access characteristics is proposed. Taking advantage of the mathematical model of the network traffic admission control which can effectively over...A new admission control algorithm considering the network self-similar access characteristics is proposed. Taking advantage of the mathematical model of the network traffic admission control which can effectively overcome the self-similar characteristics of the network requests, through the scheduling of the differential service qucue based on priority while at the same time taking into account various factors including access characteristics of requests, load information, etc, smoothness of the admission control is ensured by the algorithm proposed in this paper. We design a non-linear self-adapting control algorithm by introducing an exponential admission function, thus overcomes the negative aspects introduced by static threshold parameters. Simulation results show that the scheme proposed in this paper can effectively improve the resource utilization of the clusters, while at the same time protecting the service with high priority. Our simulation results also show that this algorithm can improve system stability and reliability too. Key words Web cluster - admission control - differential service - self-similar - self-adapting CLC number TP 393 Foundation item: Supported by the National Natural Science Foundation of China (10375024) and the Hunan Natural Science Foundation of China(03JJY4054)Biography: LIU An-feng(1971-), male, Ph. D candidate, majoring in network computing, Web QoS.展开更多
Global warming and energy crisis are two major challenges in the new-century.Wearable materials that enable all-seasonal self-adapting thermal comfort without additional energy-input attract significant attention as a...Global warming and energy crisis are two major challenges in the new-century.Wearable materials that enable all-seasonal self-adapting thermal comfort without additional energy-input attract significant attention as a solution to the increasing severity of extreme climate-change.Inspired by autologous temperature-regulation and multidimensional-sensing origins of nature-skin composed of nature collagen fibers,this study engineered a nanoscale wearable natural fibers-derived thermochromic material(TMEH-skin)for robust all-season self-adapting thermal management by tactically integrating traditional immersion and spraying methods with layer-by-layer stacking-strategy.Because of the on-demand multi-functional layer-structure design,TMEH-skin achieves spontaneous~38.16%visible lightmodulation and~95.1%infrared-emission,demonstrating outstanding double-self-switching thermal management origins by simple color-changing without additional energy-input.Moreover,TMEH-skin has gratifying tensile strength of 13.18 MPa,water vapor permeability,electrical-conductivity,and hydrophobicity,further broadening the application potential and scenarios as wearable materials.In applications for military-missions or reconnaissance behind enemy-lines,TMEH-skin robustly integrates the multi-functionalities of wearing-comfort,physiological signal-response capability for accurate transmission of Morse-code,and thermal management performances under special circumstances,indicating its tremendous potential for smart military-applications.Simulation results show that TMEH-skin has prominent energy-saving efficiency in cities with different climate zones.This study provides a new reference to the booming innovation of natural-derived wearable materials for all-seasonal self-adapting thermal management.展开更多
A fast self-adapting high-order sliding mode(FSHOSM)controller is designed for a class of nonlinear systems with unknown uncertainties.As for uncertainty-free nonlinear system,a new switching condition is introduced i...A fast self-adapting high-order sliding mode(FSHOSM)controller is designed for a class of nonlinear systems with unknown uncertainties.As for uncertainty-free nonlinear system,a new switching condition is introduced into the standard geometric homogeneity.Different from the existing geometric homogeneity method,both state variables and their derivatives are considered to bring a reasonable effective switching condition.As a result,a faster convergence rate of state variables is achieved.Furthermore,based on the integral sliding mode(ISM)and above geometric homogeneity,a self-adapting high-order sliding mode(HOSM)control law is proposed for a class of nonlinear systems with uncertainties.The resulting controller allows the closed-loop system to conduct with the expected properties of strong robustness and fast convergence.Stable analysis of the nonlinear system is also proved based on the Lyapunov approach.The effectiveness of the resulting controller is verified by several simulation results.展开更多
Typical p-n junctions have emerged as a promising strategy for contending with charge carrier recombination in solar conversion.However,the photo-corrosion and unsuitable energy band positions still hinder their pract...Typical p-n junctions have emerged as a promising strategy for contending with charge carrier recombination in solar conversion.However,the photo-corrosion and unsuitable energy band positions still hinder their practical application for hydrogen production from water in photoelectrochemical systems.Here,an in-situ photo-oxidation method is proposed for achieving self-adapting activation of BiVO_(4)-based photoanodes with surface-encapsulated CuGaS_(2)particles by the ZnO layer.The self-adapting activation demotes the energy band positions of CuGaS_(2),establishing an S-scheme structure with BiVO_(4),resulting in an efficient p-n junction photoanode.The optimal sample exhibits enhanced photocurrent and an onset potential cathodically shifted by~300 mV compared with BiVO_(4),which is attributed to significantly enhanced charge transport and transfer efficiencies.As expected,it attains the highest photocurrent value of 5.87 mA·cm^(-2),aided by a hole scavenger at 1.23 V versus a reversible hydrogen electrode,which significantly surpasses that of BiVO_(4)(4.32 mA·cm^(-2)).展开更多
Octopuses,due to their flexible arms,marvelous adaptability,and powerful suckers,are able to effortlessly grasp and disengage various objects in the marine surrounding without causing devastation.However,manipulating ...Octopuses,due to their flexible arms,marvelous adaptability,and powerful suckers,are able to effortlessly grasp and disengage various objects in the marine surrounding without causing devastation.However,manipulating delicate objects such as soft and fragile foods underwater require gentle contact and stable adhesion,which poses a serious challenge to now available soft grippers.Inspired by the sucker infundibulum structure and flexible tentacles of octopus,herein we developed a hydraulically actuated hydrogel soft gripper with adaptive maneuverability by coupling multiple hydrogen bond-mediated supramolecular hydrogels and vat polymerization three-dimensional printing,in which hydrogel bionic sucker is composed of a tunable curvature membrane,a negative pressure cavity,and a pneumatic chamber.The design of the sucker structure with the alterable curvature membrane is conducive to realize the reliable and gentle switchable adhesion of the hydrogel soft gripper.As a proof-of-concept,the adaptive hydrogel soft gripper is capable of implement diversified underwater tasks,including gingerly grasping fragile foods like egg yolks and tofu,as well as underwater robots and vehicles that station-keeping and crawling based on switchable adhesion.This study therefore provides a transformative strategy for the design of novel soft grippers that will render promising utilities for underwater exploration soft robotics.展开更多
Future manufacturing systems need to cope with frequent changes and disturbances, therefore their control architectures require constant adaptability, agility, stability, self-organization, intelligence, and robustnes...Future manufacturing systems need to cope with frequent changes and disturbances, therefore their control architectures require constant adaptability, agility, stability, self-organization, intelligence, and robustness. Bio-inspired manufacturing system can well satisfy these requirements. For this purpose, by referencing the biological organization structure and the mechanism, a bio-inspired manufacturing cell is presented from a novel view, and then a bio-inspired self-adaptive manufacturing model is established based on the ultra-short feedback mechanism of the neuro-endocrine system. A hio-inspired self-adaptive manufacturing system coordinated model is also established based on the neuro-endocrine-immunity system (NEIS). Finally, an example based on pheromone communication mechanism indicates that the robustness of the whole manufacturing system is improved by bio-inspired technologies.展开更多
Gassmann's equations are commonly used for predicting seismic wave velocity in rock physics research.However the input matrix mineral bulk modulus parameters are not accurate,which greatly influences the prediction r...Gassmann's equations are commonly used for predicting seismic wave velocity in rock physics research.However the input matrix mineral bulk modulus parameters are not accurate,which greatly influences the prediction reliability.In this paper,combining the Russell fluid factor with the Gassman-Biot-Geertsma equation and introducing the dry-rock Poisson's ratio,we propose an effective matrix mineral bulk modulus extraction method.This method can adaptively invert the equivalent matrix mineral bulk modulus to apply the Gassmann equation to fluid substitution of complex carbonate reservoirs and increase the fluid prediction reliability.The verification of the actual material fluid substitution also shows that this method is reliable,efficient,and adaptable.展开更多
On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method...On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method, the sublaminate elements are generated automatically when the delamination damage occurs or extends. Thus, the complex process and state of delamination damage can be simulated practically with high efficiency for both analysis and modeling. Based on the self-adapting delamination method, linear dynamic finite element damage analysis is performed to simulate the low-velocity impact damage process of three types of mixed woven composite laminates. Taking the frictional force among sublaminations during delaminating and the transverse normal stress into account, the analytical results are consistent with those of the experimental data.展开更多
The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and wi...The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.展开更多
In micro electrical discharge machining (micro EDM), it is difficult for servo controlling the narrow discharge gap with the characters of non-linear and quick change. In this paper, aiming at solving the problems a...In micro electrical discharge machining (micro EDM), it is difficult for servo controlling the narrow discharge gap with the characters of non-linear and quick change. In this paper, aiming at solving the problems above, a self-adaptive fuzzy controller with formulary rule (SAFCFR) is presented based on the dual feedbacks composed by gap electric signal and discharge-ratio statistics. To ensure the properties of self-optimizing and fast stabilization, the formulary rule was designed with a tuning factor. In addition, the fast-convergence algorithms were introduced to adjust control target center and output scale factor. In this way, the normal discharge ratio can tend to the highest value during micro-EDM process. Experimental results show that the proposed algorithms are effective in improving the servo-control performance. According to the drilling-micro-EDM experiments, the machining efficiency is improved by 20% through applying SAFCFR. Moreover, SAFCFR is a prompt way to optimize parameters of discharge-gap servo control.展开更多
To improve billet quality and the trackability and stability of secondary cooling water during continuous casting, the superheat is introduced into the water distribution for secondary cooling to design the relevant c...To improve billet quality and the trackability and stability of secondary cooling water during continuous casting, the superheat is introduced into the water distribution for secondary cooling to design the relevant control system, based on the water distribution model, superheat and fuzzy self-adaptive PID (process identity) . A spray cooling system is set up for simulation test in laboratory to test the step signal from the conventional, integral sepa rated and fuzzy self-adaptive PID controllers and the simulation casting. And the on-site test is done in some steel plant. The test results show that the fuzzy self-adaptive PID controller's performance is better than that of the other two controllers, which provides a basis for further study and application.展开更多
A variable parameter self-adaptive control strategy based on driving condition identification is proposed to take full advantage of the fuel saving potential of the plug-in hybrid electric bus(PHEB).Firstly,the princi...A variable parameter self-adaptive control strategy based on driving condition identification is proposed to take full advantage of the fuel saving potential of the plug-in hybrid electric bus(PHEB).Firstly,the principal component analysis(PCA)and the fuzzy c-means clustering(FCM)algorithm is used to construct the comprehensive driving cycle,congestion driving cycle,urban driving cycle and suburban driving cycle of Chinese urban buses.Secondly,an improved particle swarm optimization(IPSO)algorithm is proposed,and is used to optimize the control parameters of PHEB under different driving cycles,respectively.Then,the variable parameter self-adaptive control strategy based on driving condition identification is given.Finally,for an actual running vehicle,the driving condition is identified by relevance vector machine(RVM),and the corresponding control parameters are selected to control the vehicle.The simulation results show that the fuel consumption of using the variable parameter self-adaptive control strategy is reduced by 4.2% compared with that of the fixed parameter control strategy,and the feasibility of the variable parameter self-adaptive control strategy is verified.展开更多
The basie idea and method about determination of the feature line equations and how to apply them to the numerical control of the press bending of panei skins were introduced. Research indicates that it is feasible to...The basie idea and method about determination of the feature line equations and how to apply them to the numerical control of the press bending of panei skins were introduced. Research indicates that it is feasible to realize the self adapting incremental press bending by adopting the feature line equation. The feature line equation, which is based on the database of the status of practical processes, can be adjusted in time, and the forming precision can be improved. It is important to correctly select and reasonably predict the feature line equations to enhance the accuracy of the incremental press bending based on the feature line database and algorithm. The determination of the feature line equation settles necessary data foundation for further research on the database of self-adapting incremental press bending, and it supplies a new clue for the development of self-adapting incremental press bending.展开更多
Double self-adaptive fuzzy PID algorithm-based control strategy was proposed to construct quasi-cascade control system to control the speed of the acid-pickling process of titanium plates and strips. It is very useful...Double self-adaptive fuzzy PID algorithm-based control strategy was proposed to construct quasi-cascade control system to control the speed of the acid-pickling process of titanium plates and strips. It is very useful in overcoming non-linear dynamic behavior, uncertain and time-varying parameters, un-modeled dynamics, and couples between the automatic turbulence control (ATC) and the automatic acid temperature control (AATC) with varying parameters during the operation process. The quasi-cascade control system of inner and outer loop self-adaptive fuzzy PID controller was built, which could effectively control the pickling speed of plates and strips. The simulated results and real application indicate that the plates and strips acid pickling speed control system has good performances of adaptively tracking the parameter variations and anti-disturbances, which ensures the match of acid pickling temperature and turbulence of flowing with acid pickling speed, improving the surface quality of plates and strips acid pickling, and energy efficiency.展开更多
Practical implementations of rechargeable lithium(Li)metal batteries have long been plagued by multiple problems of Li anode,such as Li dendrite growth,large volume change,low Coulombic efficiency.Here,we report a pro...Practical implementations of rechargeable lithium(Li)metal batteries have long been plagued by multiple problems of Li anode,such as Li dendrite growth,large volume change,low Coulombic efficiency.Here,we report a protein-enabled film that can provide effective protection for Li metal.The protective film with an integrated design of high flexibility,strong adhesion and high Li-ion transference number(0.80)is fabricated by incorporating denatured zein(corn protein)with polyethylene oxide(PEO)acting as an age nt for sustaining the denatured protein chains against refolding via the intermolecular interactions between them.Thus,a conformable zein-enabled protective film(zein@PEO)with simultaneous en hancement in flexibility,modulus and adhesion strength is gen erated to offer both functi ons of self-adapting and anion-anchoring abilities.The results show that the zein@PEO film is able to accommodate the volume change,reduce the side reactions,and homogenize the ion deposition.Benefiting from these significant properties/fu nctions,the Li/Cu cell with the zein@PEO film delivers prolonged cycle life for over 500 hours with stable performance.Paired with LiMn_(2)O_(4) cathode,the capacity,cycle stability and rate performance of the cell are remarkably improved as well,demonstrati ng the effectiveness in stabilizing Li metal batteries.展开更多
This study aims to make full use of the agricultural waste peanut shells to lower material costs and achieve cleaner production at the same time.Cellulose nanofibrils(CNF)extracted from peanut shells were mixed with a...This study aims to make full use of the agricultural waste peanut shells to lower material costs and achieve cleaner production at the same time.Cellulose nanofibrils(CNF)extracted from peanut shells were mixed with acrylic acid(AA)and dimethyl diallyl ammonium chloride(DMDAAC)to prepare a new type of capsule core(dust suppressant).Then,the self-adaptive AA-DM-CNF/CA microcapsules were prepared under the action of calcium alginate.The infrared spectroscopy and X-ray diffraction analysis results suggest that AA,DMDAAC and CNF have experienced graft copolymerization which leads to the formation of an amorphous structure.The scanning electron microscopy analysis results demonstrate that the internal dust suppressant can expand and break the wall after absorbing water,featuring a self-adaptive function.Meanwhile,the laser particle size analysis results show that the microcapsules,inside which the encapsulated dust suppressant can be observed clearly,maintain a good shape.The product performance experimental results reveal that the capsule core and the capsule wall achieve synergistic dust suppression,thus lengthening the dust suppression time.The product boasts good dust suppression,weather resistance,degradation and synergistic combustion performances.Moreover,this study,as the first report on the development and analysis of dust-suppressing microcapsules,fills in the research gap on the reaction mechanism between dust-suppressing microcapsules and coal by MS simulation.The proposed AA-DM-CNF/CA dust-suppressing microcapsules can effectively lower the dust concentration in the space and protect the physical and mental health of coal workers.In general,this research provides a new insight into the structure control and performance enhancement of dust suppressants.Expanding the application range of microcapsules is of crucial economic and social benefits.展开更多
The welding wire feed mechanism is an important component of welding equipment, both reliability and stabilization are the premise that the welding quality can be ensured. The PID is currently adapted to control the w...The welding wire feed mechanism is an important component of welding equipment, both reliability and stabilization are the premise that the welding quality can be ensured. The PID is currently adapted to control the welding wire feed mechanism, although the fuzzy PID has advantage of fast response and adaptation, the precision of fuzzy PID is lower. Accordingly, the fuzzy self-adaptive PID controller was proposed through changing fuzzy input variables and output variables based on variable universe, simple furwtion is adopted as scaling factor, the fuzzy PID controller parameters are adjusted to improve the precision and adjustment range. Simulation results show that control effects of fuzzy self-adaptive PID adopted by the welding wire feed mechanism have good adaptive ability and robustness based on variable universe, the welding experiments indicate that the welding quality met the requirements actually.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.60375001)the High School Doctoral Foundation of China(NO.20030532004).
文摘Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinization problems. According to the relative position of two different individual vectors selected to generate a difference vector in the searching place, a self-adapting strategy for the scale factor F of the difference vector is proposed. In terms of the convergence status of the target vector in the current population, a self-adapting crossover probability constant CR strategy is proposed. Therefore, good target vectors have a lower CFI while worse target vectors have a large CFI. At the same time, the mutation operator is modified to improve the convergence speed. The performance of these proposed approaches are studied with the use of some benchmark problems and applied to the trajectory planning of a three-joint redundant manipulator. Finally, the experiment results show that the proposed approaches can greatly improve robustness and convergence speed.
基金Supported by the Specialized Research Project of WuhanIron and Steel Corporation (20050038)
文摘A suit of online self-adapting control (OSAC) approach has been developed to predict and optimize annealing craft system. The approach consists of three critical parts including prediction module, self-adapting optimization module, and self-learning amendment module. Firstly, the prediction module and self- adapting optimization module are based on the modeling methods. The self-adapting optimization module consists of two parts including "reappearance of annealed process" and "optimization of subsequent annealing process". Secondly, the self-learning amendment module, based on furnace atmosphere, equipment performance, and compensation coefficients, is designed to improve the accuracy of optimization results. The results obtained from the proposed approach, usually finished in about 3 min, are in good agreement with the test values, such as the deviation of temperature for hot-spot and cold-spot are within 10 K, the relative errors are within 1.1%, and the accuracy of annealing for heating period is increased by using self-learning amendment module.
基金supported by the National Natural Science Foundation of China(61472441)
文摘The aim of this paper is to achieve the radio frequency stealth(RFS) during the course of tracking by controlling the radiation energy and the interval of a radar. Firstly, we build the model of probability of interception with the once radiation during the course of tracking. Secondly, we establish the model of the cumulative probability of interception to describe the effect of RFS throughout the tracking process and obtain two solutions that are minimizing the probability of interception and the radiation times to reduce the cumulative probability of interception. Thirdly, we propose a self-adapting radiation energy control method(SARE)to minimize the probability of interception. Fourthly, we propose a self-adapting radiation interval control method(SARI) to minimize radiation times. Fifthly, combining SARE with SARI, we propose a SARE-SARI control method(SAEI) during the course of tracking.Finally, we compare SAEI with two others by simulation, and the results show the effect of RFS of SAEI is better than the other two,but we have to make a trade-off between the ability of RFS and the effect of tracking.
文摘A new admission control algorithm considering the network self-similar access characteristics is proposed. Taking advantage of the mathematical model of the network traffic admission control which can effectively overcome the self-similar characteristics of the network requests, through the scheduling of the differential service qucue based on priority while at the same time taking into account various factors including access characteristics of requests, load information, etc, smoothness of the admission control is ensured by the algorithm proposed in this paper. We design a non-linear self-adapting control algorithm by introducing an exponential admission function, thus overcomes the negative aspects introduced by static threshold parameters. Simulation results show that the scheme proposed in this paper can effectively improve the resource utilization of the clusters, while at the same time protecting the service with high priority. Our simulation results also show that this algorithm can improve system stability and reliability too. Key words Web cluster - admission control - differential service - self-similar - self-adapting CLC number TP 393 Foundation item: Supported by the National Natural Science Foundation of China (10375024) and the Hunan Natural Science Foundation of China(03JJY4054)Biography: LIU An-feng(1971-), male, Ph. D candidate, majoring in network computing, Web QoS.
基金the Institute of Biomass&Functional Materials of Shaanxi University of Science and Technology for funding this research workfinancially supported by the National Natural Science Foundation of China(2207081675,22278257,22308209)+1 种基金the Key R&D Program of Shaanxi Province(2024SF-YBXM-586)the Project of Innovation Capability Support Program in Shaanxi Province(2024ZC-KJXX-005)。
文摘Global warming and energy crisis are two major challenges in the new-century.Wearable materials that enable all-seasonal self-adapting thermal comfort without additional energy-input attract significant attention as a solution to the increasing severity of extreme climate-change.Inspired by autologous temperature-regulation and multidimensional-sensing origins of nature-skin composed of nature collagen fibers,this study engineered a nanoscale wearable natural fibers-derived thermochromic material(TMEH-skin)for robust all-season self-adapting thermal management by tactically integrating traditional immersion and spraying methods with layer-by-layer stacking-strategy.Because of the on-demand multi-functional layer-structure design,TMEH-skin achieves spontaneous~38.16%visible lightmodulation and~95.1%infrared-emission,demonstrating outstanding double-self-switching thermal management origins by simple color-changing without additional energy-input.Moreover,TMEH-skin has gratifying tensile strength of 13.18 MPa,water vapor permeability,electrical-conductivity,and hydrophobicity,further broadening the application potential and scenarios as wearable materials.In applications for military-missions or reconnaissance behind enemy-lines,TMEH-skin robustly integrates the multi-functionalities of wearing-comfort,physiological signal-response capability for accurate transmission of Morse-code,and thermal management performances under special circumstances,indicating its tremendous potential for smart military-applications.Simulation results show that TMEH-skin has prominent energy-saving efficiency in cities with different climate zones.This study provides a new reference to the booming innovation of natural-derived wearable materials for all-seasonal self-adapting thermal management.
基金supported by the National Natural Science Foundation of China(61433003,60904003,11602019).
文摘A fast self-adapting high-order sliding mode(FSHOSM)controller is designed for a class of nonlinear systems with unknown uncertainties.As for uncertainty-free nonlinear system,a new switching condition is introduced into the standard geometric homogeneity.Different from the existing geometric homogeneity method,both state variables and their derivatives are considered to bring a reasonable effective switching condition.As a result,a faster convergence rate of state variables is achieved.Furthermore,based on the integral sliding mode(ISM)and above geometric homogeneity,a self-adapting high-order sliding mode(HOSM)control law is proposed for a class of nonlinear systems with uncertainties.The resulting controller allows the closed-loop system to conduct with the expected properties of strong robustness and fast convergence.Stable analysis of the nonlinear system is also proved based on the Lyapunov approach.The effectiveness of the resulting controller is verified by several simulation results.
基金supported by the open fund from Key Lab of Eco-restoration of Regional Contaminated Environment(Shenyang University),Ministry of Education(No.KF-22-08)the National Natural Science Foundation of China(Nos.22003074 and 42177406)+1 种基金the Youth Innovation Promotion Association CAS,Guangdong Basic and Applied Basic Research Foundation(No.2023A1515011410)S.Liu gratefully acknowledges the financial support by the National Natural Science Foundation of China(No.52302223).
文摘Typical p-n junctions have emerged as a promising strategy for contending with charge carrier recombination in solar conversion.However,the photo-corrosion and unsuitable energy band positions still hinder their practical application for hydrogen production from water in photoelectrochemical systems.Here,an in-situ photo-oxidation method is proposed for achieving self-adapting activation of BiVO_(4)-based photoanodes with surface-encapsulated CuGaS_(2)particles by the ZnO layer.The self-adapting activation demotes the energy band positions of CuGaS_(2),establishing an S-scheme structure with BiVO_(4),resulting in an efficient p-n junction photoanode.The optimal sample exhibits enhanced photocurrent and an onset potential cathodically shifted by~300 mV compared with BiVO_(4),which is attributed to significantly enhanced charge transport and transfer efficiencies.As expected,it attains the highest photocurrent value of 5.87 mA·cm^(-2),aided by a hole scavenger at 1.23 V versus a reversible hydrogen electrode,which significantly surpasses that of BiVO_(4)(4.32 mA·cm^(-2)).
基金the financial support from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0470303)the National Key Research and Development Program of China (2022YFB4600101)+5 种基金the National Natural Science Foundation of China (52175201)the Research Program of Science and Technology Department of Gansu Province (24JRRA059, 24JRRA044, and 24YFFA014)the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai (AMGM2024F12)the Major Program (ZYFZFX-2) of the Lanzhou Institute of Chemical Physics, CASthe Special Research Assistant Project of the Chinese Academy of Sciencesthe Oasis Scholar of Shihezi University
文摘Octopuses,due to their flexible arms,marvelous adaptability,and powerful suckers,are able to effortlessly grasp and disengage various objects in the marine surrounding without causing devastation.However,manipulating delicate objects such as soft and fragile foods underwater require gentle contact and stable adhesion,which poses a serious challenge to now available soft grippers.Inspired by the sucker infundibulum structure and flexible tentacles of octopus,herein we developed a hydraulically actuated hydrogel soft gripper with adaptive maneuverability by coupling multiple hydrogen bond-mediated supramolecular hydrogels and vat polymerization three-dimensional printing,in which hydrogel bionic sucker is composed of a tunable curvature membrane,a negative pressure cavity,and a pneumatic chamber.The design of the sucker structure with the alterable curvature membrane is conducive to realize the reliable and gentle switchable adhesion of the hydrogel soft gripper.As a proof-of-concept,the adaptive hydrogel soft gripper is capable of implement diversified underwater tasks,including gingerly grasping fragile foods like egg yolks and tofu,as well as underwater robots and vehicles that station-keeping and crawling based on switchable adhesion.This study therefore provides a transformative strategy for the design of novel soft grippers that will render promising utilities for underwater exploration soft robotics.
基金Supported by the National Natural Science Foundation of China (50505017)Fok Ying Tung Edu-cation Foundation (111056)+1 种基金the Innovative and Excellent Foundation for Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics (BCXJ08-07)the New Century Excellent Talents in University,China (NCET-08)~~
文摘Future manufacturing systems need to cope with frequent changes and disturbances, therefore their control architectures require constant adaptability, agility, stability, self-organization, intelligence, and robustness. Bio-inspired manufacturing system can well satisfy these requirements. For this purpose, by referencing the biological organization structure and the mechanism, a bio-inspired manufacturing cell is presented from a novel view, and then a bio-inspired self-adaptive manufacturing model is established based on the ultra-short feedback mechanism of the neuro-endocrine system. A hio-inspired self-adaptive manufacturing system coordinated model is also established based on the neuro-endocrine-immunity system (NEIS). Finally, an example based on pheromone communication mechanism indicates that the robustness of the whole manufacturing system is improved by bio-inspired technologies.
基金sponsored by National Natural Science Foundation of China(Grant No.40904035)
文摘Gassmann's equations are commonly used for predicting seismic wave velocity in rock physics research.However the input matrix mineral bulk modulus parameters are not accurate,which greatly influences the prediction reliability.In this paper,combining the Russell fluid factor with the Gassman-Biot-Geertsma equation and introducing the dry-rock Poisson's ratio,we propose an effective matrix mineral bulk modulus extraction method.This method can adaptively invert the equivalent matrix mineral bulk modulus to apply the Gassmann equation to fluid substitution of complex carbonate reservoirs and increase the fluid prediction reliability.The verification of the actual material fluid substitution also shows that this method is reliable,efficient,and adaptable.
基金National Natural Science Foundation of China (50073002)
文摘On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method, the sublaminate elements are generated automatically when the delamination damage occurs or extends. Thus, the complex process and state of delamination damage can be simulated practically with high efficiency for both analysis and modeling. Based on the self-adapting delamination method, linear dynamic finite element damage analysis is performed to simulate the low-velocity impact damage process of three types of mixed woven composite laminates. Taking the frictional force among sublaminations during delaminating and the transverse normal stress into account, the analytical results are consistent with those of the experimental data.
基金Project(51090385) supported by the Major Program of National Natural Science Foundation of ChinaProject(2011IB001) supported by Yunnan Provincial Science and Technology Program,China+1 种基金Project(2012DFA70570) supported by the International Science & Technology Cooperation Program of ChinaProject(2011IA004) supported by the Yunnan Provincial International Cooperative Program,China
文摘The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.
基金Supported by the National High Technology Research and Development Program of China (No. 2007AA04Z346) , the National Natural Science Foundation of China ( No. 50905094) and China Postdoctoral Science Foundation ( No. 20080440378, 200902097).
文摘In micro electrical discharge machining (micro EDM), it is difficult for servo controlling the narrow discharge gap with the characters of non-linear and quick change. In this paper, aiming at solving the problems above, a self-adaptive fuzzy controller with formulary rule (SAFCFR) is presented based on the dual feedbacks composed by gap electric signal and discharge-ratio statistics. To ensure the properties of self-optimizing and fast stabilization, the formulary rule was designed with a tuning factor. In addition, the fast-convergence algorithms were introduced to adjust control target center and output scale factor. In this way, the normal discharge ratio can tend to the highest value during micro-EDM process. Experimental results show that the proposed algorithms are effective in improving the servo-control performance. According to the drilling-micro-EDM experiments, the machining efficiency is improved by 20% through applying SAFCFR. Moreover, SAFCFR is a prompt way to optimize parameters of discharge-gap servo control.
基金Item Sponsored by National High Technology Research and Development Program of China(2007AA04Z194)Major State Basic Research Development Program of China(2007CB613701)+1 种基金National Natural Science Foundation of China(51004032)Fundamental Research Funds for Central Universities of China(NO90409002)
文摘To improve billet quality and the trackability and stability of secondary cooling water during continuous casting, the superheat is introduced into the water distribution for secondary cooling to design the relevant control system, based on the water distribution model, superheat and fuzzy self-adaptive PID (process identity) . A spray cooling system is set up for simulation test in laboratory to test the step signal from the conventional, integral sepa rated and fuzzy self-adaptive PID controllers and the simulation casting. And the on-site test is done in some steel plant. The test results show that the fuzzy self-adaptive PID controller's performance is better than that of the other two controllers, which provides a basis for further study and application.
基金Supported by China Automobile Test Cycle Development Project(CATC2015)
文摘A variable parameter self-adaptive control strategy based on driving condition identification is proposed to take full advantage of the fuel saving potential of the plug-in hybrid electric bus(PHEB).Firstly,the principal component analysis(PCA)and the fuzzy c-means clustering(FCM)algorithm is used to construct the comprehensive driving cycle,congestion driving cycle,urban driving cycle and suburban driving cycle of Chinese urban buses.Secondly,an improved particle swarm optimization(IPSO)algorithm is proposed,and is used to optimize the control parameters of PHEB under different driving cycles,respectively.Then,the variable parameter self-adaptive control strategy based on driving condition identification is given.Finally,for an actual running vehicle,the driving condition is identified by relevance vector machine(RVM),and the corresponding control parameters are selected to control the vehicle.The simulation results show that the fuel consumption of using the variable parameter self-adaptive control strategy is reduced by 4.2% compared with that of the fixed parameter control strategy,and the feasibility of the variable parameter self-adaptive control strategy is verified.
文摘The basie idea and method about determination of the feature line equations and how to apply them to the numerical control of the press bending of panei skins were introduced. Research indicates that it is feasible to realize the self adapting incremental press bending by adopting the feature line equation. The feature line equation, which is based on the database of the status of practical processes, can be adjusted in time, and the forming precision can be improved. It is important to correctly select and reasonably predict the feature line equations to enhance the accuracy of the incremental press bending based on the feature line database and algorithm. The determination of the feature line equation settles necessary data foundation for further research on the database of self-adapting incremental press bending, and it supplies a new clue for the development of self-adapting incremental press bending.
基金Project(51090385) supported by the National Natural Science Foundation of ChinaProject(2001IB001) supported by Yunnan Provincial Science and Technology Fund, China
文摘Double self-adaptive fuzzy PID algorithm-based control strategy was proposed to construct quasi-cascade control system to control the speed of the acid-pickling process of titanium plates and strips. It is very useful in overcoming non-linear dynamic behavior, uncertain and time-varying parameters, un-modeled dynamics, and couples between the automatic turbulence control (ATC) and the automatic acid temperature control (AATC) with varying parameters during the operation process. The quasi-cascade control system of inner and outer loop self-adaptive fuzzy PID controller was built, which could effectively control the pickling speed of plates and strips. The simulated results and real application indicate that the plates and strips acid pickling speed control system has good performances of adaptively tracking the parameter variations and anti-disturbances, which ensures the match of acid pickling temperature and turbulence of flowing with acid pickling speed, improving the surface quality of plates and strips acid pickling, and energy efficiency.
基金supported by NSF CBET 1929236the support on microscopy characterizations from the Franceschi Microscopy & Imaging Center at Washington State University.
文摘Practical implementations of rechargeable lithium(Li)metal batteries have long been plagued by multiple problems of Li anode,such as Li dendrite growth,large volume change,low Coulombic efficiency.Here,we report a protein-enabled film that can provide effective protection for Li metal.The protective film with an integrated design of high flexibility,strong adhesion and high Li-ion transference number(0.80)is fabricated by incorporating denatured zein(corn protein)with polyethylene oxide(PEO)acting as an age nt for sustaining the denatured protein chains against refolding via the intermolecular interactions between them.Thus,a conformable zein-enabled protective film(zein@PEO)with simultaneous en hancement in flexibility,modulus and adhesion strength is gen erated to offer both functi ons of self-adapting and anion-anchoring abilities.The results show that the zein@PEO film is able to accommodate the volume change,reduce the side reactions,and homogenize the ion deposition.Benefiting from these significant properties/fu nctions,the Li/Cu cell with the zein@PEO film delivers prolonged cycle life for over 500 hours with stable performance.Paired with LiMn_(2)O_(4) cathode,the capacity,cycle stability and rate performance of the cell are remarkably improved as well,demonstrati ng the effectiveness in stabilizing Li metal batteries.
基金supported by the National Key R&D Program of China(No.2022YFC2503201)the National Natural Science Foundation of China(Nos.52274215,52004150 and 52074012)+2 种基金the Qingchuang Science and Technology Project of Universities in Shandong Province,China(No.2019KJH005)the Outstanding Young Talents Project of Shandong University of Science and Technology(No.SKR22-5-01)the China Scholarship Council(No.202108370223).
文摘This study aims to make full use of the agricultural waste peanut shells to lower material costs and achieve cleaner production at the same time.Cellulose nanofibrils(CNF)extracted from peanut shells were mixed with acrylic acid(AA)and dimethyl diallyl ammonium chloride(DMDAAC)to prepare a new type of capsule core(dust suppressant).Then,the self-adaptive AA-DM-CNF/CA microcapsules were prepared under the action of calcium alginate.The infrared spectroscopy and X-ray diffraction analysis results suggest that AA,DMDAAC and CNF have experienced graft copolymerization which leads to the formation of an amorphous structure.The scanning electron microscopy analysis results demonstrate that the internal dust suppressant can expand and break the wall after absorbing water,featuring a self-adaptive function.Meanwhile,the laser particle size analysis results show that the microcapsules,inside which the encapsulated dust suppressant can be observed clearly,maintain a good shape.The product performance experimental results reveal that the capsule core and the capsule wall achieve synergistic dust suppression,thus lengthening the dust suppression time.The product boasts good dust suppression,weather resistance,degradation and synergistic combustion performances.Moreover,this study,as the first report on the development and analysis of dust-suppressing microcapsules,fills in the research gap on the reaction mechanism between dust-suppressing microcapsules and coal by MS simulation.The proposed AA-DM-CNF/CA dust-suppressing microcapsules can effectively lower the dust concentration in the space and protect the physical and mental health of coal workers.In general,this research provides a new insight into the structure control and performance enhancement of dust suppressants.Expanding the application range of microcapsules is of crucial economic and social benefits.
文摘The welding wire feed mechanism is an important component of welding equipment, both reliability and stabilization are the premise that the welding quality can be ensured. The PID is currently adapted to control the welding wire feed mechanism, although the fuzzy PID has advantage of fast response and adaptation, the precision of fuzzy PID is lower. Accordingly, the fuzzy self-adaptive PID controller was proposed through changing fuzzy input variables and output variables based on variable universe, simple furwtion is adopted as scaling factor, the fuzzy PID controller parameters are adjusted to improve the precision and adjustment range. Simulation results show that control effects of fuzzy self-adaptive PID adopted by the welding wire feed mechanism have good adaptive ability and robustness based on variable universe, the welding experiments indicate that the welding quality met the requirements actually.