A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothe...A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothermal decomposition behaviours is presented. For double-base propellant composed of 56±1wt% of nitrocellulose (NC), 27±0.5wt% of nitroglycerine (NG), 8.15±0.15wt% of dinitrotoluene (DNT), 2.5±0.1wt% of methyl centralite, 5.0±0.15wt% of catalyst and 1.0±0.1wt% of other, the values of r of 49.4 years at 40℃, of TSAOT of 151.35℃ and of Tb of 163.01℃ were obtained.展开更多
The new technology of direct decomposition of H_(2)S into high value-added H_(2) and S,as an alternative to the Claus process in industry,is an ideal route that can not only deal with toxic and abundant H_(2)S waste g...The new technology of direct decomposition of H_(2)S into high value-added H_(2) and S,as an alternative to the Claus process in industry,is an ideal route that can not only deal with toxic and abundant H_(2)S waste gas but also recover clean energy H_(2),which has significant socio-economic and ecological advantages.However,the highly effective decomposition of H_(2)S at low temperatures is still a great challenge,because of the stringent thermodynamic equilibrium constraints(only 20% even at high temperature of 1010℃).Conventional microwave catalysts exhibit unsatisfactory performance at low temperatures(below 600℃).Herein,Mo_(2)C@CeO_(2) catalysts with a core-shell structure were successfully developed for robust microwave catalytic decomposition of H_(2)S at low temperatures.Two carbon precursors,para-phenylenediamine(Mo_(2)C-p)and meta-phenylenediamine(Mo_(2)C-m),were employed to tailor Mo_(2)C configurations.Remarkably,the H_(2)S conversion of Mo_(2)C-p@CeO_(2) catalyst at a low temperature of 550℃ is as high as 92.1%,which is much higher than the H_(2)S equilibrium conversion under the conventional thermal conditions(2.6% at 550℃).To our knowledge,this represents the most active catalyst for microwave catalytic decomposition of H_(2)S at low temperature of 550℃.Notably,Mo_(2)C-p demonstrated superior intrinsic activity(84%)compared to Mo_(2)C-m(6.4%),with XPS analysis revealing that its enhanced performance stems from a higher concentration of Mo_(2+)active sites.This work presents a substitute approach for the efficient utilization of H_(2)S waste gas and opens up a novel avenue for the rational design of microwave catalysts for microwave catalytic reaction at low-temperature.展开更多
A study was conducted to identify the differences in the decompositions of leaf litter, lignin and carbohydrate between coniferous forest and broadleaf forest at 20℃ and 30℃ in Huangshan Mountain, Anhui Province, Ch...A study was conducted to identify the differences in the decompositions of leaf litter, lignin and carbohydrate between coniferous forest and broadleaf forest at 20℃ and 30℃ in Huangshan Mountain, Anhui Province, China. Results showed that at 20℃ mass loss of leaf litter driven by microbial decomposers was higher in broadleaf forest than that in coniferous forest, whereas the difference in mass loss of leaf litter was not significant at 30℃. The temperature increase did not affect the mass loss of leaf litter for coniferous forest treatment, but significantly reduced the decomposition rate for broadleaf forest treatment. The functional decomposers of microorganism in broadleaf forest produced a higher lignin decomposition rate at 20℃, compared to that in coniferous forest, but the difference in lignin decomposition was not found between two forest types at 30℃. Improved temperature increased the lignin decomposition for both broadleaf and coniferous forest. Additionally, the functional group of microorganism from broadleaf forest showed marginally higher carbohydrate loss than that from coniferous forest at both temperatures. Temperature increase reduced the carbohydrate decomposition for broadleaf forest, while only a little reduce was found for coniferous forest. Remarkable differences occurred in responses between most enzymes (Phenoloxidase, peroxidase, !5-glucosidase and endocellulase) and decomposition rate of leaf litter to forest type and temperature, although there exist strong relationships between measured enzyme activities and decomposition rate in most cases. The reason is that more than one enzyme contribute to the mass loss of leaf litter and organic chemical components. In conclusion, at a community scale the coniferous and broadleaf forests differed in their temperature-decomposition relationships.展开更多
By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation...By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation and their correlations with SST are analyzed.The coupling relationship between the anomalous distribution in summer precipitation and the variation of SST has between studied with the Singular Value Decomposition(SVD) analysis.The increase or decrease of summer precipitation in the Dongting Lake region is closely associated with the SST anomalies in three key regions.The variation of SST in the three key regions has been proved to be a significant previous signal to anomaly of summer rainfall in Dongting region.展开更多
By the Empirical Mode Decomposition method, we analyzed the observed monthly average temperature in more than 700 stations from 1951-2001 over China. Simultaneously, the temperature variability of each station is calc...By the Empirical Mode Decomposition method, we analyzed the observed monthly average temperature in more than 700 stations from 1951-2001 over China. Simultaneously, the temperature variability of each station is calculated by this method, and classification chart of long term trend and temperature variability distributing chart of China are obtained, supported by GIS, 1 kmxl km resolution. The results show that: in recent 50 years, the temperature has increased by more than 0.4~C/10a in most parts of northern China, while in Southwest China and the middle and lower Yangtze Valley, the increase is not significant. The areas with a negative temperature change rate are distributed sporadically in Southwest China. Meanwhile, the temperature data from 1881 to 2001 in nine study regions in China are also analyzed, indicating that in the past 100 years, the temperature has been increasing all the way in Northeast China, North China, South China, Northwest China and Xinjiang and declining in Southwest China. An inverse ‘V-shaped’ trend is also found in Central China. But in Tibet the change is less significant.展开更多
The kinetics of non-catalyzed decompositions of xylose and its decomposition product furfural in high temperature liquid water (HTLW) was studied for temperature from 180 to 220℃ and under pressure of 10MPa. The ma...The kinetics of non-catalyzed decompositions of xylose and its decomposition product furfural in high temperature liquid water (HTLW) was studied for temperature from 180 to 220℃ and under pressure of 10MPa. The main products of xylose decomposition were furfural and formic acid, and furfural further degraded to formic acid under HTLW condition. With the assumption of first order kinetics e.quation, the evaluated activation energy of xylose and furfural decomposition was 123.27kJ·mol^-1 and 58.84kJ·mol^-1, respectively.展开更多
The sea surface temperature (SST) has substantial impacts on the climate; however, due to its highly nonlinear nature, evidently non-periodic and strongly stochastic properties, it is rather difficult to predict SST...The sea surface temperature (SST) has substantial impacts on the climate; however, due to its highly nonlinear nature, evidently non-periodic and strongly stochastic properties, it is rather difficult to predict SST. Here, the authors combine the complementary ensemble empirical mode decomposition (CEEMD) and support vector machine (SVM) methods to predict SST. Extensive tests from several different aspects are presented to validate the effectiveness of the CEEMD-SVM method. The results suggest that the new method works well in forecasting Northeast Pacific SST at a 12-month lead time, with an average absolute error of approximately 0.3℃ and a correlation coefficient of 0.85. Moreover, no spring predictability barrier is observed in our experiments.展开更多
Delta carbonate (Delta C, AC) method is a commonly- used surface geochemical exploration method for petroleum surveys. Delta C holds that light hydrocarbon gases leak into near-surface soils or sediments from underl...Delta carbonate (Delta C, AC) method is a commonly- used surface geochemical exploration method for petroleum surveys. Delta C holds that light hydrocarbon gases leak into near-surface soils or sediments from underlying petroleum accumulations, then partly oxidized to CO2, resulting in a special carbonate precipitation, which is termed as Delta carbonate (△C).展开更多
A relationship is established, using the least squares method, between the standard enthalpy of formation and the standard enthalpy of formation divided by the exothermic denitration decomposition peak absolute temper...A relationship is established, using the least squares method, between the standard enthalpy of formation and the standard enthalpy of formation divided by the exothermic denitration decomposition peak absolute temperature corresponding to β →0.展开更多
The thermal decomposition temperature is one of the most important parameters to evaluate fire hazard of organic peroxide. A quantitative structure-property relationship model was proposed for estimating the thermal d...The thermal decomposition temperature is one of the most important parameters to evaluate fire hazard of organic peroxide. A quantitative structure-property relationship model was proposed for estimating the thermal decomposition temperatures of organic peroxides. The entire set of 38 organic peroxides was at random divided into a training set for model development and a prediction set for external model validation. The novel local molecular descriptors of AT1, AT2, AT3, AT4, AT5, AT6 and global molecular descriptor of ATC have been proposed in order to character organic peroxides’ molecular structures. An accurate quantitative structure-property relationship (QSPR) equation is developed for the thermal decomposition temperatures of organic peroxides. The statistical results showed that the QSPR model was obtained using the multiple linear regression (MLR) method with correlation coefficient (R), standard deviation (S), leave-one-out validation correlation coefficient (RCV) values of 0.9795, 6.5676 ℃ and 0.9328, respectively. The average absolute relative deviation (AARD) is only 3.86% for the experimental values. Model test by internal leave-one-out cross validation and external validation and molecular descriptor interpretation were discussed. Comparison with literature results demonstrated that novel local and global descriptors were useful molecular descriptors for predicting the thermal decomposition temperatures of organic peroxides.展开更多
The complete decomposition of formaldehyde(HCHO) at ambient temperature is the most potential strategy for HCHO elimination from indoor environment.Herein,extra low content of Pt nanoparticles(0.025 wt%)supported on w...The complete decomposition of formaldehyde(HCHO) at ambient temperature is the most potential strategy for HCHO elimination from indoor environment.Herein,extra low content of Pt nanoparticles(0.025 wt%)supported on water-solubility carbon nitride/ceria(Pt/gC_(3)N_(4)@CeO_(2)) was prepared for gaseous HCHO removal at ambient temperature in a simulated indoor environment.Fluorescent light(8 W) illumination could visibly boost the complete decomposition of HCHO into CO_(2) over Pt/gC_(3)N_(4)@CeO_(2).The cooperative effect in the distinct heterostructure and plenty of surface reactive oxygen species contribute primarily to the enhanced catalytic performance of Pt/g-C_(3)N_(4)@CeO_(2).Moreover,the possible mechanism of HCHO oxidation over Pt/g-C_(3)N_(4)@CeO_(2) assisted by the fluorescent light irradiation was proposed based on the physicochemical and optical characterization as well as the result of in situ diffuse reflectance infrared Fourier transform spectra.This work might shed some light on the potential application of the versatile catalysts for ambient-temperature catalytic decomposition of HCHO by making full use of the indoor energies.展开更多
Iron-based perovskite-type compounds modified by Ru were prepared through sol-gel process to study its catalytic activity of NOx direct decomposition at low temperature and evaluate the conversion of NO under the expe...Iron-based perovskite-type compounds modified by Ru were prepared through sol-gel process to study its catalytic activity of NOx direct decomposition at low temperature and evaluate the conversion of NO under the experimental conditions. The catalytic activity of La 0.9Ce 0.1Fe 0.8-nCo 0.2RunO3 (n=0.01,0.03,0.05,0.07,0.09)series for the NO, NO-CO two components, CO-HC-NO three components were also analyzed. The catalytic investigation evidenced that the presence of Ru is necessary for making highly activity in decomposition of nitric oxide even at low temperature(400 ℃)and La 0.9Ce 0.9Fe 0.75Co 0.2Ru 0.05O3 (n=0.05) has better activity in all the samples, the conversion of it is 58.5%. With the reducing gas(CO,C3H6)added into the gas, the catalyst displayed very high activity in decomposition of NO and the conversion of it is 80% and 92.5% separately.展开更多
The decomposed products from high nitrogen austenite aging at 225°C were investigated by TEM. It is found that the shape of decomposition products inside the austenite grains is not regular and not strictly orien...The decomposed products from high nitrogen austenite aging at 225°C were investigated by TEM. It is found that the shape of decomposition products inside the austenite grains is not regular and not strictly oriented. Preferential nucleation of y-Fe4N at dislocations and grain boundaries has been observed. It also has been found that during the first stage of the high nitrogen austenite decomposition a large quantity of ultra-fine /-Fe4N precipitate inside the parent austenite, which has been thought to be the undecomposed region before. The ultimate products are composed of highly dispersed a-Fe and /-Fe4N, with both of them maintaining nanometer scale. The micro-hardness of them can be as high as 900HV.展开更多
A new high throughput heat-treatment method with a continuous temperature gradient between 600 and 700 ?C was utilized on the Ti-5553 alloy(Ti-5 Al-5 Mo-5 V-3 Cr, mass fraction, %). The temperature gradient was ind...A new high throughput heat-treatment method with a continuous temperature gradient between 600 and 700 ?C was utilized on the Ti-5553 alloy(Ti-5 Al-5 Mo-5 V-3 Cr, mass fraction, %). The temperature gradient was induced by the variation of the axial section of sample, which was heated by the direct current. The variation of continuous cooling rates on the treated sample was realized by using the end quenching method. The microstructural evolution and mechanical properties under different heat treatment conditions were evaluated. The results show that the pseudo-spinodal decomposition of the alloy occurs at(617±1) ?C, and the size of the precipitated α phase is around 300 nm. Moreover, the highest microhardness is obtained after the heat treatment at the pseudo-spinodal decomposition temperature for 4 h. These indicate that the high throughput method is efficient and fast to determine the phase transformation temperature and corresponding microstructural evolution of alloys.展开更多
The trends and fluctuations of observed and CMIP5-simulated yearly mean surface air temperature over China were analyzed.In general,the historical simulations replicate the observed increase of temperature,but the mul...The trends and fluctuations of observed and CMIP5-simulated yearly mean surface air temperature over China were analyzed.In general,the historical simulations replicate the observed increase of temperature,but the multi-model ensemble (MME) mean does not accurately reproduce the drastic interannual fluctuations.The correlation coefficient of the MME mean with the observations over all runs and all models was 0.77,which was larger than the largest value (0.65) from any single model ensemble.The results showed that winter temperatures are increasing at a higher rate than summer temperatures,and that winter temperatures exhibit stronger interannual variations.It was also found that the models underestimate the differences between winter and summer rates.The ensemble empirical mode decomposition technique was used to obtain six intrinsic mode functions (IMFs) for the modeled temperature and observations.The periods of the first two IMFs of the MME mean were 3.2 and 7.2,which represented the cycle of 2-7-yr oscillations.The periods of the third and fourth IMFs were 14.7 and 35.2,which reflected a multi-decadal oscillation of climate change.The corresponding periods of the first four IMFs were 2.69,7.24,16.15 and 52.5 in the observed data.The models overestimate the period of low frequency oscillation of temperature,but underestimate the period of high frequency variation.The warming rates from different representative concentration pathways (RCPs) were calculated,and the results showed that the temperature will increase by approximately 0.9℃,2.4℃,3.2℃ and 6.1℃ in the next century under the RCP2.6,RCP4.5,RCP6.0 and RCP8.5 scenarios,respectively.展开更多
The microbial consortium GF-20(GF-20) can efficiently decompose corn stover at low temperatures. The present study explored the key microbes of GF-20 and evaluated different culture conditions on its composition stabi...The microbial consortium GF-20(GF-20) can efficiently decompose corn stover at low temperatures. The present study explored the key microbes of GF-20 and evaluated different culture conditions on its composition stability to promote the utilization of corn stover decomposing microbes in low temperature regions. GF-20 was subcultured to the 15 th generation under different temperatures, pHs, carbon, and nitrogen sources. Then, the dynamics of fermenting pH, cellulose enzyme activities, carbohydrate concentration, and oxidation reduction potential were determined to estimate the degradation efficiency of corn stover with GF-20. Furthermore, the structural stability and functional microbes of GF-20 were identified on the basis of PCR-denaturing gradient gel electrophoresis(DGGE) profiling and principal component analysis. The results showed that the offspring of GF-20 subcultured under different temperatures(4–30°C) and pH(6.0–9.0) conditions maintained stable growth, decomposition function, and composition structure. Furthermore, consortia GF-20 had a stable composition structure, which induced GF-20 to secrete cellulose and promote substrate decomposition as corn stover and ammonium were used as sources of carbon and nitrogen, respectively. According to the PCR-DGGE profiles, the key strains of GF-20 were determined to be Bacillus licheniformis, Cellvibrio mixtus subsp. mixtus, Bacillus tequilensis, Clostridium populeti, and Clostridium xylanolyticum.展开更多
The traditional anomaly (TA) reference frame and its corresponding anomaly for a given data span changes with the extension of data length. In this study, the modulated annual cycle (MAC), instead of the widely us...The traditional anomaly (TA) reference frame and its corresponding anomaly for a given data span changes with the extension of data length. In this study, the modulated annual cycle (MAC), instead of the widely used climatological mean annual cycle, is used as an alternative reference frame for computing climate anomalies to study the multi-timescale variability of surface air temperature (SAT) in China based on homogenized daily data from 1952 to 2004. The Ensemble Empirical Mode Decomposition (EEMD) method is used to separate daily SAT into a high frequency component, a MAC component, an interannual component, and a decadal-to-trend component. The results show that the EEMD method can reflect historical events reasonably well, indicating its adaptive and temporally local characteristics. It is shown that MAC is a temporally local reference frame and will not be altered over a particular time span by an exten-sion of data length, thereby making it easier for physical interpretation. In the MAC reference frame, the low frequency component is found more suitable for studying the interannual to longer timescale variability (ILV) than a 13-month window running mean, which does not exclude the annual cycle. It is also better than other traditional versions (annual or summer or winter mean) of ILV, which contains a portion of the annual cycle. The analysis reveals that the variability of the annual cycle could be as large as the magnitude of interannual variability. The possible physical causes of different timescale variability of SAT in China are further discussed.展开更多
In conventional time series analysis, a process is often modeled as three additive components: linear trend, seasonal effect, and random noise. In this paper, we perform an analysis of surface air temperature in a re...In conventional time series analysis, a process is often modeled as three additive components: linear trend, seasonal effect, and random noise. In this paper, we perform an analysis of surface air temperature in a region of China using a decomposition method in time series analysis. Applications to the National Centers for Environmental Prediction/the National Center for Atmospheric Research (NCEP/NCAR) Collaborative Reanalysis data in this region of China are discussed. The main finding was that the surface air temperature trend estimated for January 1948 to February 2006 was not statistically significant at 0.5904℃ (100 yr)^-1. Forecasting aspects are also considered.展开更多
On account of excellent thermal physical properties, molten nitrates/nitrites salt has been widely employed in heat transfer and thermal storage industry, especially in concentrated solar power system. The thermal sta...On account of excellent thermal physical properties, molten nitrates/nitrites salt has been widely employed in heat transfer and thermal storage industry, especially in concentrated solar power system. The thermal stability study of molten nitrate/nitrite salt is of great importance for this system, and the decomposition mechanism is the most complicated part of it. The oxide species O2^2- and O2^- were considered as intermediates in molten KNO3-NaNO3 while hard to been detected in high temperature molten salt due to their trace concentration and low stability. In this work, the homemade in situ high temperature UV- Vis instrument and a commercial electron paramagnetic resonance were utilized to supply evidence for the formation of superoxide during a slow decomposition process of heat transfer salt (HTS, 53 wt% KNO3/40 wt% NaNO2/7 wt% NaNO3). It is found that the superoxide is more easily generated from molten NaNO2 compared to NaNO3, and it has an absorption band at 420-440 nm in HTS which red shifts as temperature increases. The band is assigned to charge-transfer transition in NaO2 or KO2, responsible for the yellow color of the molten nitrate/nitrite salt. Furthermore, the UV absorption bands of molten NaNO2 and NANO3 are also obtained and compared with that of HTS.展开更多
The decomposition kinetics for formation of CO2 hydrates in 90 cm 3wet natural silica sands were studied systematically using the depressurization method at the temperatures ranging from 273.2 to 277.2 K and the press...The decomposition kinetics for formation of CO2 hydrates in 90 cm 3wet natural silica sands were studied systematically using the depressurization method at the temperatures ranging from 273.2 to 277.2 K and the pressures from 0.5 to 1.0 MPa.The effects of temperature,pressure,particle diameter,porosity,and salinity of formation water on the decomposition kinetics were investigated.The results show that the dissociation percentage increases as temperature increases or as the initial decomposition pressure decreases.An increase in porosity or a decrease in particle diameter of silica sands accelerates the decomposition.Increasing the salinity of the formation water gives rise to a faster decomposition.However,a combination of the present results with the observations in literature reveals that the effect of the coexisting ionic solute depends on its chemical structure.展开更多
基金We are grateful to the National Natural Science Foundation of China (No. 20573098)
文摘A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothermal decomposition behaviours is presented. For double-base propellant composed of 56±1wt% of nitrocellulose (NC), 27±0.5wt% of nitroglycerine (NG), 8.15±0.15wt% of dinitrotoluene (DNT), 2.5±0.1wt% of methyl centralite, 5.0±0.15wt% of catalyst and 1.0±0.1wt% of other, the values of r of 49.4 years at 40℃, of TSAOT of 151.35℃ and of Tb of 163.01℃ were obtained.
基金supported by the National Natural Science Foundation of China(22178295,21706225)Natural Science Foundation of Hunan Province(2025JJ50085)Hunan Collaborative Innovation Center of New Chemical Technologies for Environmental Benignity and Efficient Resource Utilization.
文摘The new technology of direct decomposition of H_(2)S into high value-added H_(2) and S,as an alternative to the Claus process in industry,is an ideal route that can not only deal with toxic and abundant H_(2)S waste gas but also recover clean energy H_(2),which has significant socio-economic and ecological advantages.However,the highly effective decomposition of H_(2)S at low temperatures is still a great challenge,because of the stringent thermodynamic equilibrium constraints(only 20% even at high temperature of 1010℃).Conventional microwave catalysts exhibit unsatisfactory performance at low temperatures(below 600℃).Herein,Mo_(2)C@CeO_(2) catalysts with a core-shell structure were successfully developed for robust microwave catalytic decomposition of H_(2)S at low temperatures.Two carbon precursors,para-phenylenediamine(Mo_(2)C-p)and meta-phenylenediamine(Mo_(2)C-m),were employed to tailor Mo_(2)C configurations.Remarkably,the H_(2)S conversion of Mo_(2)C-p@CeO_(2) catalyst at a low temperature of 550℃ is as high as 92.1%,which is much higher than the H_(2)S equilibrium conversion under the conventional thermal conditions(2.6% at 550℃).To our knowledge,this represents the most active catalyst for microwave catalytic decomposition of H_(2)S at low temperature of 550℃.Notably,Mo_(2)C-p demonstrated superior intrinsic activity(84%)compared to Mo_(2)C-m(6.4%),with XPS analysis revealing that its enhanced performance stems from a higher concentration of Mo_(2+)active sites.This work presents a substitute approach for the efficient utilization of H_(2)S waste gas and opens up a novel avenue for the rational design of microwave catalysts for microwave catalytic reaction at low-temperature.
基金This study was supported by National Natural Sci-ence Foundation of China (30470299)Key Project of National Sci-ence Foundation of China (30430570).
文摘A study was conducted to identify the differences in the decompositions of leaf litter, lignin and carbohydrate between coniferous forest and broadleaf forest at 20℃ and 30℃ in Huangshan Mountain, Anhui Province, China. Results showed that at 20℃ mass loss of leaf litter driven by microbial decomposers was higher in broadleaf forest than that in coniferous forest, whereas the difference in mass loss of leaf litter was not significant at 30℃. The temperature increase did not affect the mass loss of leaf litter for coniferous forest treatment, but significantly reduced the decomposition rate for broadleaf forest treatment. The functional decomposers of microorganism in broadleaf forest produced a higher lignin decomposition rate at 20℃, compared to that in coniferous forest, but the difference in lignin decomposition was not found between two forest types at 30℃. Improved temperature increased the lignin decomposition for both broadleaf and coniferous forest. Additionally, the functional group of microorganism from broadleaf forest showed marginally higher carbohydrate loss than that from coniferous forest at both temperatures. Temperature increase reduced the carbohydrate decomposition for broadleaf forest, while only a little reduce was found for coniferous forest. Remarkable differences occurred in responses between most enzymes (Phenoloxidase, peroxidase, !5-glucosidase and endocellulase) and decomposition rate of leaf litter to forest type and temperature, although there exist strong relationships between measured enzyme activities and decomposition rate in most cases. The reason is that more than one enzyme contribute to the mass loss of leaf litter and organic chemical components. In conclusion, at a community scale the coniferous and broadleaf forests differed in their temperature-decomposition relationships.
基金Supported by The Special Foundation of Chinese Meteorological Bureau Climate Changes Program(200920)The Special Foundation of Hunan Major Scientific and Technological Research Program(2008FJ1006)~~
文摘By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation and their correlations with SST are analyzed.The coupling relationship between the anomalous distribution in summer precipitation and the variation of SST has between studied with the Singular Value Decomposition(SVD) analysis.The increase or decrease of summer precipitation in the Dongting Lake region is closely associated with the SST anomalies in three key regions.The variation of SST in the three key regions has been proved to be a significant previous signal to anomaly of summer rainfall in Dongting region.
基金National Natural Science Foundation of China, No.40371044
文摘By the Empirical Mode Decomposition method, we analyzed the observed monthly average temperature in more than 700 stations from 1951-2001 over China. Simultaneously, the temperature variability of each station is calculated by this method, and classification chart of long term trend and temperature variability distributing chart of China are obtained, supported by GIS, 1 kmxl km resolution. The results show that: in recent 50 years, the temperature has increased by more than 0.4~C/10a in most parts of northern China, while in Southwest China and the middle and lower Yangtze Valley, the increase is not significant. The areas with a negative temperature change rate are distributed sporadically in Southwest China. Meanwhile, the temperature data from 1881 to 2001 in nine study regions in China are also analyzed, indicating that in the past 100 years, the temperature has been increasing all the way in Northeast China, North China, South China, Northwest China and Xinjiang and declining in Southwest China. An inverse ‘V-shaped’ trend is also found in Central China. But in Tibet the change is less significant.
基金Supported by the National Natural Science Foundation of China (No.20476089) and the Project of the Ministry of Science and Technology of China (No.2004CCA05500).
文摘The kinetics of non-catalyzed decompositions of xylose and its decomposition product furfural in high temperature liquid water (HTLW) was studied for temperature from 180 to 220℃ and under pressure of 10MPa. The main products of xylose decomposition were furfural and formic acid, and furfural further degraded to formic acid under HTLW condition. With the assumption of first order kinetics e.quation, the evaluated activation energy of xylose and furfural decomposition was 123.27kJ·mol^-1 and 58.84kJ·mol^-1, respectively.
基金supported in part by the Major Research Plan of the National Natural Science Foundation of China[grant number91530204]the State Key Program of the National Natural Science Foundation of China[grant number 41430426]
文摘The sea surface temperature (SST) has substantial impacts on the climate; however, due to its highly nonlinear nature, evidently non-periodic and strongly stochastic properties, it is rather difficult to predict SST. Here, the authors combine the complementary ensemble empirical mode decomposition (CEEMD) and support vector machine (SVM) methods to predict SST. Extensive tests from several different aspects are presented to validate the effectiveness of the CEEMD-SVM method. The results suggest that the new method works well in forecasting Northeast Pacific SST at a 12-month lead time, with an average absolute error of approximately 0.3℃ and a correlation coefficient of 0.85. Moreover, no spring predictability barrier is observed in our experiments.
基金supported by National Natural Science Foundation of China(grant No.41302099)Open Foundation of State Key Laboratory of Organic Geochemistry(grant No.OG2015-03)Open Foundation of Key Laboratory of Marine Mineral Resources,Ministry of Land and Resources(grant No.KLMMR-2013-A-25)
文摘Delta carbonate (Delta C, AC) method is a commonly- used surface geochemical exploration method for petroleum surveys. Delta C holds that light hydrocarbon gases leak into near-surface soils or sediments from underlying petroleum accumulations, then partly oxidized to CO2, resulting in a special carbonate precipitation, which is termed as Delta carbonate (△C).
文摘A relationship is established, using the least squares method, between the standard enthalpy of formation and the standard enthalpy of formation divided by the exothermic denitration decomposition peak absolute temperature corresponding to β →0.
基金Project(2015SK20823) supported by Science and Technology Project of Hunan Province,ChinaProject(15A001) supported by Scientific Research Fund of Hunan Provincial Education Department,China+2 种基金Project(2017CL06) supported by Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation,ChinaProject(k1403029-11) supported by Science and Technology Project of Changsha City,ChinaProject(CX2015B372) supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The thermal decomposition temperature is one of the most important parameters to evaluate fire hazard of organic peroxide. A quantitative structure-property relationship model was proposed for estimating the thermal decomposition temperatures of organic peroxides. The entire set of 38 organic peroxides was at random divided into a training set for model development and a prediction set for external model validation. The novel local molecular descriptors of AT1, AT2, AT3, AT4, AT5, AT6 and global molecular descriptor of ATC have been proposed in order to character organic peroxides’ molecular structures. An accurate quantitative structure-property relationship (QSPR) equation is developed for the thermal decomposition temperatures of organic peroxides. The statistical results showed that the QSPR model was obtained using the multiple linear regression (MLR) method with correlation coefficient (R), standard deviation (S), leave-one-out validation correlation coefficient (RCV) values of 0.9795, 6.5676 ℃ and 0.9328, respectively. The average absolute relative deviation (AARD) is only 3.86% for the experimental values. Model test by internal leave-one-out cross validation and external validation and molecular descriptor interpretation were discussed. Comparison with literature results demonstrated that novel local and global descriptors were useful molecular descriptors for predicting the thermal decomposition temperatures of organic peroxides.
基金financially supported by the National Natural Science Foundation of China(No.21871111)the Excellent Youth Foundation of Hubei Province of China(No.2019CFA078)。
文摘The complete decomposition of formaldehyde(HCHO) at ambient temperature is the most potential strategy for HCHO elimination from indoor environment.Herein,extra low content of Pt nanoparticles(0.025 wt%)supported on water-solubility carbon nitride/ceria(Pt/gC_(3)N_(4)@CeO_(2)) was prepared for gaseous HCHO removal at ambient temperature in a simulated indoor environment.Fluorescent light(8 W) illumination could visibly boost the complete decomposition of HCHO into CO_(2) over Pt/gC_(3)N_(4)@CeO_(2).The cooperative effect in the distinct heterostructure and plenty of surface reactive oxygen species contribute primarily to the enhanced catalytic performance of Pt/g-C_(3)N_(4)@CeO_(2).Moreover,the possible mechanism of HCHO oxidation over Pt/g-C_(3)N_(4)@CeO_(2) assisted by the fluorescent light irradiation was proposed based on the physicochemical and optical characterization as well as the result of in situ diffuse reflectance infrared Fourier transform spectra.This work might shed some light on the potential application of the versatile catalysts for ambient-temperature catalytic decomposition of HCHO by making full use of the indoor energies.
基金Sponsored by the National Natural Science Foundation of China(Grant No.20271019 and 20576027), Natural Science Foundation of Heilongjiang Prov-ince(Grant No.B200504), Postdoctoral Foundationof Heilongjiang Province(Grant No.LBH-Z05066) and Education Department Foundation of Hei-longjiang Province(Grant No.11511270).
文摘Iron-based perovskite-type compounds modified by Ru were prepared through sol-gel process to study its catalytic activity of NOx direct decomposition at low temperature and evaluate the conversion of NO under the experimental conditions. The catalytic activity of La 0.9Ce 0.1Fe 0.8-nCo 0.2RunO3 (n=0.01,0.03,0.05,0.07,0.09)series for the NO, NO-CO two components, CO-HC-NO three components were also analyzed. The catalytic investigation evidenced that the presence of Ru is necessary for making highly activity in decomposition of nitric oxide even at low temperature(400 ℃)and La 0.9Ce 0.9Fe 0.75Co 0.2Ru 0.05O3 (n=0.05) has better activity in all the samples, the conversion of it is 58.5%. With the reducing gas(CO,C3H6)added into the gas, the catalyst displayed very high activity in decomposition of NO and the conversion of it is 80% and 92.5% separately.
文摘The decomposed products from high nitrogen austenite aging at 225°C were investigated by TEM. It is found that the shape of decomposition products inside the austenite grains is not regular and not strictly oriented. Preferential nucleation of y-Fe4N at dislocations and grain boundaries has been observed. It also has been found that during the first stage of the high nitrogen austenite decomposition a large quantity of ultra-fine /-Fe4N precipitate inside the parent austenite, which has been thought to be the undecomposed region before. The ultimate products are composed of highly dispersed a-Fe and /-Fe4N, with both of them maintaining nanometer scale. The micro-hardness of them can be as high as 900HV.
基金Project(2014CB644002)supported by the National Basic Research and Development Project of ChinaProject(2015CX004)supported by the Innovation-driven Plan in Central South University,China
文摘A new high throughput heat-treatment method with a continuous temperature gradient between 600 and 700 ?C was utilized on the Ti-5553 alloy(Ti-5 Al-5 Mo-5 V-3 Cr, mass fraction, %). The temperature gradient was induced by the variation of the axial section of sample, which was heated by the direct current. The variation of continuous cooling rates on the treated sample was realized by using the end quenching method. The microstructural evolution and mechanical properties under different heat treatment conditions were evaluated. The results show that the pseudo-spinodal decomposition of the alloy occurs at(617±1) ?C, and the size of the precipitated α phase is around 300 nm. Moreover, the highest microhardness is obtained after the heat treatment at the pseudo-spinodal decomposition temperature for 4 h. These indicate that the high throughput method is efficient and fast to determine the phase transformation temperature and corresponding microstructural evolution of alloys.
基金supported by the General Project of the National Natural Sciences Foundation of China (Grant Nos. 41105074 and 41275108)the Innovation Key Program of the Chinese Academy of Sciences (Grant No.KZCX2-EW-202)+3 种基金the National Basic Research Program of China (2012CB956201)the Open Research Fund of the Key Laboratory of Digital Earth Science, Center for Earth ObservationDigital Earth, Chinese Academy of Sciences (Grant No.2011LDE010)the Scientific Research Fund of Henan Polytechnic University (Grant No. B2011-038)
文摘The trends and fluctuations of observed and CMIP5-simulated yearly mean surface air temperature over China were analyzed.In general,the historical simulations replicate the observed increase of temperature,but the multi-model ensemble (MME) mean does not accurately reproduce the drastic interannual fluctuations.The correlation coefficient of the MME mean with the observations over all runs and all models was 0.77,which was larger than the largest value (0.65) from any single model ensemble.The results showed that winter temperatures are increasing at a higher rate than summer temperatures,and that winter temperatures exhibit stronger interannual variations.It was also found that the models underestimate the differences between winter and summer rates.The ensemble empirical mode decomposition technique was used to obtain six intrinsic mode functions (IMFs) for the modeled temperature and observations.The periods of the first two IMFs of the MME mean were 3.2 and 7.2,which represented the cycle of 2-7-yr oscillations.The periods of the third and fourth IMFs were 14.7 and 35.2,which reflected a multi-decadal oscillation of climate change.The corresponding periods of the first four IMFs were 2.69,7.24,16.15 and 52.5 in the observed data.The models overestimate the period of low frequency oscillation of temperature,but underestimate the period of high frequency variation.The warming rates from different representative concentration pathways (RCPs) were calculated,and the results showed that the temperature will increase by approximately 0.9℃,2.4℃,3.2℃ and 6.1℃ in the next century under the RCP2.6,RCP4.5,RCP6.0 and RCP8.5 scenarios,respectively.
基金supported by the National Natural Science Foundation of China (31760353 and 31560360)the National Key R&D Program of China (2017YFD0300804 and 2016YFD0300103)+2 种基金the earmarked fund for China Agriculture Research System (CARS-02-63)the Crop Science Observation & Experiment Station in Loess Plateau of North China, Ministry of Agriculture, China (25204120)the Advanced Talented Scholars of Inner Mongolia Agricultural University, China (NDYB2016-15)
文摘The microbial consortium GF-20(GF-20) can efficiently decompose corn stover at low temperatures. The present study explored the key microbes of GF-20 and evaluated different culture conditions on its composition stability to promote the utilization of corn stover decomposing microbes in low temperature regions. GF-20 was subcultured to the 15 th generation under different temperatures, pHs, carbon, and nitrogen sources. Then, the dynamics of fermenting pH, cellulose enzyme activities, carbohydrate concentration, and oxidation reduction potential were determined to estimate the degradation efficiency of corn stover with GF-20. Furthermore, the structural stability and functional microbes of GF-20 were identified on the basis of PCR-denaturing gradient gel electrophoresis(DGGE) profiling and principal component analysis. The results showed that the offspring of GF-20 subcultured under different temperatures(4–30°C) and pH(6.0–9.0) conditions maintained stable growth, decomposition function, and composition structure. Furthermore, consortia GF-20 had a stable composition structure, which induced GF-20 to secrete cellulose and promote substrate decomposition as corn stover and ammonium were used as sources of carbon and nitrogen, respectively. According to the PCR-DGGE profiles, the key strains of GF-20 were determined to be Bacillus licheniformis, Cellvibrio mixtus subsp. mixtus, Bacillus tequilensis, Clostridium populeti, and Clostridium xylanolyticum.
基金supported by Grant 2006CB400504 from the National Basic Research Program of ChinaGrant LCS-2006-03 fromthe Laboratory for Climate Studies, China MeteorologicalAdministration+1 种基金sponsored by the National Science Foundation of USA (ATM-0653136, ATM-0917743)sponsored by National Key Technologies R&D Pro-gram under Grant No. 2007BAC29B03
文摘The traditional anomaly (TA) reference frame and its corresponding anomaly for a given data span changes with the extension of data length. In this study, the modulated annual cycle (MAC), instead of the widely used climatological mean annual cycle, is used as an alternative reference frame for computing climate anomalies to study the multi-timescale variability of surface air temperature (SAT) in China based on homogenized daily data from 1952 to 2004. The Ensemble Empirical Mode Decomposition (EEMD) method is used to separate daily SAT into a high frequency component, a MAC component, an interannual component, and a decadal-to-trend component. The results show that the EEMD method can reflect historical events reasonably well, indicating its adaptive and temporally local characteristics. It is shown that MAC is a temporally local reference frame and will not be altered over a particular time span by an exten-sion of data length, thereby making it easier for physical interpretation. In the MAC reference frame, the low frequency component is found more suitable for studying the interannual to longer timescale variability (ILV) than a 13-month window running mean, which does not exclude the annual cycle. It is also better than other traditional versions (annual or summer or winter mean) of ILV, which contains a portion of the annual cycle. The analysis reveals that the variability of the annual cycle could be as large as the magnitude of interannual variability. The possible physical causes of different timescale variability of SAT in China are further discussed.
文摘In conventional time series analysis, a process is often modeled as three additive components: linear trend, seasonal effect, and random noise. In this paper, we perform an analysis of surface air temperature in a region of China using a decomposition method in time series analysis. Applications to the National Centers for Environmental Prediction/the National Center for Atmospheric Research (NCEP/NCAR) Collaborative Reanalysis data in this region of China are discussed. The main finding was that the surface air temperature trend estimated for January 1948 to February 2006 was not statistically significant at 0.5904℃ (100 yr)^-1. Forecasting aspects are also considered.
基金This work was supported by the "Strategic Priority Research Program, TMSR" of the Chinese Academy of Sciences (No.XD02002400), the National Natural Science Foundation of China (No.51506214), the Hundred Talents Program, CAS and Shanghai Pujiang Program.
文摘On account of excellent thermal physical properties, molten nitrates/nitrites salt has been widely employed in heat transfer and thermal storage industry, especially in concentrated solar power system. The thermal stability study of molten nitrate/nitrite salt is of great importance for this system, and the decomposition mechanism is the most complicated part of it. The oxide species O2^2- and O2^- were considered as intermediates in molten KNO3-NaNO3 while hard to been detected in high temperature molten salt due to their trace concentration and low stability. In this work, the homemade in situ high temperature UV- Vis instrument and a commercial electron paramagnetic resonance were utilized to supply evidence for the formation of superoxide during a slow decomposition process of heat transfer salt (HTS, 53 wt% KNO3/40 wt% NaNO2/7 wt% NaNO3). It is found that the superoxide is more easily generated from molten NaNO2 compared to NaNO3, and it has an absorption band at 420-440 nm in HTS which red shifts as temperature increases. The band is assigned to charge-transfer transition in NaO2 or KO2, responsible for the yellow color of the molten nitrate/nitrite salt. Furthermore, the UV absorption bands of molten NaNO2 and NANO3 are also obtained and compared with that of HTS.
基金Supported by the National Natural Science Foundation of China(40673043 20576073) the Program for New Century Excellent Talents in University from Ministry of Education of China(NCET-06-0088)
文摘The decomposition kinetics for formation of CO2 hydrates in 90 cm 3wet natural silica sands were studied systematically using the depressurization method at the temperatures ranging from 273.2 to 277.2 K and the pressures from 0.5 to 1.0 MPa.The effects of temperature,pressure,particle diameter,porosity,and salinity of formation water on the decomposition kinetics were investigated.The results show that the dissociation percentage increases as temperature increases or as the initial decomposition pressure decreases.An increase in porosity or a decrease in particle diameter of silica sands accelerates the decomposition.Increasing the salinity of the formation water gives rise to a faster decomposition.However,a combination of the present results with the observations in literature reveals that the effect of the coexisting ionic solute depends on its chemical structure.