期刊文献+
共找到230,943篇文章
< 1 2 250 >
每页显示 20 50 100
CoLM^(2)S:Contrastive self‐supervised learning on attributed multiplex graph network with multi‐scale information
1
作者 Beibei Han Yingmei Wei +1 位作者 Qingyong Wang Shanshan Wan 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第4期1464-1479,共16页
Contrastive self‐supervised representation learning on attributed graph networks with Graph Neural Networks has attracted considerable research interest recently.However,there are still two challenges.First,most of t... Contrastive self‐supervised representation learning on attributed graph networks with Graph Neural Networks has attracted considerable research interest recently.However,there are still two challenges.First,most of the real‐word system are multiple relations,where entities are linked by different types of relations,and each relation is a view of the graph network.Second,the rich multi‐scale information(structure‐level and feature‐level)of the graph network can be seen as self‐supervised signals,which are not fully exploited.A novel contrastive self‐supervised representation learning framework on attributed multiplex graph networks with multi‐scale(named CoLM^(2)S)information is presented in this study.It mainly contains two components:intra‐relation contrast learning and interrelation contrastive learning.Specifically,the contrastive self‐supervised representation learning framework on attributed single‐layer graph networks with multi‐scale information(CoLMS)framework with the graph convolutional network as encoder to capture the intra‐relation information with multi‐scale structure‐level and feature‐level selfsupervised signals is introduced first.The structure‐level information includes the edge structure and sub‐graph structure,and the feature‐level information represents the output of different graph convolutional layer.Second,according to the consensus assumption among inter‐relations,the CoLM^(2)S framework is proposed to jointly learn various graph relations in attributed multiplex graph network to achieve global consensus node embedding.The proposed method can fully distil the graph information.Extensive experiments on unsupervised node clustering and graph visualisation tasks demonstrate the effectiveness of our methods,and it outperforms existing competitive baselines. 展开更多
关键词 attributed multiplex graph network contrastive self‐supervised learning graph representation learning multiscale information
在线阅读 下载PDF
Corrigendum to"DRL-based federated self-supervised learning for task offloading and resource allocation in ISAC-enabled vehicle edge computing"[Digit.Commun.Networks 11(2025)16141627]
2
作者 Xueying Gu Qiong Wu +3 位作者 Pingyi Fan Nan Cheng Wen Chen Khaled B.Letaief 《Digital Communications and Networks》 2025年第6期2030-2030,共1页
The authors regret that there were errors in the affiliations and the funding declaration in the original published version.The affiliations a and b of the original manuscript are"School of Information Engineerin... The authors regret that there were errors in the affiliations and the funding declaration in the original published version.The affiliations a and b of the original manuscript are"School of Information Engineering,Jiangxi Provincial Key Laboratory of Advanced Signal Processing and Intelligent Communications,Nanchang University,Nanchang 330031,China",and"School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China",respectively.The order of the two affiliations are not correct. 展开更多
关键词 self supervised funding declaration federated TDRL based advanced signal processing CORRIGENDUM learning TASK
在线阅读 下载PDF
Self‐supervised monocular depth estimation via asymmetric convolution block
3
作者 Lingling Hu Hao Zhang +2 位作者 Zhuping Wang Chao Huang Changzhu Zhang 《IET Cyber-Systems and Robotics》 EI 2022年第2期131-138,共8页
Without the dependence of depth ground truth,self‐supervised learning is a promising alternative to train monocular depth estimation.It builds its own supervision signal with the help of other tools,such as view synt... Without the dependence of depth ground truth,self‐supervised learning is a promising alternative to train monocular depth estimation.It builds its own supervision signal with the help of other tools,such as view synthesis and pose networks.However,more training parameters and time consumption may be involved.This paper proposes a monocular depth prediction framework that can jointly learn the depth value and pose transformation between images in an end‐to‐end manner.The depth network creatively employs an asymmetric convolution block instead of every square kernel layer to strengthen the learning ability of extracting image features when training.During infer-ence time,the asymmetric kernels are fused and converted to the original network to predict more accurate image depth,thus bringing no extra computations anymore.The network is trained and tested on the KITTI monocular dataset.The evaluated results demonstrate that the depth model outperforms some State of the Arts(SOTA)ap-proaches and can reduce the inference time of depth prediction.Additionally,the pro-posed model performs great adaptability on the Make3D dataset. 展开更多
关键词 asymmetric convolution block(ACB) KITTI dataset self‐supervised depth estimation
原文传递
ICA-Net:improving class activation for weakly supervised semantic segmentation via joint contrastive and simulation learning
4
作者 YE Zhuang LIU Ruyu SUN Bo 《Optoelectronics Letters》 2025年第3期188-192,共5页
In the field of optoelectronics,certain types of data may be difficult to accurately annotate,such as high-resolution optoelectronic imaging or imaging in certain special spectral ranges.Weakly supervised learning can... In the field of optoelectronics,certain types of data may be difficult to accurately annotate,such as high-resolution optoelectronic imaging or imaging in certain special spectral ranges.Weakly supervised learning can provide a more reliable approach in these situations.Current popular approaches mainly adopt the classification-based class activation maps(CAM)as initial pseudo labels to solve the task. 展开更多
关键词 high resolution imaging supervised learning class activation maps joint contrastive simulation learning special spectral ranges weakly supervised learning OPTOELECTRONICS
原文传递
Extending self-organizing maps for supervised classification of remotely sensed data 被引量:1
5
作者 CHEN Yongliang 《Global Geology》 2009年第1期46-56,共11页
An extended self-organizing map for supervised classification is proposed in this paper. Unlike other traditional SOMs, the model has an input layer, a Kohonen layer, and an output layer. The number of neurons in the ... An extended self-organizing map for supervised classification is proposed in this paper. Unlike other traditional SOMs, the model has an input layer, a Kohonen layer, and an output layer. The number of neurons in the input layer depends on the dimensionality of input patterns. The number of neurons in the output layer equals the number of the desired classes. The number of neurons in the Kohonen layer may be a few to several thousands, which depends on the complexity of classification problems and the classification precision. Each training sample is expressed by a pair of vectors : an input vector and a class codebook vector. When a training sample is input into the model, Kohonen's competitive learning rule is applied to selecting the winning neuron from the Kohouen layer and the weight coefficients connecting all the neurons in the input layer with both the winning neuron and its neighbors in the Kohonen layer are modified to be closer to the input vector, and those connecting all the neurons around the winning neuron within a certain diameter in the Kohonen layer with all the neurons in the output layer are adjusted to be closer to the class codebook vector. If the number of training sam- ples is sufficiently large and the learning epochs iterate enough times, the model will be able to serve as a supervised classifier. The model has been tentatively applied to the supervised classification of multispectral remotely sensed data. The author compared the performances of the extended SOM and BPN in remotely sensed data classification. The investigation manifests that the extended SOM is feasible for supervised classification. 展开更多
关键词 self-organizing map modified competitive learning supervised classification remotely sensed data
在线阅读 下载PDF
Feasibility and effects of remotely supervised aerobic training and resistance training in older adults with mild cognitive impairment:a pilot three-arm randomised controlled trial
6
作者 Xiuxiu Huang Shifang Zhang +9 位作者 Xiaoyan Zhao Xinrui Li Fulian Bao Yue Lan Yuyao Zhang Ran An Bei Li Fang Yu Yongan Sun Qiaoqin Wan 《General Psychiatry》 2025年第2期123-133,共11页
Background Evidence on the effects of different exercise interventions on cognitive function is insufficient.Aims To evaluate the feasibility and effects of remotely supervised aerobic exercise(AE)and resistance exerc... Background Evidence on the effects of different exercise interventions on cognitive function is insufficient.Aims To evaluate the feasibility and effects of remotely supervised aerobic exercise(AE)and resistance exercise(RE)interventions in older adults with mild cognitive impairment(MCI).Methods This study is a 6-month pilot three-arm randomised controlled trial.Eligible participants(n=108)were recruited and randomised to the AE group,RE group or control(CON)group with a 1:1:1 ratio.Interventions were delivered at home with remote supervision.We evaluated participants’global cognition,memory,executive function,attention,physical activity levels,physical performance and muscle strength of limbs at baseline,3 months(T1)and 6 months(T2)after randomisation.A linear mixed-effects model was adopted for data analyses after controlling for covariates.Tukey’s method was used for adjusting for multiple comparisons.Sensitivity analyses were performed after excluding individuals with low compliance rates.Results 15(13.89%)participants dropped out.The median compliance rates in the AE group and RE group were 67.31%and 93.27%,respectively.After adjusting for covariates,the scores of the Alzheimer’s Disease Assessment Scale-Cognitive subscale in the AE group decreased by 2.04(95%confidence interval(CI)−3.41 to−0.67,t=−2.94,p=0.004)and 1.53(95%CI−2.88 to−0.17,t=−2.22,p=0.028)points more than those in the CON group at T1 and T2,respectively.The effects of AE were still significant at T1(estimate=−1.70,95%CI−3.20 to−0.21,t=−2.69,p=0.021),but lost statistical significance at T2 after adjusting for multiple comparisons.As for executive function,the Stroop time interference in the RE group decreased by 11.76 s(95%CI−21.62 to−1.90,t=−2.81,p=0.015)more than that in the AE group at T2 after Tukey’s adjustment.No other significant effects on cognitive functions were found.Conclusions Both remotely supervised AE and RE programmes are feasible in older adults with MCI.AE has positive effects on global cognition,and RE improves executive function. 展开更多
关键词 cognitive function resistance exercise re interventions exercise interventions remotely supervised aerobic exercise ae aerobic training remote supervision randomised controlled mild cognitive
暂未订购
Selective Multiple Classifiers for Weakly Supervised Semantic Segmentation
7
作者 Zilin Guo Dongyue Wu +1 位作者 Changxin Gao Nong Sang 《CAAI Transactions on Intelligence Technology》 2025年第6期1688-1702,共15页
Existing weakly supervised semantic segmentation(WSSS)methods based on image-level labels always rely on class activation maps(CAMs),which measure the relationships between features and classifiers.However,CAMs only f... Existing weakly supervised semantic segmentation(WSSS)methods based on image-level labels always rely on class activation maps(CAMs),which measure the relationships between features and classifiers.However,CAMs only focus on the most discriminative regions of images,resulting in their poor coverage performance.We attribute this to the deficiency in the recognition ability of a single classifier and the negative impacts caused by magnitudes during the CAMs normalisation process.To address the aforementioned issues,we propose to construct selective multiple classifiers(SMC).During the training process,we extract multiple prototypes for each class and store them in the corresponding memory bank.These prototypes are divided into foreground and background prototypes,with the former used to identify foreground objects and the latter aimed at preventing the false activation of background pixels.As for the inference stage,multiple prototypes are adaptively selected from the memory bank for each image as SMC.Subsequently,CAMs are generated by measuring the angle between SMC and features.We enhance the recognition ability of classifiers by adaptively constructing multiple classifiers for each image,while only relying on angle measurement to generate CAMs can alleviate the suppression phenomenon caused by magnitudes.Furthermore,SMC can be integrated into other WSSS approaches to help generate better CAMs.Extensive experiments conducted on standard WSSS benchmarks such as PASCAL VOC 2012 and MS COCO 2014 demonstrate the superiority of our proposed method. 展开更多
关键词 image segmentation multiple classifiers weakly supervised learning
在线阅读 下载PDF
The Impact of Vicarious Abusive Supervision on Third-Party’s Self-Efficacy and Task Performance:The Moderating Role of Promotion Focus in Unethical Leadership Contexts
8
作者 LI Yuxuan ZHOU Yuqin +2 位作者 MI Shufei HUANG Hancheng CHEN Wenhua 《Chinese Business Review》 2025年第2期69-85,共17页
Drawing upon self-determination theory,this study examines the effects of vicarious abusive supervision on third-party’s self-efficacy and task performance within organizational contexts.Data were collected via surve... Drawing upon self-determination theory,this study examines the effects of vicarious abusive supervision on third-party’s self-efficacy and task performance within organizational contexts.Data were collected via surveys from 337 employees across diverse organizations.The results indicate that vicarious abusive supervision significantly undermines both self-efficacy and task performance among employees who are indirectly exposed to such behavior but not directly targeted.Furthermore,self-efficacy serves as a mediator between vicarious abusive supervision and task performance;however,this mediating effect is attenuated for employees with a high promotion focus.These findings provide valuable theoretical and practical insights,particularly in the domain of organizational behavior,by emphasizing the critical role of promotion focus in mitigating the negative effects of vicarious abusive supervision.This research contributes to the organizational behavior literature by shifting the focus from the traditional supervisor-subordinate dynamic to a third-party perspective,thereby enriching our understanding of how vicarious abusive supervision impacts employees within organizational settings.The study underscores the importance of self-efficacy and promotion focus as key factors in unethical leadership contexts. 展开更多
关键词 vicarious abusive supervision task performance self-EFFICACY promotion focus third-party
在线阅读 下载PDF
Use of supervised and unsupervised approaches to make zonal application maps for variable-rate application of crop growth regulators in commercial cotton fields
9
作者 ANDREA Maria C.da S. OLIVEIRA Cristiano F.de +7 位作者 MOTA Fabrícia C.M. SANTOS Rafael C.dos RODRIGUES JUNIOR Edilson F. BIANCHI Lucas M. OLIVEIRA Rodrigo S.de GOUVEIA Caio M.de BARBOSA Victor G.S. BISPO E SILVA Marco A. 《Journal of Cotton Research》 2025年第1期1-20,共20页
Background Zonal application maps are designed to represent field variability using key variables that can be translated into tailored management practices.For cotton,zonal maps for crop growth regulator(CGR)applicati... Background Zonal application maps are designed to represent field variability using key variables that can be translated into tailored management practices.For cotton,zonal maps for crop growth regulator(CGR)applications under variable-rate(VR)strategies are commonly based exclusively on vegetation indices(VIs)variability.However,VIs often saturate in dense crop vegetation areas,limiting their effectiveness in distinguishing variability in crop growth.This study aimed to compare unsupervised framework(UF)and supervised framework(SUF)approaches for generat-ing zonal application maps for CGR under VR conditions.During 2022-2023 agricultural seasons,an UF was employed to generate zonal maps based on locally collected field data on plant height of cotton,satellite imagery,soil texture,and phenology data.Subsequently,a SUF(based on historical data between 2020-2021 to 2022-2023 agricultural seasons)was developed to predict plant height using remote sensing and phenology data,aiming to replicate same zonal maps but without relying on direct field measurements of plant height.Both approaches were tested in three fields and on two different dates per field.Results The predictive model for plant height of SUF performed well,as indicated by the model metrics.However,when comparing zonal application maps for specific field-date combinations,the predicted plant height exhibited lower variability compared with field measurements.This led to variable compatibility between SUF maps,which utilized the model predictions,and the UF maps,which were based on the real field data.Fields characterized by much pronounced soil texture variability yielded the highest compatibility between the zonal application maps produced by both SUF and UF approaches.This was predominantly due to the greater consistency in estimating plant development patterns within these heterogeneous field environments.While VR application approach can facilitate product savings during the application operation,other key factors must be considered.These include the availability of specialized machinery required for this type of applications,as well as the inherent operational costs associated with applying a single CGR product which differs from the typical uniform rate applications that often integrate multi-ple inputs.Conclusion Predictive modeling shows promise for assisting in the creation of zonal application maps for VR of CGR applications.However,the degree of agreement with the actual variability in crop growth found in the field should be evaluated on a field-by-field basis.The SUF approach,which is based on plant heigh prediction,demonstrated potential for supporting the development of zonal application maps for VR of CGR applications.However,the degree to which this approach aligns itself with the actual variability in crop growth observed in the field may vary,necessi-tating field-by-field evaluation. 展开更多
关键词 Cotton Site-specific management Crop growth regulator Unsupervised framework supervised framework Zonal application maps
在线阅读 下载PDF
Correction to‘Trustworthy semi-supervised anomaly detection for online-to-offline logistics business in merchant identification’
10
《CAAI Transactions on Intelligence Technology》 2025年第2期634-634,共1页
Yong Li,Shuhang Wang,Shijie Xu,and Jiao Yin.2024.Trustworthy semi-supervised anomaly detection for online-to-offline logistics business in merchant identification.CAAI Transactions on Intelligence Technology 9,3(June ... Yong Li,Shuhang Wang,Shijie Xu,and Jiao Yin.2024.Trustworthy semi-supervised anomaly detection for online-to-offline logistics business in merchant identification.CAAI Transactions on Intelligence Technology 9,3(June 2024),544-556.https://doi.org/10.1049/cit2.12301. 展开更多
关键词 trustworthy semi supervised anomaly detection merchant identification online offline logistics business
在线阅读 下载PDF
CPEWS:Contextual Prototype-Based End-to-End Weakly Supervised Semantic Segmentation
11
作者 Xiaoyan Shao Jiaqi Han +2 位作者 Lingling Li Xuezhuan Zhao Jingjing Yan 《Computers, Materials & Continua》 2025年第4期595-617,共23页
The primary challenge in weakly supervised semantic segmentation is effectively leveraging weak annotations while minimizing the performance gap compared to fully supervised methods.End-to-end model designs have gaine... The primary challenge in weakly supervised semantic segmentation is effectively leveraging weak annotations while minimizing the performance gap compared to fully supervised methods.End-to-end model designs have gained significant attention for improving training efficiency.Most current algorithms rely on Convolutional Neural Networks(CNNs)for feature extraction.Although CNNs are proficient at capturing local features,they often struggle with global context,leading to incomplete and false Class Activation Mapping(CAM).To address these limitations,this work proposes a Contextual Prototype-Based End-to-End Weakly Supervised Semantic Segmentation(CPEWS)model,which improves feature extraction by utilizing the Vision Transformer(ViT).By incorporating its intermediate feature layers to preserve semantic information,this work introduces the Intermediate Supervised Module(ISM)to supervise the final layer’s output,reducing boundary ambiguity and mitigating issues related to incomplete activation.Additionally,the Contextual Prototype Module(CPM)generates class-specific prototypes,while the proposed Prototype Discrimination Loss and Superclass Suppression Loss guide the network’s training,(LPDL)(LSSL)effectively addressing false activation without the need for extra supervision.The CPEWS model proposed in this paper achieves state-of-the-art performance in end-to-end weakly supervised semantic segmentation without additional supervision.The validation set and test set Mean Intersection over Union(MIoU)of PASCAL VOC 2012 dataset achieved 69.8%and 72.6%,respectively.Compared with ToCo(pre trained weight ImageNet-1k),MIoU on the test set is 2.1%higher.In addition,MIoU reached 41.4%on the validation set of the MS COCO 2014 dataset. 展开更多
关键词 End-to-end weakly supervised semantic segmentation vision transformer contextual prototype class activation map
在线阅读 下载PDF
A Detection Algorithm for Two-Wheeled Vehicles in Complex Scenarios Based on Semi-Supervised Learning
12
作者 Mingen Zhong Kaibo Yang +4 位作者 Ziji Xiao Jiawei Tan Kang Fan Zhiying Deng Mengli Zhou 《Computers, Materials & Continua》 2025年第7期1055-1071,共17页
With the rapid urbanization and exponential population growth in China,two-wheeled vehicles have become a popular mode of transportation,particularly for short-distance travel.However,due to a lack of safety awareness... With the rapid urbanization and exponential population growth in China,two-wheeled vehicles have become a popular mode of transportation,particularly for short-distance travel.However,due to a lack of safety awareness,traffic violations by two-wheeled vehicle riders have become a widespread concern,contributing to urban traffic risks.Currently,significant human and material resources are being allocated to monitor and intercept non-compliant riders to ensure safe driving behavior.To enhance the safety,efficiency,and cost-effectiveness of traffic monitoring,automated detection systems based on image processing algorithms can be employed to identify traffic violations from eye-level video footage.In this study,we propose a robust detection algorithm specifically designed for two-wheeled vehicles,which serves as a fundamental step toward intelligent traffic monitoring.Our approach integrates a novel convolutional and attention mechanism to improve detection accuracy and efficiency.Additionally,we introduce a semi-supervised training strategy that leverages a large number of unlabeled images to enhance the model’s learning capability by extracting valuable background information.This method enables the model to generalize effectively to diverse urban environments and varying lighting conditions.We evaluate our proposed algorithm on a custom-built dataset,and experimental results demonstrate its superior performance,achieving an average precision(AP)of 95%and a recall(R)of 90.6%.Furthermore,the model maintains a computational efficiency of only 25.7 GFLOPs while achieving a high processing speed of 249 FPS,making it highly suitable for deployment on edge devices.Compared to existing detection methods,our approach significantly enhances the accuracy and robustness of two-wheeled vehicle identification while ensuring real-time performance. 展开更多
关键词 Two wheeled vehicles illegal behavior detection object detection semi supervised learning deep learning TRANSFORMER convolutional neural network
在线阅读 下载PDF
Semi-supervised methane gas concentration detection model based on TDLAS technology
13
作者 KAN Lingling YE Yang +2 位作者 LIANG Hongwei NIE Rui MIAO Kai 《Optoelectronics Letters》 2025年第11期690-697,共8页
Because methane is flammable and explosive,the detection process is time-consuming and dangerous,and it is difficult to obtain labeled data.In order to reduce the dependence on marker data when detecting methane conce... Because methane is flammable and explosive,the detection process is time-consuming and dangerous,and it is difficult to obtain labeled data.In order to reduce the dependence on marker data when detecting methane concentration using tunable diode laser absorption spectroscopy(TDLAS)technology,this paper designs a methane gas acquisition platform based on TDLAS and proposes a methane gas concentration detection model based on semi-supervised learning.Firstly,the methane gas is feature extracted,and then semi-supervised learning is introduced to select the optimal feature combination;subsequently,the traditional whale optimization algorithm is improved to optimize the parameters of the random forest to detect the methane gas concentration.The results show that the model is not only able to select the optimal feature combination under limited labeled data,but also has an accuracy of 94.25%,which is better than the traditional model,and is robust in terms of parameter optimization. 展开更多
关键词 labeled datain DETECTION semi supervised learning tunable diode laser absorption spectroscopy tdlas technologythis detecting methane METHANE marker data detection process
原文传递
Reconstruction of lithofacies using a supervised Self-Organizing Map:Application in pseudo-wells based on a synthetic geologic cross-section
14
作者 Carreira V.R. Bijani R. Ponte-Neto C.F. 《Artificial Intelligence in Geosciences》 2024年第1期14-26,共13页
Recently,machine learning(ML)has been considered a powerful technological element of different society areas.To transform the computer into a decision maker,several sophisticated methods and algorithms are constantly ... Recently,machine learning(ML)has been considered a powerful technological element of different society areas.To transform the computer into a decision maker,several sophisticated methods and algorithms are constantly created and analyzed.In geophysics,both supervised and unsupervised ML methods have dramatically contributed to the development of seismic and well-log data interpretation.In well-logging,ML algorithms are well-suited for lithologic reconstruction problems,once there is no analytical expressions for computing well-log data produced by a particular rock unit.Additionally,supervised ML methods are strongly dependent on a accurate-labeled training data-set,which is not a simple task to achieve,due to data absences or corruption.Once an adequate supervision is performed,the classification outputs tend to be more accurate than unsupervised methods.This work presents a supervised version of a Self-Organizing Map,named as SSOM,to solve a lithologic reconstruction problem from well-log data.Firstly,we go for a more controlled problem and simulate well-log data directly from an interpreted geologic cross-section.We then define two specific training data-sets composed by density(RHOB),sonic(DT),spontaneous potential(SP)and gamma-ray(GR)logs,all simulated through a Gaussian distribution function per lithology.Once the training data-set is created,we simulate a particular pseudo-well,referred to as classification well,for defining controlled tests.First one comprises a training data-set with no labeled log data of the simulated fault zone.In the second test,we intentionally improve the training data-set with the fault.To bespeak the obtained results for each test,we analyze confusion matrices,logplots,accuracy and precision.Apart from very thin layer misclassifications,the SSOM provides reasonable lithologic reconstructions,especially when the improved training data-set is considered for supervision.The set of numerical experiments shows that our SSOM is extremely well-suited for a supervised lithologic reconstruction,especially to recover lithotypes that are weakly-sampled in the training log-data.On the other hand,some misclassifications are also observed when the cortex could not group the slightly different lithologies. 展开更多
关键词 self-Organizing Maps supervised machine learning Synthetic well-log data Classification of lithofacies
在线阅读 下载PDF
Edge-Federated Self-Supervised Communication Optimization Framework Based on Sparsification and Quantization Compression
15
作者 Yifei Ding 《Journal of Computer and Communications》 2024年第5期140-150,共11页
The federated self-supervised framework is a distributed machine learning method that combines federated learning and self-supervised learning, which can effectively solve the problem of traditional federated learning... The federated self-supervised framework is a distributed machine learning method that combines federated learning and self-supervised learning, which can effectively solve the problem of traditional federated learning being difficult to process large-scale unlabeled data. The existing federated self-supervision framework has problems with low communication efficiency and high communication delay between clients and central servers. Therefore, we added edge servers to the federated self-supervision framework to reduce the pressure on the central server caused by frequent communication between both ends. A communication compression scheme using gradient quantization and sparsification was proposed to optimize the communication of the entire framework, and the algorithm of the sparse communication compression module was improved. Experiments have proved that the learning rate changes of the improved sparse communication compression module are smoother and more stable. Our communication compression scheme effectively reduced the overall communication overhead. 展开更多
关键词 Communication Optimization Federated self-supervision Sparsification Gradient Compression Edge Computing
在线阅读 下载PDF
Unsupervised Feature Selection Using Structured Self-Representation
16
作者 Yanbei Liu Kaihua Liu +2 位作者 Xiao Wang Changqing Zhang Xianchao Tang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第3期62-73,共12页
Unsupervised feature selection has become an important and challenging problem faced with vast amounts of unlabeled and high-dimension data in machine learning. We propose a novel unsupervised feature selection method... Unsupervised feature selection has become an important and challenging problem faced with vast amounts of unlabeled and high-dimension data in machine learning. We propose a novel unsupervised feature selection method using Structured Self-Representation( SSR) by simultaneously taking into account the selfrepresentation property and local geometrical structure of features. Concretely,according to the inherent selfrepresentation property of features,the most representative features can be selected. Mean while,to obtain more accurate results,we explore local geometrical structure to constrain the representation coefficients to be close to each other if the features are close to each other. Furthermore,an efficient algorithm is presented for optimizing the objective function. Finally,experiments on the synthetic dataset and six benchmark real-world datasets,including biomedical data,letter recognition digit data and face image data,demonstrate the encouraging performance of the proposed algorithm compared with state-of-the-art algorithms. 展开更多
关键词 unsupervised feature selection local geometrical structure self-representation property high-dimension data
在线阅读 下载PDF
基于Semi-Supervised LLE的人脸表情识别方法 被引量:1
17
作者 冯海亮 黄鸿 +1 位作者 李见为 魏明 《沈阳建筑大学学报(自然科学版)》 EI CAS 2008年第6期1109-1113,共5页
目的为提取有效的鉴别特征和降低鉴别向量的维数来识别人脸表情图像.方法将流行学习(Manifold learning,ML)和半监督学习(Semi-Supervised learning,SSL)结合起来,利用人脸表情图像数据本身的非线性流形结构信息和部分标签信息来调整点... 目的为提取有效的鉴别特征和降低鉴别向量的维数来识别人脸表情图像.方法将流行学习(Manifold learning,ML)和半监督学习(Semi-Supervised learning,SSL)结合起来,利用人脸表情图像数据本身的非线性流形结构信息和部分标签信息来调整点与点之间的距离形成距离矩阵,而后基于被调整的距离矩阵进行线性近邻重建来实现维数约简,提取低维鉴别特征用于人脸表情识别.结果该方法能充分利用数据的结构信息和有限的标签信息,使具有标签信息的同类样本之间的距离最小化,不同类数据之间的距离最大化,进而可以有效地提取数据的低维鉴别子流形,使得分类性能要优于非监督的维数约简方法.结论笔者提出的半监督局部线性嵌入算法能有效地提高人脸表情识别的性能. 展开更多
关键词 流形学习 半监督学习 局部线性嵌入 维数约简 人脸表情识别
在线阅读 下载PDF
Supervised descent method for weld pool boundary extraction during fiber laser welding process 被引量:6
18
作者 Zhao Yaobang Zhang Dengming +1 位作者 Wu Yuanfeng Yang Changqi 《China Welding》 EI CAS 2019年第1期6-10,共5页
In order to obtain a high-quality weld during the laser welding process, extracting the characteristic parameters of weld pool is an important issue for automated welding. In this paper, the type 304 austenitic stainl... In order to obtain a high-quality weld during the laser welding process, extracting the characteristic parameters of weld pool is an important issue for automated welding. In this paper, the type 304 austenitic stainless steel is welded by a 5 kW high-power fiber laser and a high-speed camera is employed to capture the topside images of weld pools. Then we propose a robust visual-detection approach for the molten pool based on the supervised descent method. It provides an elegant framework for representing the outline of a weld pool and is especially efficient for weld pool detection in the presence of strong uncertainties and disturbances. Finally, welding experimental results verified that the proposed approach can extract the weld pool boundary accurately, which will lay a solid foundation for controlling the weld quality of fiber laser welding process. 展开更多
关键词 fiber laser WELDING MOLTEN POOL supervised DESCENT method BOUNDARY extraction
在线阅读 下载PDF
Effects of supervised movie appreciation on the improvement of college students’ life meaning sense 被引量:16
19
作者 Xinqiang Wang Dajun Zhang +2 位作者 Jinliang Wang Hui Xu Min Xiao 《Health》 2010年第7期804-810,共7页
The purpose of this study was to explore the effects of supervised movie appreciation on improving the life meaning sense among college students. The intervention combined by “pre-video, post counseling” was conduct... The purpose of this study was to explore the effects of supervised movie appreciation on improving the life meaning sense among college students. The intervention combined by “pre-video, post counseling” was conducted on the experimental group, while the control group received no intervention. Results have shown that the scores on the subscales of will to meaning, life purpose, life control, suffer acceptance and on the total scale have improved significantly. No gender difference was found on the intervention effect, and participants receiving intervention maintained higher level on related subscales a week later, indicating that supervised movie appreciation is an effective way to improve the life meaning sense among college students. 展开更多
关键词 College Students Life MEANING SENSE supervised MOVIE APPRECIATION SUICIDE Prevention MENTAL Health Education
暂未订购
Renal function and physical fitness after 12-mo supervised training in kidney transplant recipients 被引量:9
20
作者 Giulio Sergio Roi Giovanni Mosconi +20 位作者 Valentina Totti Maria Laura Angelini Erica Brugin Patrizio Sarto Laura Merlo Sergio Sgarzi Michele Stancari Paola Todeschini Gaetano La Manna Andrea Ermolao Ferdinando Tripi Lucia Andreoli Gianluigi Sella Alberto Anedda Laura Stefani Giorgio Galanti Rocco Di Michele Franco Merni Manuela Trerotola Daniela Storani Alessandro Nanni Costa 《World Journal of Transplantation》 2018年第1期13-22,共10页
AIM To evaluate the effect of a 12-mo supervised aerobic and resistance training, on renal function and exercise capacity compared to usual care recommendations.METHODS Ninety-nine kidney transplant recipients(KTRs) w... AIM To evaluate the effect of a 12-mo supervised aerobic and resistance training, on renal function and exercise capacity compared to usual care recommendations.METHODS Ninety-nine kidney transplant recipients(KTRs) were assigned to interventional exercise(Group A; n = 52) and a usual care cohort(Group B; n = 47). Blood and urine chemistry, exercise capacity, muscular strength, anthropometric measures and health-related quality of life(HRQo L) were assessed at baseline, and after 6 and 12 mo. Group A underwent a supervised training three times per week for 12 mo. Group B received only general recommendations about home-based physical activities.RESULTS Eighty-five KTRs completed the study(Group A, n = 44; Group B, n = 41). After 12 mo, renal function remained stable in both groups. Group A significantly increased maximum workload(+13 W, P = 0.0003), V'O2 peak(+3.1 mL/kg per minute, P = 0.0099), muscular strength in plantar flexor(+12 kg, P = 0.0368), height in the countermovement jump(+1.9 cm, P = 0.0293) and decreased in Body Mass Index(-0.5 kg/m^2, P = 0.0013). HRQo L significantly improved in physical function(P = 0.0019), physical-role limitations(P = 0.0321) and social functioning scales(P = 0.0346). Noimprovements were found in Group B.CONCLUSION Twelve-month of supervised aerobic and resistance training improves the physiological variables related to physical fitness and cardiovascular risks without consequences on renal function. Recommendations alone are not sufficient to induce changes in exercise capacity of KTRs. Our study is an example of collaborative working between transplant centres, sports medicine and exercise facilities. 展开更多
关键词 KIDNEY TRANSPLANT RECIPIENTS RENAL function supervised EXERCISE AEROBIC EXERCISE Muscle strength
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部