Objective Keshan disease(KD)is a myocardial mitochondrial disease closely related to insufficient selenium(Se)and protein intake.PTEN induced putative kinase 1(PINK1)/Parkin mediated mitochondrial autophagy regulates ...Objective Keshan disease(KD)is a myocardial mitochondrial disease closely related to insufficient selenium(Se)and protein intake.PTEN induced putative kinase 1(PINK1)/Parkin mediated mitochondrial autophagy regulates various physiological and pathological processes in the body.This study aimed to elucidate the relationship between PINK1/Parkin-regulated mitochondrial autophagy and KD-related myocardial injury.Methods A low Se and low protein animal model was established.One hundred Wistar rats were randomly divided into 5 groups(control group,low Se group,low protein group,low Se+low protein group,and corn from KD area group).The JC-1 method was used to detect the mitochondrial membrane potential(MMP).ELISA was used to detect serum creatine kinase MB(CK-MB),cardiac troponin I(cTnI),and mitochondrial-glutamicoxalacetic transaminase(M-GOT)levels.RT-PCR and Western blot analysis were used to detect the expression of PINK1,Parkin,sequestome 1(P62),and microtubule-associated proteins1A/1B light chain 3B(MAP1LC3B).Results The MMP was significantly decreased and the activity of CK-MB,cTnI,and M-GOT significantly increased in each experimental group(low Se group,low protein group,low Se+low protein group and corn from KD area group)compared with the control group(P<0.05 for all).The mRNA and protein expression levels of PINK1,Parkin and MAP1LC3B were profoundly increased,and those of P62 markedly decreased in the experimental groups compared with the control group(P<0.05 for all).Conclusion Low Se and low protein levels exacerbate myocardial damage in KD by affecting the PINK1/Parkin-mediated mitochondrial autophagy pathway.展开更多
In the present experiments the changes in levels of ribosome,polysome and 3H-leucine incorporation rate in liver post-mitochondrial supernatant (PM-supernatant) were investigated in Sedericient and Se-supplented rats....In the present experiments the changes in levels of ribosome,polysome and 3H-leucine incorporation rate in liver post-mitochondrial supernatant (PM-supernatant) were investigated in Sedericient and Se-supplented rats.The results demonstrated that the amounts of ribosome and polysome as well as the ratio of polysome to ribosome in liver PM-supernatant from the Se-deficient rats were all remarkahly decreased.In the meantime,the rate of protein synthesis expressed as radioactivity or 3H-leucine incorporated into protein in the PM-supernatant system also decreased significantly.The results suggest that the decreases of ribosomes and proportion of ribosomal aggregates in PM-supernatant may be responsible for the decrease of the protein synthesis activity in liver of the Se-deficient animals.展开更多
Biochemical technique was used to separate three kinds of proteins (albumin, globulin and gliadin) in corn samples froin high selenium areas and normal areas in Erxi autonomous region of Hubei Province, China. The con...Biochemical technique was used to separate three kinds of proteins (albumin, globulin and gliadin) in corn samples froin high selenium areas and normal areas in Erxi autonomous region of Hubei Province, China. The contents of Se and other elements in these proteins were determined by neutron activation analysis (NAA). The results show that Se is enriched in corn proteins at high selenium area, while Cu, Al, Mn, V and Cl are also enriched in varying degrees.展开更多
基金supported by the Natural Science Foundation of Heilongjiang Province(No.LH2021H009).
文摘Objective Keshan disease(KD)is a myocardial mitochondrial disease closely related to insufficient selenium(Se)and protein intake.PTEN induced putative kinase 1(PINK1)/Parkin mediated mitochondrial autophagy regulates various physiological and pathological processes in the body.This study aimed to elucidate the relationship between PINK1/Parkin-regulated mitochondrial autophagy and KD-related myocardial injury.Methods A low Se and low protein animal model was established.One hundred Wistar rats were randomly divided into 5 groups(control group,low Se group,low protein group,low Se+low protein group,and corn from KD area group).The JC-1 method was used to detect the mitochondrial membrane potential(MMP).ELISA was used to detect serum creatine kinase MB(CK-MB),cardiac troponin I(cTnI),and mitochondrial-glutamicoxalacetic transaminase(M-GOT)levels.RT-PCR and Western blot analysis were used to detect the expression of PINK1,Parkin,sequestome 1(P62),and microtubule-associated proteins1A/1B light chain 3B(MAP1LC3B).Results The MMP was significantly decreased and the activity of CK-MB,cTnI,and M-GOT significantly increased in each experimental group(low Se group,low protein group,low Se+low protein group and corn from KD area group)compared with the control group(P<0.05 for all).The mRNA and protein expression levels of PINK1,Parkin and MAP1LC3B were profoundly increased,and those of P62 markedly decreased in the experimental groups compared with the control group(P<0.05 for all).Conclusion Low Se and low protein levels exacerbate myocardial damage in KD by affecting the PINK1/Parkin-mediated mitochondrial autophagy pathway.
文摘In the present experiments the changes in levels of ribosome,polysome and 3H-leucine incorporation rate in liver post-mitochondrial supernatant (PM-supernatant) were investigated in Sedericient and Se-supplented rats.The results demonstrated that the amounts of ribosome and polysome as well as the ratio of polysome to ribosome in liver PM-supernatant from the Se-deficient rats were all remarkahly decreased.In the meantime,the rate of protein synthesis expressed as radioactivity or 3H-leucine incorporated into protein in the PM-supernatant system also decreased significantly.The results suggest that the decreases of ribosomes and proportion of ribosomal aggregates in PM-supernatant may be responsible for the decrease of the protein synthesis activity in liver of the Se-deficient animals.
文摘Biochemical technique was used to separate three kinds of proteins (albumin, globulin and gliadin) in corn samples froin high selenium areas and normal areas in Erxi autonomous region of Hubei Province, China. The contents of Se and other elements in these proteins were determined by neutron activation analysis (NAA). The results show that Se is enriched in corn proteins at high selenium area, while Cu, Al, Mn, V and Cl are also enriched in varying degrees.