期刊文献+
共找到216篇文章
< 1 2 11 >
每页显示 20 50 100
Perovskite and copper indium gallium selenide:A wonderful marriage for tandem photovoltaics with efficiency approaching 30%
1
作者 Lulu Wang Jiahong Tang +7 位作者 Fengtao Pei Teng Cheng Boyan Li Weimin Li Siqi Li Cuigu Wu Yan Jiang Qi Chen 《Journal of Energy Chemistry》 2025年第6期742-763,I0015,共23页
Tandem solar cells(TSCs)represent an attractive technology that can overcome the single-junction Shockdey-Queisser limit.Recently,a tandem structure combining wide-bandgap metal halide perovskite with complementary ba... Tandem solar cells(TSCs)represent an attractive technology that can overcome the single-junction Shockdey-Queisser limit.Recently,a tandem structure combining wide-bandgap metal halide perovskite with complementary bandgap copper indium gallium selenide(CIGS)photovoltaic technology has demonstrated a realistic pathway to achieve the industrialization goal of pushing power conversion efficiency(PCE)approaching 30% at low-cost.In this review,we first pinpoint the unique advantage of perovskite/CIGS tandems with respect to the other mainstream photovoltaic technologies and retrospect the research progress of perovskite/CIGS TSCs from both PCE and stability perspective in the last years.Next,we comprehensively discuss the major advancements in absorbers,functional layers of the individual sub-cell,and the interconnection layer between them in the recent decade.Finally,we outline several essential scientific and engineering challenges that are to be solved toward the development of efficient,long-term stable,and large-area perovskite/CIGS TSCs in the future. 展开更多
关键词 PEROVSKITE Copper indium gallium selenide TANDEM Solar cell Stability
在线阅读 下载PDF
Copper selenide enhanced magnetic biochar for elemental mercury removal from coal combustion flue gas
2
作者 Lin Zhang Yang Zheng +3 位作者 Guoliang Li Jiajia Gao Yali Tong Tao Yue 《Journal of Environmental Sciences》 2025年第8期277-289,共13页
With the rapid development of adsorbents for removal of elemental mercury (Hg0) from coal combustion flue gas,the preparation of adsorbents with superior performance,lower cost and environmental friendliness remains a... With the rapid development of adsorbents for removal of elemental mercury (Hg0) from coal combustion flue gas,the preparation of adsorbents with superior performance,lower cost and environmental friendliness remains an important challenge.An incipient wetness impregnation method followed by in-situ selenization was used to load copper selenide(CuSe) onto the surface of optimal magnetic biochar (OMBC).The results showed that CuSe significantly enhanced the Hg0removal performance of the OMBC,and CuSe loading ratio of 10%(10CuSe/OMBC) had the best Hg0removal performance.10CuSe/OMBC maintained its Hg0removal efficiency above 95% for 150 min at 30-150℃,and it had a good resistance to SO2.The equilibrium adsorption capacity of 10CuSe/OMBC could reach up to 8.73 mg/g,which was close to the theoretical value 12.99 mg/g,and the adsorption rate was up to 20.33μg/(g·min) Meanwhile,10CuSe/OMBC had strong magnetism that is not permanently magnetized,which could be separated from desulfurization gypsum and recycled many times.Characterization results demonstrated that Se22-,Cu2+and Oβplayed essential roles in the oxidation of Hg0,and Se22-and Se2-can immobilize Hg2+to HgSe.10CuSe/OMBC has important guiding significance for practical application because of its low cost,high performance and low mercury leaching characteristic to form HgSe. 展开更多
关键词 Coal combustion flue gas Copper selenide Magnetic biochar ADSORPTION RECYCLABLE
原文传递
Polyoxometalate/cobalt selenide functional separator for synergistic polysulfide anchoring and catalysis in lithium-sulfur batteries
3
作者 Tang-Suo Li Yi Liu +7 位作者 Xue-Cheng Zhang Lu-Nan Zhang Yu-Chao Wu Xin-Yuan Jiang Qiu-Ping Zhou Cheng Ma Lu-Bin Ni Guo-Wang Diao 《Journal of Energy Chemistry》 2025年第5期551-564,共14页
The polysulfides shuttle effect,sluggish sulfur redox kinetics and the corrosion of the Li anode have become important factors limiting the commercial application of lithium-sulfur batteries(LSBs).Herein,the polyoxome... The polysulfides shuttle effect,sluggish sulfur redox kinetics and the corrosion of the Li anode have become important factors limiting the commercial application of lithium-sulfur batteries(LSBs).Herein,the polyoxometalate(POM)nanoclusters with high catalytic activity and cobalt selenide with strong polarity are initially complemented to construct a PMo_(12)/CoSe_(2)@NC/CNTs multifunctional separator that can simultaneously solve the above problems.A series of experimental and theoretical results demonstrate that the Keggin-type POM,H_(3)PMo_(12)O_(40)nH_(2)O(PMo_(12))nanoclusters could function as catalytic centers for sulfur-involved transformations,with the CoSe_(2)nanoparticles serving as adsorption sites for soluble polysulfides.Accordingly,the assembled battery with the PMo_(12)/CoSe_(2)@NC/CNTs modified separator achieves an initial discharge capacity of 1263.79 mA h g^(-1),maintaining 635.77 mA h g^(-1),with a capacity decay rate of 0.06%per cycle after 500 cycles at 3C.This work provides a strategic approach for incorporating POM nanoclusters with polar periodic nanomaterials in LSB separators,contributing to the development of multifunctional separator materials,thus promoting the advancement of energy storage systems. 展开更多
关键词 POLYOXOMETALATE Cobalt selenide Multifunctional separator Polysulfides adsorption and catalysis Lithium-sulfur batteries
在线阅读 下载PDF
Degradation of electrical performance of few-layer tungsten selenide-based transistors
4
作者 Ben-Song Wan Run-Hui Zhou +5 位作者 Wen-Kai Yang Qin Zhang Xiang-Yu Liu Zhi-Fu Tan Cao-Feng Pan Zheng-Chun Peng 《Rare Metals》 2025年第4期2534-2546,共13页
Semiconducting transition-metal dichalcogenides(TMDs)have garnered significant interest due to their unique structures and properties,positioning them as promising candidates for novel electronic and optoelectronic de... Semiconducting transition-metal dichalcogenides(TMDs)have garnered significant interest due to their unique structures and properties,positioning them as promising candidates for novel electronic and optoelectronic devices.However,the performance of TMDs-based devices is hampered by the suboptimal quality of metal electrodes contacting the atomically thin TMDs layers.Understanding the mechanisms that influence contact quality is crucial for advancing TMDs devices.In this study,we investigated the conductive properties of tungsten selenide(WSe_(2))-based devices with different film thicknesses.Using the transmission line method,a negative correlation between contact resistance and film thickness in multi-electrode devices was revealed.Additionally,repeatability tests conducted at varied temperatures indicated enhanced device stability with increasing film thickness.Theoretical analysis,supported by thermionic emission theory and thermal simulations,suggests that the degradation in electrical properties is primarily due to the thermal effect at the contact interface.Furthermore,we found that van der Waals contacts could mitigate the thermal effect through a metal transfer method.Our findings elucidate the critical role of contact resistance in the electronic performance of 2D material-based field-effect transistors(FETs),which further expands their potential in the next generation of electronic and optoelectronic devices. 展开更多
关键词 Tungsten selenide Contact resistance Thermal effect Defect state Van der Waals contact
原文传递
Selenide in 3D structure of polyhedra branching out nanotubes for collaborative facilitated conversion and capturing of polysulfide in Li-S batteries
5
作者 Yi-Yang Li Hui Liu +3 位作者 Bo Jin Nan Gao Xing-You Lang Qing Jiang 《Rare Metals》 2025年第1期169-184,共16页
Lithium-sulfur batteries(LSBs)are considered as the promising solution to replace conventional lithium-ion batteries due to satisfactory energy density.In recent times,the LSBs field has been found to face some diffic... Lithium-sulfur batteries(LSBs)are considered as the promising solution to replace conventional lithium-ion batteries due to satisfactory energy density.In recent times,the LSBs field has been found to face some difficulties in exploring practical applications in which cycling stability and cycle life are awful owing to the shuttling effect of lithium polysulfides(LiPSs)and low sulfur utilization.In this work,by synthesizing Co_(3)Se_(4) nanoparticles onto N-doped carbon(NC)polyhedra interconnected with carbon nanotubes(CNTs),NC@Co_(3)Se_(4)/CNTs is proposed as a multifunctional sulfur carrier.The Co_(3)Se_(4) nanoparticles fleetly catalyze the conversion of LiPSs and availably immobilize LiPSs.Meanwhile,the NC polyhedral skeleton enhances the electronic conductivity of active sulfur,while the CNTs facilitate Li+diffusion and supply a mass of conductive channels.Density-functional theory(DFT)calculations demonstrate the relevant mechanisms.That is to say,the NC@Co_(3)Se_(4)/CNTs benefit from the synergistic effect of Co_(3)Se_(4) nanoparticles(highly catalytic ability and strong adsorbability for LiPSs)and the special carbonaceous structure,rapidly converting LiPSs and inhibiting the shuttle of LiPSs.Therefore,lithium-sulfur battery assembled with S/NC@Co_(3)Se_(4)/CNTs cathode as well as nitrogen and sulfur co-doped carbon-coated polypropylene(N,S-C/PP)separator possesses a high initial discharge capacity of 1413 mAh·g-1 at 0.12C and persistently circulates for 1000 cycles at 1C with a capacity attenuation rate per cycle of 0.034%.This work provides a realistic idea for the use of transition metal selenide in the field of high-performance LSBs. 展开更多
关键词 selenide Shutting effect Conversion and capturing Long-term cycling stability Density-functional theory calculation
原文传递
Adsorption removal of mercury from flue gas by metal selenide:A review
6
作者 Yang Zheng Guoliang Li +2 位作者 Yi Xing Wenqing Xu Tao Yue 《Journal of Environmental Sciences》 2025年第2期420-436,共17页
Mercury(Hg)pollution has been a global concern in recent decades,posing a significant threat to entire ecosystems and human health due to its cumulative toxicity,persistence,and transport in the atmosphere.The intense... Mercury(Hg)pollution has been a global concern in recent decades,posing a significant threat to entire ecosystems and human health due to its cumulative toxicity,persistence,and transport in the atmosphere.The intense interaction between mercury and selenium has opened up a new field for studying mercury removal from industrial flue gas pollutants.Besides the advantages of good Hg^(0) capture performance and lowsecondary pollution of the mineral selenium compounds,the most noteworthy is the relatively low regeneration temperature,allowing adsorbent regeneration with low energy consumption,thus reducing the utilization cost and enabling recovery of mercury resources.This paper reviews the recent progress of mineral selenium compounds in flue gas mercury removal,introduces in detail the different types ofmineral selenium compounds studied in the field ofmercury removal,reviews the adsorption performance of various mineral selenium compounds adsorbents on mercury and the influence of flue gas components,such as reaction temperature,air velocity,and other factors,and summarizes the adsorption mechanism of different fugitive forms of selenium species.Based on the current research progress,future studies should focus on the economic performance and the performance of different carriers and sizes of adsorbents for the removal of Hg^(0) and the correlation between the gas-particle flow characteristics and gas phase mass transfer with the performance of Hg^(0) removal in practical industrial applications.In addition,it remains a challenge to distinguish the oxidation and adsorption of Hg^(0) quantitatively. 展开更多
关键词 Non-conventional pollutants Adsorbents Metal selenides Flue gas Mercury removal
原文传递
Structural tuning and reconstruction of CeO_(2)-coupled nickel selenides for robust water oxidation
7
作者 Kailu Guo Jinzhi Jia +5 位作者 Huijiao Wang Ziyu Hao Yinjian Chen Ke Shi Haixia Wu Cailing Xu 《Chinese Chemical Letters》 2025年第8期576-580,共5页
Heterogeneous catalysts have attracted wide attention due to their remarkable oxygen evolution reaction(OER)capabilities.Herein,a one-step strategy involving the coupling of NixSeywith CeO_(2)is proposed to concurrent... Heterogeneous catalysts have attracted wide attention due to their remarkable oxygen evolution reaction(OER)capabilities.Herein,a one-step strategy involving the coupling of NixSeywith CeO_(2)is proposed to concurrently construct heterogeneous interfaces,adjust phase structure,and regulate electronic configuration,thereby enhancing OER performance.Thanks to the role of CeO_(2)coupling in reducing the activation-energy and accelerating the reaction kinetics,the heterogeneous NixSey/CeO_(2)catalyst exhibits a low overpotential of 218 mV at 10 mA/cm2and long-term stability(>400 h)in 1.0 mol/L KOH for OER.Moreover,the post-OER characterization reveals that the NixSeymatrix is reconstructed into NiOOH,while the incorporated CeO_(2)nanocrystals self-assemble into larger polycrystalline particles.Theoretical analysis further demonstrates that the optimized electronic states at NiOOH/CeO_(2)interfaces can modulate intermediate chemisorption toward favorable OER kinetics.This study offers fresh perspectives on the synthesis and structure-activity relationship of CeO_(2)-coupled electrocatalysts. 展开更多
关键词 Nickel selenides CeO_(2) RECONSTRUCTION Heterogeneous catalysts Oxygen evolution reaction
原文传递
Rational design of metal selenides nanomaterials for alkali metal ion(Li^(+)/Na^(+)/K^(+))batteries:current status and perspectives 被引量:2
8
作者 Rui Sun Feng Xu +3 位作者 Cai-Hong Wang Sheng-Jun Lu Yu-Fei Zhang Hao-Sen Fan 《Rare Metals》 SCIE EI CAS CSCD 2024年第5期1906-1931,共26页
Recently,metal selenides have obtained widespread attention as electrode materials for alkali(Li^(+)/Na^(+)/K^(+))batteries due to their promising theoretical capacity and mechanism.Nevertheless,metal selenides,simila... Recently,metal selenides have obtained widespread attention as electrode materials for alkali(Li^(+)/Na^(+)/K^(+))batteries due to their promising theoretical capacity and mechanism.Nevertheless,metal selenides,similar to metal oxides and sulfides,also suffer from severe volume explosion during repeated charge/discharge processes,which results in the structure collapse and the following pulverization of electrode materials.Hence,it leads to poor cycle stability and influencing their further application.In order to solve these issues,some special strategies,including elemental doping,coupling with carbon materials,synthesis of the bimetal selenides with heterostructure,etc.,have been gradually applied to design novel electrode materials with outstanding electrochemical performance.Herein,the recent research progress on metal selenides as anodes for alkali ion batteries is summarized,including the regulation of crystal structure,synthesis strategies,modification methods,and electrochemical mechanisms and kinetics.Besides,the challenges of metal selenides and the perspective for future electrode material design are proposed.It is hoped to pave a way for the development of metal selenide electrode materials for the potential applications for alkali metal ion(Li^(+)/Na^(+)/K^(+))batteries. 展开更多
关键词 Rational design Metal selenides NANOSTRUCTURE Li^(+) batteries Na^(+) batteries K^(+) batteries
原文传递
Inhibiting shuttle effect of lithium polysulfides by double metal selenides for high-performance lithium-sulfur batteries 被引量:1
9
作者 Lei Li Xue-Jing Yang +6 位作者 Yi-Yang Li Bo Jin Hui Liu Meng-Yang Cui Dong-Bo Guan Xing-You Lang Qing Jiang 《Rare Metals》 SCIE EI CAS CSCD 2024年第6期2546-2559,共14页
Lithium-sulfur batteries(LSBs)have attracted the attention of more and more researchers due to the advantages of high energy density,environmental friendliness,and low production cost.However,the low electronic conduc... Lithium-sulfur batteries(LSBs)have attracted the attention of more and more researchers due to the advantages of high energy density,environmental friendliness,and low production cost.However,the low electronic conductivity of active material and shuttling effect of lithium polysulfides(LiPSs)limit the commercial development of LSBs.To solve these problems,we design a core-shell composite with nitrogen-doped carbon(NC)and two types of selenides(FeSe_(2)-NC@ZnSe-NC).The FeSe_(2)-NC@ZnSe-NC has a strong adsorption capacity,and can effectively adsorb LiPSs.At the same time,it also effectively alleviates the shuttling effect of LiPSs,and improves the utilization of the active substance during the charge/discharge reaction processes.The mechanism involved in FeSe_(2)-NC@ZnSe-NC is demonstrated by both experiments and density-functional theory(DFT)calculations.The electrochemical test results indicate that LSB with S/FeSe_(2)-NC@ZnSe-NC delivers an initial discharge capacity of 1260 mAh·g^(-1)at 0.2C.And after 500 cycles at 1C,the capacity decay rate per cycle is 0.031%,and the capacity retention rate is 85%.The FeSe_(2)-NC@ZnSe-NC core-shell structure verifies a rational strategy to construct an electrode material for high-performance LSBs. 展开更多
关键词 Lithium-sulfur batteries Shuttling effect Metal selenide Nitrogen-doped carbon Lithium polysulfides
原文传递
Unveiling the crystallization mechanism of cadmium selenide via molecular dynamics simulation with machine-learning-based deep potential 被引量:1
10
作者 Linshuang Zhang Manyi Yang +1 位作者 Shiwei Zhang Haiyang Niu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第18期23-31,共9页
Cadmium selenide(CdSe)is an inorganic semiconductor with unique optical and electronic properties that make it useful in various applications,including solar cells,light-emitting diodes,and biofluorescent tagging.In o... Cadmium selenide(CdSe)is an inorganic semiconductor with unique optical and electronic properties that make it useful in various applications,including solar cells,light-emitting diodes,and biofluorescent tagging.In order to synthesize high-quality crystals and subsequently integrate them into devices,it is crucial to understand the atomic scale crystallization mechanism of CdSe.Unfortunately,such studies are still absent in the literature.To overcome this limitation,we employed an enhanced sampling-accelerated active learning approach to construct a deep neural potential with ab initio accuracy for studying the crystallization of CdSe.Our brute-force molecular dynamics simulations revealed that a spherical-like nu-cleus formed spontaneously and stochastically,resulting in a stacking disordered structure where the competition between hexagonal wurtzite and cubic zinc blende polymorphs is temperature-dependent.We found that pure hexagonal crystal can only be obtained approximately above 1430 K,which is 35 K below its melting temperature.Furthermore,we observed that the solidification dynamics of Cd and Se atoms were distinct due to their different diffusion coefficients.The solidification process was initiated by lower mobile Se atoms forming tetrahedral frameworks,followed by Cd atoms occupying these tetra-hedral centers and settling down until the third-shell neighbor of Se atoms sited on their lattice posi-tions.Therefore,the medium-range ordering of Se atoms governs the crystallization process of CdSe.Our findings indicate that understanding the complex dynamical process is the key to comprehending the crystallization mechanism of compounds like CdSe,and can shed lights in the synthesis of high-quality crystals. 展开更多
关键词 Crystallization mechanism Cadmium selenide Neural network potential Molecular dynamics simulation Enhanced sampling
原文传递
Li-Ion Transport Mechanisms in Selenide-Based Solid-State Electrolytes in Lithium-Metal Batteries:A Study of Li_(8)SeN_(2),Li_(7)PSe_(6),and Li_(6)PSe_(5)X(X=Cl,Br,I) 被引量:1
11
作者 Wenshan Xiao Mingwei Wu +2 位作者 Huan Wang Yan Zhao Qiu He 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期37-47,共11页
To achieve high-energy-density and safe lithium-metal batteries(LMBs),solid-state electrolytes(SSEs)that exhibit fast Li-ion conductivity and good stability against lithium metal are of great importance.This study pre... To achieve high-energy-density and safe lithium-metal batteries(LMBs),solid-state electrolytes(SSEs)that exhibit fast Li-ion conductivity and good stability against lithium metal are of great importance.This study presents a systematic exploration of selenide-based materials as potential SSE candidates.Initially,Li_(8)SeN_(2)and Li_(7)PSe_(6)were selected from 25 ternary selenides based on their ability to form stable interfaces with lithium metal.Subsequently,their favorable electronic insulation and mechanical properties were verified.Furthermore,extensive theoretical investigations were conducted to elucidate the fundamental mechanisms underlying Li-ion migration in Li_(8)SeN_(2),Li_(7)PSe_(6),and derived Li_(6)PSe_(5)X(X=Cl,Br,I).Notably,the highly favorable Li-ion conduction mechanism of vacancy diffusion was identified in Li6PSe5Cl and Li_(7)PSe_(6),which exhibited remarkably low activation energies of 0.21 and 0.23 eV,and conductivity values of 3.85×10^(-2)and 2.47×10^(-2)S cm^(-1)at 300 K,respectively.In contrast,Li-ion migration in Li_(8)SeN_(2)was found to occur via a substitution mechanism with a significant diffusion energy barrier,resulting in a high activation energy and low Li-ion conductivity of 0.54 eV and 3.6×10^(-6)S cm^(-1),respectively.Throughout this study,it was found that the ab initio molecular dynamics and nudged elastic band methods are complementary in revealing the Li-ion conduction mechanisms.Utilizing both methods proved to be efficient,as relying on only one of them would be insufficient.The discoveries made and methodology presented in this work lay a solid foundation and provide valuable insights for future research on SSEs for LMBs. 展开更多
关键词 Li-ion transport lithium argyrodites lithium-metal battery selenideS solid-state electrolytes
在线阅读 下载PDF
Elucidating elusive quaternary selenide EuCeCuSe3:Synthesis,crystal structure,properties and theoretical studies
12
作者 Maxim V.Grigoriev Anna V.Ruseikina +11 位作者 Maxim S.Molokeev Vladimir A.Chernyshev Aleksandr S.Aleksandrovsky Alexander S.Krylov Svetlana N.Krylova Nikolai P.Shestakov Dmitriy A.Velikanov Alexander A.Garmonov Alexey V.Matigorov Evgeny A.Ostapchuk Thomas Schleid Damir A.Safin 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第1期163-171,I0006,共10页
We report on the novel heterometallic quaternary selenide EuCeCuSe3,the fabrication of which has been a challenge until this work.The structure of the reported selenide was elucidated from the powder X-ray diffraction... We report on the novel heterometallic quaternary selenide EuCeCuSe3,the fabrication of which has been a challenge until this work.The structure of the reported selenide was elucidated from the powder X-ray diffraction data,which revealed the formation of EuCeCuSe3with excellent yield(96.7%)accompanied with a minor fraction of CeSe2(3.3%),and was best solved in orthorhombic space group Pnma with the BaLaCuS3structural type.Thus,the crystal structure of the title compound completes the row of the heterometallic quaternary selenides EuRECuSe3(RE=La,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Y),of which the cerium-based derivative exclusively belongs to the BaLaCuS3structural type.The distortion of the CuSe4polyhedron was compared for the whole series of EuRECuSe3compounds using theτ4-descriptor for four coordinated ions,which revealed the highest degree of distortion for the Ce3+-containing selenide,followed by the La3+-based derivative.Furthermore,the crystallographic and geometrical parameters of the reported selenide were discussed in comparison to the Ce3+-based sulfides SrCeCuS3and EuCeCuS3.Ab initio calculations of the crystal structure,a phonon spectrum and elastic constants for the crystal of EuCeCuSe3were also performed.The types and wavenumbers of fundame ntal modes were determined and the involvement of ions participating in the phonon modes was assessed.The experimental IR spectrum of the reported selenide was interpreted and found to be in agreement with the calculated spectrum.The experimental direct band gap of EuCeCuSe3was measured to be 1.36 eV that is consistent with the concept of its origin due to interband transitions between orbitals emerging mainly from 4f(valence band)and 5d(conduction band)levels of the Eu2+cation.The dependence of the Young’s modulus on the direction demonstrates the anisotropy of the elastic properties,while the Vickers hardness for EuCeCuSe3was calculated to be 5.2 GPa.Finally,the title compound is paramagnetic above 4 K. 展开更多
关键词 Quaternary selenide SYNTHESIS Crystal structure Ab initio calculations Magnetic measurements SPECTROSCOPY
原文传递
Bismuth selenide nanosheet layer materials with peroxidase activity for antimicrobial applications
13
作者 Tian-Shi Jiang Xin-Yu Li +2 位作者 Chang-Heng Zhu Tian-Rong Yu Han-Qing Zhao 《Advanced Agrochem》 2024年第4期308-315,共8页
A new type of bismuth selenide nanosheet layer material was synthesized by solvent thermal method,which is harmless to human body and can be used in combination with hydrogen peroxide solution as a new type of modern ... A new type of bismuth selenide nanosheet layer material was synthesized by solvent thermal method,which is harmless to human body and can be used in combination with hydrogen peroxide solution as a new type of modern insecticide.The particle size of the bismuth selenide nanosheet material is about 80 nm,and it has good dispersion in water.In this experiment,the antibacterial ability of the material was investigated using Escherichia coli and Staphylococcus aureus as bacterial models and plant pathogens such as strawberry gray mold and tomato gray mold as fungal models.In addition,the in vivo bioassay indicated that Bi_(2)Se_(3)tH_(2)O_(2)possessed effective control against Pepper Anthrax Disease.The biocompatibility of this material was also investigated using human umbilical vein endothelial cells(HUVEC)as a model,and the results showed that the bismuth selenide nanosheet material has good antibacterial ability and biocompatibility. 展开更多
关键词 NANOMATERIALS Antibacterial ability Bismuth selenide Nanopesticides ANTIFUNGAL
在线阅读 下载PDF
Novel Syntheses of Aryl and Benzyl Selenides Promted by Metallic Zinc in Aqueous Media
14
作者 WU Jianyi LU Genliang +1 位作者 MA Zhixian CHEN Jian 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2000年第2期182-184,共3页
关键词 Unsymmetrical selenide ZINC Aryl selenides Benzyl seleniders
在线阅读 下载PDF
A simple and effective approach to the synthesis of alkynyl selenides from terminal alkynes 被引量:2
15
作者 Barahman Movassagh Mozhgan Navidi 《Chinese Chemical Letters》 SCIE CAS CSCD 2012年第9期1035-1038,共4页
Alkynyl selenides were prepared under very mild conditions by reacting terminal alkynes with respective diorganic diselenides in the presence of potassium t-butoxide. The advantages of this protocol include the use of... Alkynyl selenides were prepared under very mild conditions by reacting terminal alkynes with respective diorganic diselenides in the presence of potassium t-butoxide. The advantages of this protocol include the use of readily available substrates and reagent and good yield of the products. 展开更多
关键词 Alkynyl selenides Diorganie diselenides Potassium t-butoxide Terminal alkynes Phenyl acetylene
原文传递
A one-pot stereoselective synthesis of 1,4-dienyl selenides by hydrostannylation-Stille tandem reaction of acetylenic selenides with Bu_3SnH and allylic bromides
16
作者 La Mei Yu Wen Yan Hao Ming Zhong Cai 《Chinese Chemical Letters》 SCIE CAS CSCD 2008年第9期1047-1050,共4页
1,4-Dienyl selenides can be stereoselectively synthesized in one pot under mild conditions in good yields by the palladiumcatalyzed hydrostannylation of acetylenic selenides, followed by Stille coupling with allylic b... 1,4-Dienyl selenides can be stereoselectively synthesized in one pot under mild conditions in good yields by the palladiumcatalyzed hydrostannylation of acetylenic selenides, followed by Stille coupling with allylic bromides. 展开更多
关键词 Acetylenic selenide HYDROSTANNYLATION Stille coupling 1 4-Dienyl selenide Stereoselective synthesis
在线阅读 下载PDF
Reduction of Diaryldiselenides by System of Cp_2TiCl_2/Bu^iMgBr/THF and Its Application in Synthesis of Unsymmetrical Diaryl Selenides
17
作者 Xin Hua XU Xian HUANG(Institute of Elemento-Organic Chemistry, Nankai University Tianjin 300071Department of Chemistry, Zhejiang University, Xi Xi Campus, Hangzhou 310028) 《Chinese Chemical Letters》 SCIE CAS CSCD 2000年第6期473-474,共2页
Reduction of diaryldiselenides by the system of Cp2TiCl2/Bu'MgBr/THF gave the nucleophilic arylselenium complex. They reacted with diaryl iodonium salts to afford unsymmetrical diaryl selenides in high yields.
关键词 Diaryl selenides REDUCTION titanocene dichloride isobutylmagnesium bromide arylselenium complex of titanocene diaryl iodonium salts unsymmetrical diaryl selenides
在线阅读 下载PDF
A convenient and stereoselective synthesis of (Z)-allyl selenides via Sm/TMSCl system-promoted coupling of Baylis-Hillman adducts with diselenides
18
作者 LIU Yun-kui XU Dan-qian +1 位作者 XU Zhen-yuan ZHANG Yong-min 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2006年第5期393-396,共4页
A simple and convenient procedure for stercoselective synthesis of (Z)-allyl selenides has been developed by a one-pot reaction of diselenides with Baylis-Hillman adducts in the presence of samarium metal-trimethyls... A simple and convenient procedure for stercoselective synthesis of (Z)-allyl selenides has been developed by a one-pot reaction of diselenides with Baylis-Hillman adducts in the presence of samarium metal-trimethylsilyl chloride under mild conditions. Presumably, the diselenides are cleaved by Sm/TMSCI system to form selemde anions, which then undergo SN2' substitution of Baylis-Hillman adducts to produce the (Z)-allyl selenides. 展开更多
关键词 Stereoselective synthesis (Z)-allyl selenides DIselenideS Baylis-Hillman adducts Sm/TMSCI system
在线阅读 下载PDF
Samarium(II) Diiodide Induced Polarity Inversion of π-Allyl Palladium Complexes: The Formation of Allylic Selenides
19
作者 XinJianZHAO HuaRongZHAO 《Chinese Chemical Letters》 SCIE CAS CSCD 2002年第5期396-397,共2页
Allylic acetates were reduced with Pd(0)-SmI2 in the presence of ArSeBr to form corresponding allylic selenides in good yields.
关键词 Allyl acetates allylic selenides arylselenenyl bromides palladium complexes polarity inversion. Samarium(II) Diiodide Induced Polarity Inversion of p-Allyl Palladium Complexes: The Formation of Allylic selenides Xin Jian ZHAO1 Hua Rong ZH
在线阅读 下载PDF
MOF-derived molybdenum selenide on Ti_(3)C_(2)T_(x) with superior capacitive performance for lithium-ion capacitors 被引量:8
20
作者 Jianjian Zhong Lu Qin +3 位作者 Jianling Li Zhe Yang Kai Yang Mingjie Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第5期1061-1072,共12页
Two-dimensional Ti_(3)C_(2)T_(x) exhibits outstanding rate property and cycle performance in lithium-ion capacitors(LICs)due to its unique layered structure,excellent electronic conductivity,and high specific surface ... Two-dimensional Ti_(3)C_(2)T_(x) exhibits outstanding rate property and cycle performance in lithium-ion capacitors(LICs)due to its unique layered structure,excellent electronic conductivity,and high specific surface area.However,like graphene,Ti_(3)C_(2)T_(x) restacks during electrochemical cycling due to hydrogen bonding or van der Waals forces,leading to a decrease in the specific surface area and an increase in the diffusion distance of electrolyte ions between the interlayer of the material.Here,a transition metal selenide MoSe_(2) with a special three-stacked atomic layered structure,derived from metal-organic framework(MOF),is introduced into the Ti_(3)C_(2)T_(x) structure through a solvo-thermal method.The synergic effects of rapid Li+diffusion and pillaring effect from the MoSe_(2) and excellent conductivity from the Ti_(3)C_(2)T_(x) sheets endow the material with excellent electrochemical reaction kinetics and capacity.The composite Ti_(3)C_(2)T_(x)@MoSe_(2) material exhibits a high capacity over 300 mAh·g^(-1) at 150 mA·g^(-1) and excellent rate property with a specific capacity of 150 mAh·g^(-1) at 1500 mA·g^(-1).Addition-ally,the material shows a superior capacitive contribution of 86.0%at 2.0 mV·s^(-1) due to the fast electrochemical reactions.A Ti_(3)C_(2)T_(x)@MoSe_(2)//AC LIC device is also fabricated and exhibits stable cycle performance. 展开更多
关键词 two-dimensional titanium carbide molybdenum selenide solvothermal method electrochemical kinetics
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部