Iron-Vanadium(FeV)catalyst showed a unique catalytic activity for the selective oxidation of methanol to formaldehyde;however,due to its complex compositions,the identification of catalytic active sites still remains ...Iron-Vanadium(FeV)catalyst showed a unique catalytic activity for the selective oxidation of methanol to formaldehyde;however,due to its complex compositions,the identification of catalytic active sites still remains challenging,inhibiting the rational design of excellent FeV-based catalysts.Here,in this work,a series of FeV catalysts with various compositions,including FeVO_(4),isolated VO_(x),low-polymerized V_(n)O_(x),and crystalline V_(2)O_(5) were prepared by controlling the preparation conditions,and were applied to methanol oxidation to formaldehyde reaction.A FeV_(1.1) catalyst,which consisted of FeVO_(4) and low-polymerized V_(n)O_(x) species showed an excellent catalytic performance with a methanol conversion of 92.3%and a formaldehyde selectivity of 90.6%,which was comparable to that of conventional iron-molybdate catalyst.The results of CH_(3)OH-IR,O_(2) pulse and control experiments revealed a crucial synergistic effect between FeVO_(4) and low-polymerized V_(n)O_(x).It enhanced the oxygen supply capacity and suitable binding and adsorption strengths for formaldehyde intermediates,contributing to the high catalytic activity and formaldehyde selectivity.This study not only advances the understanding of FeV structure but also offers valuable guidelines for selective methanol oxidation to formaldehyde.展开更多
The efficient catalytic conversion of fossil-based low-carbon small molecules to oxygen-containing chemicals is an attractive research topic in the fields of energy and chemical engineering.The selective oxidation of ...The efficient catalytic conversion of fossil-based low-carbon small molecules to oxygen-containing chemicals is an attractive research topic in the fields of energy and chemical engineering.The selective oxidation of dimethyl ether(DME),which is derived from fossil resources,represents a promising approach to producing high-concentration formaldehyde with low energy consumption.However,there is still a lack of catalysts achieving satisfactory conversion of DME with high selectivity for formaldehyde under mild conditions.In this work,an efficient iron-molybdate(FeMo)catalyst was developed for the selective oxidation of DME to formaldehyde.The DME conversion of 84% was achieved with a superior formaldehyde selectivity(77%)at 300℃,a performance that is superior to all previously reported results.In an approximately 550 h continuous reaction,the catalyst maintained a conversion of 64% and a formaldehyde selectivity of 79%.Combined X-ray diffraction(XRD),Transmission electron microscope(TEM),Ultraviolet-visible spectroscopy(UV-Vis),Hydrogen temperature-programmed reduction(H_(2)-TPR),Fourier transform infrared(FT-IR)analyses,along with density functional theory(DFT)calculations,demonstrated that the excellent FeMo catalyst was composed of active Fe_(2)(MoO_(4))_(3)and MoO_(3)phases,and there was an interaction between them,which contributed to the efficient DME dissociation and smooth hydrogen spillover,leading to a superior DME conversion.With the support of DME/O_(2)pulse experiments,in-situ Raman,in-situ Dimethyl ether infrared spectroscopy(DME-IR)and DFT calculation results,a Mars-van Krevelen(MvK)reaction mechanism was proposed:DME was dissociated on the interface between Fe_(2)(MoO_(4))_(3)and MoO_(3)phases to form active methoxy species firstly,and it dehydrogenated to give hydrogen species;the generated hydrogen species smoothly spilled over from Fe_(2)(MoO_(4))_(3)to MoO_(3)enhanced by the interaction between Fe_(2)(MoO_(4))_(3)and MoO_(3);then the hydrogen species was consumed by MoO_(3),leading to a reduction of MoO_(3),and finally,the reduced MoO_(3)was re-oxidized by O_(2),returning to the initial state.These findings offer valuable insights not only for the development of efficient FeMo catalysts but also for elucidating the reaction mechanism involved in the oxidation of DME to formaldehyde,contributing to the optimized utilization of DME derived from fossil resources.展开更多
This study systematically explored the oxidation behavior of a Ni-10Cr alloy without and with surface spraying hexagonal closed pack(hcp)-structuredα-Al_(2)O_(3)orα-Fe_(2)O_(3)nanoparticles.Despite the distinct equi...This study systematically explored the oxidation behavior of a Ni-10Cr alloy without and with surface spraying hexagonal closed pack(hcp)-structuredα-Al_(2)O_(3)orα-Fe_(2)O_(3)nanoparticles.Despite the distinct equilibrium dissociation oxygen partial pressure of the two kinds of oxide nanoparticles,they both contributed to the selective oxidation of Ni-10Cr alloy,achieving the transition from internal Cr oxidation to external Cr_(2)O_(3)scale formation.Nano-scaled characterization indicates that a coherent interface was developed between the newly grown Cr_(2)O_(3)grains and the hcp-structured oxide nanoparticles,whereby promoting epitaxial Cr_(2)O_(3)nucleation surrounding the nanoparticles and kinetically accelerating the formation of a continuous Cr_(2)O_(3)scale at the transient oxidation stage.The findings provide new insights into the selective oxidation mechanism of alloys with low Cr contents.展开更多
The photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural(HMF)offers a sustainable alternative to thermal catalysis.However,the efficiency of this process is significantly limited by inadequate...The photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural(HMF)offers a sustainable alternative to thermal catalysis.However,the efficiency of this process is significantly limited by inadequate light absorption efficiency and the rapid recombination of photogenerated charge carriers in conventional photocatalysts.Herein,we developed a Co_(3)O_(4)/ZnIn_(2)S_(4)(Co_(3)O_(4)/ZIS)photocatalyst,in which Co_(3)O_(4)functions as a multifunctional cocatalyst.This photocatalyst significantly enhances the chemisorption and activation of HMF molecules through interfacial oxygen-hydroxyl interactions.Additionally,the incorporation of narrow-band gap Co_(3)O_(4)broadens the optical absorption range of the composite photocatalyst.Besides,integrating Co_(3)O_(4)with ZnIn_(2)S_(4)leads to a 5.9-fold increase in charge separation efficiency compared to pristine ZnIn_(2)S_(4).The optimized Co_(3)O_(4)/ZIS-3 photocatalyst(3 wt% Co_(3)O_(4)loading)exhibits exceptional selectivity and yield for 2,5-diformylfuran(DFF)under visible light irradiation,achieving 70.4%DFF selectivity with a 5.4-fold enhancement compared to pristine ZnIn_(2)S_(4).Scavenger experiments and electron spin resonance(ESR)spectroscopy indicate that superoxide radicals(O_(2)^(-))and h^(+)are the main active species driving the photocatalytic oxidation of HMF.Molecular simulations reveal that the activation of HMF and the transformation of the intermediate^(*)MF to^(*)DFF are more favorable over the Co_(3)O_(4)/ZIS composite due to lower activation barriers compared to those over ZnIn_(2)S_(4).Through this work,we aim to design highly efficient and affordable photocatalysts for biomass valorization and contribute valuable insights into the mechanisms of photocatalytic oxidation of HMF.展开更多
The methane selective oxidation was a"holy grail"reaction.However,peroxidation and low selectivity limited the application.Herein,we combined three Au contents with TiO_(2)in both encapsulation(xAu@TiO_(2))a...The methane selective oxidation was a"holy grail"reaction.However,peroxidation and low selectivity limited the application.Herein,we combined three Au contents with TiO_(2)in both encapsulation(xAu@TiO_(2))and surface-loaded(xAu/TiO_(2))ways by MOF derivation strategy,reported a catalyst 0.5Au@TiO_(2)exhibited a CH_(3)OH yield of 32.5μmol·g^(-1)·h^(-1)and a CH_(3)OH selectivity of 80.6%under catalytic conditions of only CH_(4),O_(2),and H_(2)O.Mechanically speaking,the catalytic activity was controlled by both electron-hole separation efficiency and core-shell structure.The interfacial contact between Au nanoparticles and TiO_(2)in xAu@TiO_(2)and xAu/TiO_(2)induced the formation of oxygen vacancies,with 0.5 Au content showing the highest oxygen vacancy concentration.At the same Au content,xAu@TiO_(2)generated more oxygen vacancies than xAu/TiO_(2).The oxygen vacancy acted as an effective electron cold trap,which enhanced the photogenerated carrier separation efficiency and thereby improved the catalytic activity.In-situ DRIFTs revealed that the isolated OH(non-hydrogen bond adsorption)were key species for the methane selective oxidation,playing a role in the activation of CH_(4)to^(*)CH_(3).However,an overabundance of isolated OH led to severe overoxidation.Fortunately,the core-shell structure over xAu@TiO_(2)provided a slow-release environment for isolated OH through the intermediate state of^(*)OH(hydrogen bond adsorption)to balance the formation rate and consumption rate of isolated OH,doubling the methanol yield and increasing the>29%selectivity.These results showed a new strategy for the control of the overoxidation rate via a strategy of MOF encapsulation followed by pyrolytic derivation for methane selective oxidation.展开更多
Defect engineering in metal organic frameworks(MOFs)has captured significant attention in the field of photocatalysis.A series of UiO-66(Ce)(UiO=University of Oslo)MOFs with different contents of missing-linker defect...Defect engineering in metal organic frameworks(MOFs)has captured significant attention in the field of photocatalysis.A series of UiO-66(Ce)(UiO=University of Oslo)MOFs with different contents of missing-linker defects have been developed for the photocatalytic selective oxidation of benzylamine(BA)and thioanisole(TA)under visible light.The introduction of missing-linker defects promotes the formation of unsaturated Ce sites with a high Ce3+content.It also generates a high concentration of oxygen vacancies.In situ Fourier transform infrared spectroscopy(FTIR)results revealed that BA and TA molecules were activated on coordinatively unsaturated Ce sites via the H-N…Ce and the C-S…Ce interactions,respectively.Simulated in situ electron paramagnetic resonance(EPR)data indicate that O_(2) activation and reduction occur at coordinatively unsaturated Ce^(3+)sites to form·O_(2)^(-).This is accelerated by the Ce^(3+)/Ce^(4+)redox cycle associated with the photogenerated electrons.The corresponding photogenerated holes are involved in the deprotonation of the activated BA and TA.The most active sample exhibits 98.4%and 95.5%conversion rates for BA and TA oxidation.Mechanisms for the molecular activation are proposed at the molecular level.展开更多
For the effective treatment of the wastewater with low-medium concentration ammonia nitrogen and low strength COD,a high-performance Co_(3)O_(4) catalyst supported on carbon nanocages(CNCs)was prepared.By isovolumetri...For the effective treatment of the wastewater with low-medium concentration ammonia nitrogen and low strength COD,a high-performance Co_(3)O_(4) catalyst supported on carbon nanocages(CNCs)was prepared.By isovolumetric im pregnation,Co_(3)O_(4) could be uniformly dispersed on surface of CNCs,which possess tiny particle size and strong electron transfer capability.The catalytic performance of the prepared Co_(3)O_(4)/CNCs catalysts with different Co_(3)O_(4) loadings was systematically evaluated and compared with Co_(3)O_(4)/CNTs.It is found that 20 wt.%Co_(3)O_(4)/CNCs shows the best catalytic performance,achieving an ammonia nitrogen conversion rate of 71.0%and a nitrogen selectivity of 81.8%.Compared to commonly used Co_(3)O_(4),ammonia conversion and nitrogen selectivity of Co_(3)O_(4)/CNCs increased by 28.9%and 15.8%respectively.In the five consecutive cycles,the catalytic activity remained stable.The mechanism that CNCs support effectively increases the surface oxygen vacancies of Co_(3)O_(4) through XPS analysis was also elucidated,and DFT calculations confirm strong electron transfer between CNCs and Co_(3)O_(4),rendering Co_(3)O_(4) nanoparticles as the primary catalytic active sites.The results may contribute to the development of highperformance catalytic ozone oxidation catalysts for ammonia nitrogen.展开更多
Photoelectrocatalytic(PEC)seawater splitting as a green and sustainable route to harvest hydrogen is attractive yet hampered by low activity of photoanodes and unexpected high selectivity to the corrosive and toxic ch...Photoelectrocatalytic(PEC)seawater splitting as a green and sustainable route to harvest hydrogen is attractive yet hampered by low activity of photoanodes and unexpected high selectivity to the corrosive and toxic chlorine.Especially,it is full of challenges to unveil the key factors influencing the selectivity of such complex PEC processes.Herein,by regulating the energy band and surface structure of the anatase TiO_(2) nanotube array photoanode via nitrogen-doping,the seawater PEC oxidation shifts from Cl^(-)oxidation reaction(ClOR)dominant on the TiO_(2) photoanode(61.6%)to oxygen evolution reaction(OER)dominant on the N-TiO_(2) photoanode(62.9%).Comprehensive investigations including operando photoelectrochemical FTIR and DFT calculations unveil that the asymmetric hydrogen-bonding water at the N-TiO_(2) electrode/electrolyte interface enriches under illumination,facilitating proton transfer and moderate adsorption strength of oxygen-intermediates,which lowers the energy barrier for the OER yet elevates the energy barrier for the ClOR,resulting to a promoted selectivity towards the OER.The work sheds light on the underlying mechanism of the PEC water oxidation processes,and highlights the crucial role of interfacial water on the PEC selectivity,which could be regulated by controlling the energy band and the surface structure of semiconductors.展开更多
Electrochemical nitrogen looping represents a promising carbon-free and sustainable solution for the energy transition,in which electrochemical ammonia oxidation stays at the central position.However,the various nitro...Electrochemical nitrogen looping represents a promising carbon-free and sustainable solution for the energy transition,in which electrochemical ammonia oxidation stays at the central position.However,the various nitrogen-containing intermediates tend to poison and corrode the electrocatalysts,even the state-of-the-art noble-metal ones,which is worsened at a high applied potential.Herein,we present an ultrarapid laser quenching strategy for constructing a corrosion-resistant and nanostructured CuNi alloy metallic glass electrocatalyst.In this material,single-atom Cu species are firmly bonded with the surrounding Ni atoms,endowing exceptional resistance against ammonia corrosion relative of conventional CuNi alloys.Remarkably,a record-high durability for over 300 h is achieved.Ultrarapid quenching also allows a much higher Cu content than typical single-atom alloys,simultaneously yielding a high rate and selectivity for ammonia oxidation reaction(AOR).Consequently,an outstanding ammonia conversion rate of up to 95%is achieved with 91.8%selectivity toward nitrite after 8 h.Theoretical simulations reveal that the structural amorphization of CuNi alloy could effectively modify the electronic configuration and reaction pathway,generating stable singleatom Cu active sites with low kinetic barriers for AOR.This ultrarapid laser quenching strategy thus provides a new avenue for constructing metallic glasses with well-defined nanostructures,presenting feasible opportunities for performance enhancement for AOR and other electrocatalytic processes.展开更多
In this work,a series of Ce-Ti composite oxides with different Ti/Ce molar ratios was prepared by coprecipitation method,and investigated for the catalytic degradation of toluene and selective catalytic reduction of N...In this work,a series of Ce-Ti composite oxides with different Ti/Ce molar ratios was prepared by coprecipitation method,and investigated for the catalytic degradation of toluene and selective catalytic reduction of NO.The phase transition process between Ce species and Ti species is limited by modulating the interaction between Ce4+and Ti4+,while a completely amorphous composite is generated with an appropriate molar ratio of Ti/Ce(1.5/1).The catalyst CeTi1.5Oxexhibits the best catalytic performance,where the values of T90and T50for deep degradation of toluene are 297 and 330℃respectively at high weight hours space velocity(WHSV=120000 mL/(g·h)).Compared with CeO_(2),T90and T50decrease by48 and 34℃respectively while declining by 67 and 70℃compared to TiO_(2).For the SCR reaction,CeTi1.5Oxreaches 100%NO conversion at 250℃with WHSV=60000 mL/(g·h),reduced by 50℃compared to pure CeO_(2).The amorphous nanostructure with highly dispersed Ce and Ti species was confirmed by transmission electron microscopy(TEM)and X-ray diffraction(XRD)characterizations.The X-ray photoelectron spectroscopy(XPS)and Raman analyses show that a large number of active Ce-O-Ti species and surface oxygen vacancies are generated due to the strong interaction between Ti^(4+)and Ce^(4+)in CeTi_(1.5)O_(x).Additionally,H_(2)-TPR and O_(2)-TPD further confirm that the interaction promotes the low-temperature reducibility and mobility of surface-active oxygen species.Meanwhile,in-situ DRIFTS study reveals that CeTi1.5Oxwith amorphous nanostructure can dramatically enhance the dissociative and complete oxidation capacity for toluene.展开更多
In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asy...In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asymptotic stability of the trivial solution and the positive periodic solution.Finally,numerical simulations are presented to validate our results.Our results show that age-selective harvesting is more conducive to sustainable population survival than non-age-selective harvesting.展开更多
Gold nanoparticles(AuNPs)supported on the Cu-doped LaMnO_(3)perovskites exhibit strong Au-Mn-Cu synergy in the aerobic oxidation of gaseous ethanol to acetaldehyde(AC).The Au/LaMnCuO_(3)catalysts achieve AC yields exc...Gold nanoparticles(AuNPs)supported on the Cu-doped LaMnO_(3)perovskites exhibit strong Au-Mn-Cu synergy in the aerobic oxidation of gaseous ethanol to acetaldehyde(AC).The Au/LaMnCuO_(3)catalysts achieve AC yields exceeding 90%and a space-time yield of 715 g_(AC)g_(AU)^(-1)h^(-1)at 225℃,outperforming reported catalysts.The outstanding performance is attributed to adjacent Cu^(+)and Mn^(2+)ions in the perovskite surface,which,together with nearby AuNPs,contribute to the high activity and stability.The best-performing catalyst contains a Cu/Mn ratio of 1/3 in the perovskite.Doping too much Cu into the perovskite leads to metallic Cu,suppressing catalyst performance.Density functional theory(reaction energetics,electronic structure analysis)and microkinetics simulations aided in understanding the synergy between Cu and Mn and the role of AuNPs.The reaction involves two H abstraction steps:(1)O-H cleavage of adsorbed ethanol by the basic perovskite lattice oxygen atom and(2)α-C-H cleavage by AuNPs,yielding AC and adsorbed water.Molecular O_(2)adsorbs in the oxygen vacancy(O_(V))formed by water removal,generating a peroxide anion(O_(2)^(2-))as the activated oxygen species.In the second part of the catalytic cycle,the basic O_(2)^(2-)species abstracts the H atom from another ethanol molecule,followed byα-C-H cleavage by AuNPs,AC production,and water removal.Water formation in the second part of the catalytic cycle is the rate-controlling step for Au/LaMnO_(3)and Au/LaMnCuO_(3)models.Moderate Cu doping enhances the essential Cu^(+)-OV-Mn^(2+)sites and lowers the barrier for water formation due to the weaker Cu-O bond than the Mn-O bond.In contrast,excessive Cu doping creates unstable Cu^(2+)-O-Cu^(2+)sites and shifts the barrier to theα-C-H cleavage.展开更多
Ethylene glycol(EG)is a biomass derivative of polyethylene terephthalate(PET),and its electrocatalytic conversion into high-value chemicals has sparked widespread interest.This study reviews the most recent research d...Ethylene glycol(EG)is a biomass derivative of polyethylene terephthalate(PET),and its electrocatalytic conversion into high-value chemicals has sparked widespread interest.This study reviews the most recent research development in electrocatalysis-based EG to glycolic acid(GA)conversion.Firstly,the strategies and research results of modulating the electronic structure of catalysts for efficient selective GA production from EG are reviewed.Second,by reviewing the data of in-situ Fourier transform infrared spectroscopy and in-situ electrochemically attenuated total reflection surface enhanced infrared absorption spectroscopy,the reaction pathway and catalytic mechanism of EG partial oxidation to GA were clarified.Finally,the design and regulation of catalysts for selective oxidation of EG by electrocatalysis in the future are prospected.展开更多
Nanostructured ceria has attracted much attention in the field of redox catalysts due to the numerous active sites with excellent redox ability.Based on the acidic medium etching strategy,we constructed the strong bin...Nanostructured ceria has attracted much attention in the field of redox catalysts due to the numerous active sites with excellent redox ability.Based on the acidic medium etching strategy,we constructed the strong binding centers(hydroxyl sites and strong acid sites)on the surfaces of nanostructured ceria,which regulate the adsorption process of KA-Oil(the mixture of cyclohexanol and cyclohexanone)and to promote high KA-Oil selectivity in cyclohexane oxidation.The three CeO_(2)(nanocube,nanorod and nanopolyhedron)with different exposed crystal planes were treated by acid etching to change the surface sites and catalytic properties.The transition behavior of surface sites during etching was revealed,abundant strong binding centers were proved to be constructed successfully.And especially for the nanorod treated by acid(Acid@CeO_(2)-NR)with the strongest response for sulfuric acid etching,the strong adsorption of cyclohexanone by strong binding centers was confirmed based on the in-situ DRIFTs.The sulfuric acid etching strategy to enhance the selective oxidation of cyclohexane based on the construction of strong binding centers was proved to be feasible and effective,Acid@CeO_(2)-NR with strongest etching response achieved the dramatic promotion of KA-Oil selectivity from 64.1%to 92.3%.展开更多
Simultaneously inducing dual built-in electric fields(EFs)both within a single component and at the heterojunction interface creates a dual-driving force that is crucial for promoting spatial charge separation.This is...Simultaneously inducing dual built-in electric fields(EFs)both within a single component and at the heterojunction interface creates a dual-driving force that is crucial for promoting spatial charge separation.This is particularly significant in challenging coupled systems,such as CO_(2)photoreduction integrated with selective oxidation of toluene to benzaldehyde.However,developing such a system is quite challenging and often requires a precise design and engineering.Herein,we demonstrate a unique Ni-CdS@Ni(OH)_(2)heterojunction synthesized via an in-situ self-assembly method.Comprehensive mechanistic and theoretical investigations reveal that the NiCdS@Ni(OH)_(2)heterojunction induces dual electric fields(EFs):an intrinsic polarized electric-field within the CdS lattice from Ni doping and an interfacial electric-field from the growth of ultrathin nanosheets of Ni(OH)_(2)on NiCdS nanorods,enabling efficient spatial charge separation and enhanced redox potential.As proof of concept,the Ni-CdS@Ni(OH)_(2)heterojunction simultaneously exhibits outstanding bifunctional photocatalytic performance,producing CO at a rate of 427μmol g^(-1)h^(-1)and selectively oxidizing toluene to benzaldehyde at a rate of 1476μmol g^(-1)h^(-1)with a selectivity exceeding 85%.This work offers a promising strategy to optimize the utilization of photogenerated carriers in heterojunction photocatalysts,advancing synergistic photocatalytic redox systems.展开更多
BACKGROUND Post-stroke depression(PSD)is associated with hypothalamic-pituitary-adrenal(HPA)axis dysfunction and neurotransmitter deficits.Selective serotonin reuptake inhibitors(SSRIs)are commonly used,but their effi...BACKGROUND Post-stroke depression(PSD)is associated with hypothalamic-pituitary-adrenal(HPA)axis dysfunction and neurotransmitter deficits.Selective serotonin reuptake inhibitors(SSRIs)are commonly used,but their efficacy is limited.This study investigated whether combining SSRIs with traditional Chinese medicine(TCM)Free San could enhance their therapeutic effects.AIM To evaluate the clinical efficacy and safety of combining SSRIs with Free San in treating PSD,and to assess its impact on HPA axis function.METHODS Ninety-two patients with PSD were enrolled and randomly divided into control groups(n=46)and study groups(n=46).The control group received the SSRI paroxetine alone,whereas the study group received paroxetine combined with Free San for 4 weeks.Hamilton Depression Scale and TCM syndrome scores were assessed before and after treatment.Serum serotonin,norepinephrine,cortisol,cor-ticotropin-releasing hormone,and adrenocorticotropic hormone were measured.The treatment responses and adverse reactions were recorded.RESULTS After treatment,the Hamilton Depression Scale and TCM syndrome scores were significantly lower in the study group than in the control group(P<0.05).Serum serotonin and norepinephrine levels were significantly higher in the study group than in the control group,whereas cortisol,corticotropin-releasing hormone,and adrenocorticotropic hormone levels were significantly lower(P<0.05).The total efficacy rates were 84.78%and 65.22%in the study and control groups,respectively(P<0.05).No significant differences in adverse reactions were observed between the two groups(P>0.05).CONCLUSION Combining SSRIs with Free San can enhance therapeutic efficacy,improve depressive symptoms,and regulate HPA axis function in patients with PSD with good safety and clinical application value.展开更多
Developing biomass platform compounds into high value-added chemicals is a key step in renewable resource utilization.Herein,we report porous carbon-supported Ni-ZnO nanoparticles catalyst(Ni-ZnO/AC)synthesized via lo...Developing biomass platform compounds into high value-added chemicals is a key step in renewable resource utilization.Herein,we report porous carbon-supported Ni-ZnO nanoparticles catalyst(Ni-ZnO/AC)synthesized via low-temperature coprecipitation,exhibiting excellent performance for the selective hydrogenation of 5-hydroxymethylfurfural(HMF).A linear correlation is first observed between solvent polarity(E_(T)(30))and product selectivity within both polar aprotic and protic solvent classes,suggesting that solvent properties play a vital role in directing reaction pathways.Among these,1,4-dioxane(aprotic)favors the formation of 2,5-bis(hydroxymethyl)furan(BHMF)with 97.5%selectivity,while isopropanol(iPrOH,protic)promotes 2,5-dimethylfuran production with up to 99.5%selectivity.Mechanistic investigations further reveal that beyond polarity,proton-donating ability is critical in facilitating hydrodeoxygenation.iPrOH enables a hydrogen shuttle mechanism where protons assist in hydroxyl group removal,lowering the activation barrier.In contrast,1,4-dioxane,lacking hydrogen bond donors,stabilizes BHMF and hinders further conversion.Density functional theory calculations confirm a lower activation energy in iPrOH(0.60 eV)compared to 1,4-dioxane(1.07 eV).This work offers mechanistic insights and a practical strategy for solvent-mediated control of product selectivity in biomass hydrogenation,highlighting the decisive role of solvent-catalyst-substrate interactions.展开更多
TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing Ti...TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance.展开更多
Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols.Herein,we report efficient electro...Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols.Herein,we report efficient electrocatalytic oxidations of saturated alcohols(C_(1)-C_(6))to selectively form formate using Ni Co hydroxide(Ni Co-OH)derived Ni Co_(2)O_(4)solid-acid electrocatalysts with balanced Lewis acid(LASs)and Brønsted acid sites(BASs).Thermal treatment transforms BASs-rich(89.6%)Ni Co-OH into Ni Co_(2)O_(4)with nearly equal distribution of LASs(53.1%)and BASs(46.9%)which synergistically promote adsorption and activation of OH-and alcohol molecules for enhanced oxidation activity.In contrast,BASs-enriched Ni Co-OH facilitates formation of higher valence metal sites,beneficial for water oxidation.The combined experimental studies and theoretical calculation imply the oxidation ability of C1-C6alcohols increases as increased number of hydroxyl groups and decreased HOMO-LUMO gaps:methanol(C_(1))<ethylene glycol(C_(2))<glycerol(C3)<meso-erythritol(C4)<xylitol(C5)<sorbitol(C6),while the formate selectivity shows the opposite trend from 100 to 80%.This study unveils synergistic roles of LASs and BASs,as well as hydroxyl group effect in electro-upgrading of alcohols using solid-acid electrocatalysts.展开更多
A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and c...A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and catalytic properties of the copper manganese oxides was investigated using elemental analysis, nitrogen physisorption, X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, H2 temperature-programmed reduc- tion, and Oz temperature-programmed desorption combined with catalytic oxidation of CO. It was found that ammonia can selectively remove copper species from the copper manganese oxides, which correspondingly generates more defects in these oxides. An oxygen spillover from the man- ganese to the copper species was observed by H2 temperature-programmed desorption, indicating that ammonia etching enhanced the mobility of lattice oxygen species in these oxides. The Oz tem- perature-programmed desorption measurements further revealed that ammonia etching improved the ability of these oxides to release lattice oxygen. The improvement in redox properties of the copper manganese oxides following ammonia etching was associated with enhanced catalytic performance for CO oxidation.展开更多
文摘Iron-Vanadium(FeV)catalyst showed a unique catalytic activity for the selective oxidation of methanol to formaldehyde;however,due to its complex compositions,the identification of catalytic active sites still remains challenging,inhibiting the rational design of excellent FeV-based catalysts.Here,in this work,a series of FeV catalysts with various compositions,including FeVO_(4),isolated VO_(x),low-polymerized V_(n)O_(x),and crystalline V_(2)O_(5) were prepared by controlling the preparation conditions,and were applied to methanol oxidation to formaldehyde reaction.A FeV_(1.1) catalyst,which consisted of FeVO_(4) and low-polymerized V_(n)O_(x) species showed an excellent catalytic performance with a methanol conversion of 92.3%and a formaldehyde selectivity of 90.6%,which was comparable to that of conventional iron-molybdate catalyst.The results of CH_(3)OH-IR,O_(2) pulse and control experiments revealed a crucial synergistic effect between FeVO_(4) and low-polymerized V_(n)O_(x).It enhanced the oxygen supply capacity and suitable binding and adsorption strengths for formaldehyde intermediates,contributing to the high catalytic activity and formaldehyde selectivity.This study not only advances the understanding of FeV structure but also offers valuable guidelines for selective methanol oxidation to formaldehyde.
基金supported by the National Natural Science Foundation of China(U23A2088,22025206)the Dalian Innovation Support Plan for High Level Talents(2022RG13)+2 种基金DICP(Grant:DICP I202453,DICP I202234)the Fundamental Research Funds for the Central Universities(20720220008)support of the Liaoning Key Laboratory of Biomass Conversion for Energy and Material。
文摘The efficient catalytic conversion of fossil-based low-carbon small molecules to oxygen-containing chemicals is an attractive research topic in the fields of energy and chemical engineering.The selective oxidation of dimethyl ether(DME),which is derived from fossil resources,represents a promising approach to producing high-concentration formaldehyde with low energy consumption.However,there is still a lack of catalysts achieving satisfactory conversion of DME with high selectivity for formaldehyde under mild conditions.In this work,an efficient iron-molybdate(FeMo)catalyst was developed for the selective oxidation of DME to formaldehyde.The DME conversion of 84% was achieved with a superior formaldehyde selectivity(77%)at 300℃,a performance that is superior to all previously reported results.In an approximately 550 h continuous reaction,the catalyst maintained a conversion of 64% and a formaldehyde selectivity of 79%.Combined X-ray diffraction(XRD),Transmission electron microscope(TEM),Ultraviolet-visible spectroscopy(UV-Vis),Hydrogen temperature-programmed reduction(H_(2)-TPR),Fourier transform infrared(FT-IR)analyses,along with density functional theory(DFT)calculations,demonstrated that the excellent FeMo catalyst was composed of active Fe_(2)(MoO_(4))_(3)and MoO_(3)phases,and there was an interaction between them,which contributed to the efficient DME dissociation and smooth hydrogen spillover,leading to a superior DME conversion.With the support of DME/O_(2)pulse experiments,in-situ Raman,in-situ Dimethyl ether infrared spectroscopy(DME-IR)and DFT calculation results,a Mars-van Krevelen(MvK)reaction mechanism was proposed:DME was dissociated on the interface between Fe_(2)(MoO_(4))_(3)and MoO_(3)phases to form active methoxy species firstly,and it dehydrogenated to give hydrogen species;the generated hydrogen species smoothly spilled over from Fe_(2)(MoO_(4))_(3)to MoO_(3)enhanced by the interaction between Fe_(2)(MoO_(4))_(3)and MoO_(3);then the hydrogen species was consumed by MoO_(3),leading to a reduction of MoO_(3),and finally,the reduced MoO_(3)was re-oxidized by O_(2),returning to the initial state.These findings offer valuable insights not only for the development of efficient FeMo catalysts but also for elucidating the reaction mechanism involved in the oxidation of DME to formaldehyde,contributing to the optimized utilization of DME derived from fossil resources.
基金supported by the National Natural Science Foundation of China(No.52301089)the Jiangxi Provincial Key Research and Development Program(No.20232BBE50007).
文摘This study systematically explored the oxidation behavior of a Ni-10Cr alloy without and with surface spraying hexagonal closed pack(hcp)-structuredα-Al_(2)O_(3)orα-Fe_(2)O_(3)nanoparticles.Despite the distinct equilibrium dissociation oxygen partial pressure of the two kinds of oxide nanoparticles,they both contributed to the selective oxidation of Ni-10Cr alloy,achieving the transition from internal Cr oxidation to external Cr_(2)O_(3)scale formation.Nano-scaled characterization indicates that a coherent interface was developed between the newly grown Cr_(2)O_(3)grains and the hcp-structured oxide nanoparticles,whereby promoting epitaxial Cr_(2)O_(3)nucleation surrounding the nanoparticles and kinetically accelerating the formation of a continuous Cr_(2)O_(3)scale at the transient oxidation stage.The findings provide new insights into the selective oxidation mechanism of alloys with low Cr contents.
基金financially supported by the National Key Research and Development Program of China(No.2022YFB3805400)the National Natural Science Foundation of China(No.22178297,No.22478327)+3 种基金the Science and Technology Innovation Program of Hunan Province(No.2024RC9009)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDC04010100)the Provincial Natural Science Foundation of Hunan(No.2024JJ5371)the Scientific Research Fund of Hunan Provincial Education Department(No.24A0107)。
文摘The photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural(HMF)offers a sustainable alternative to thermal catalysis.However,the efficiency of this process is significantly limited by inadequate light absorption efficiency and the rapid recombination of photogenerated charge carriers in conventional photocatalysts.Herein,we developed a Co_(3)O_(4)/ZnIn_(2)S_(4)(Co_(3)O_(4)/ZIS)photocatalyst,in which Co_(3)O_(4)functions as a multifunctional cocatalyst.This photocatalyst significantly enhances the chemisorption and activation of HMF molecules through interfacial oxygen-hydroxyl interactions.Additionally,the incorporation of narrow-band gap Co_(3)O_(4)broadens the optical absorption range of the composite photocatalyst.Besides,integrating Co_(3)O_(4)with ZnIn_(2)S_(4)leads to a 5.9-fold increase in charge separation efficiency compared to pristine ZnIn_(2)S_(4).The optimized Co_(3)O_(4)/ZIS-3 photocatalyst(3 wt% Co_(3)O_(4)loading)exhibits exceptional selectivity and yield for 2,5-diformylfuran(DFF)under visible light irradiation,achieving 70.4%DFF selectivity with a 5.4-fold enhancement compared to pristine ZnIn_(2)S_(4).Scavenger experiments and electron spin resonance(ESR)spectroscopy indicate that superoxide radicals(O_(2)^(-))and h^(+)are the main active species driving the photocatalytic oxidation of HMF.Molecular simulations reveal that the activation of HMF and the transformation of the intermediate^(*)MF to^(*)DFF are more favorable over the Co_(3)O_(4)/ZIS composite due to lower activation barriers compared to those over ZnIn_(2)S_(4).Through this work,we aim to design highly efficient and affordable photocatalysts for biomass valorization and contribute valuable insights into the mechanisms of photocatalytic oxidation of HMF.
文摘The methane selective oxidation was a"holy grail"reaction.However,peroxidation and low selectivity limited the application.Herein,we combined three Au contents with TiO_(2)in both encapsulation(xAu@TiO_(2))and surface-loaded(xAu/TiO_(2))ways by MOF derivation strategy,reported a catalyst 0.5Au@TiO_(2)exhibited a CH_(3)OH yield of 32.5μmol·g^(-1)·h^(-1)and a CH_(3)OH selectivity of 80.6%under catalytic conditions of only CH_(4),O_(2),and H_(2)O.Mechanically speaking,the catalytic activity was controlled by both electron-hole separation efficiency and core-shell structure.The interfacial contact between Au nanoparticles and TiO_(2)in xAu@TiO_(2)and xAu/TiO_(2)induced the formation of oxygen vacancies,with 0.5 Au content showing the highest oxygen vacancy concentration.At the same Au content,xAu@TiO_(2)generated more oxygen vacancies than xAu/TiO_(2).The oxygen vacancy acted as an effective electron cold trap,which enhanced the photogenerated carrier separation efficiency and thereby improved the catalytic activity.In-situ DRIFTs revealed that the isolated OH(non-hydrogen bond adsorption)were key species for the methane selective oxidation,playing a role in the activation of CH_(4)to^(*)CH_(3).However,an overabundance of isolated OH led to severe overoxidation.Fortunately,the core-shell structure over xAu@TiO_(2)provided a slow-release environment for isolated OH through the intermediate state of^(*)OH(hydrogen bond adsorption)to balance the formation rate and consumption rate of isolated OH,doubling the methanol yield and increasing the>29%selectivity.These results showed a new strategy for the control of the overoxidation rate via a strategy of MOF encapsulation followed by pyrolytic derivation for methane selective oxidation.
基金supported by the National Natural Science Foundation of China(Nos.22272026 and 22272028)the 111 Project(No.D16008)Jinhong Bi thanks the Youth Talent Support Program of Fujian Province(No.00387077).
文摘Defect engineering in metal organic frameworks(MOFs)has captured significant attention in the field of photocatalysis.A series of UiO-66(Ce)(UiO=University of Oslo)MOFs with different contents of missing-linker defects have been developed for the photocatalytic selective oxidation of benzylamine(BA)and thioanisole(TA)under visible light.The introduction of missing-linker defects promotes the formation of unsaturated Ce sites with a high Ce3+content.It also generates a high concentration of oxygen vacancies.In situ Fourier transform infrared spectroscopy(FTIR)results revealed that BA and TA molecules were activated on coordinatively unsaturated Ce sites via the H-N…Ce and the C-S…Ce interactions,respectively.Simulated in situ electron paramagnetic resonance(EPR)data indicate that O_(2) activation and reduction occur at coordinatively unsaturated Ce^(3+)sites to form·O_(2)^(-).This is accelerated by the Ce^(3+)/Ce^(4+)redox cycle associated with the photogenerated electrons.The corresponding photogenerated holes are involved in the deprotonation of the activated BA and TA.The most active sample exhibits 98.4%and 95.5%conversion rates for BA and TA oxidation.Mechanisms for the molecular activation are proposed at the molecular level.
基金supported by the National Natural Science Foundation of China(No.22278202).
文摘For the effective treatment of the wastewater with low-medium concentration ammonia nitrogen and low strength COD,a high-performance Co_(3)O_(4) catalyst supported on carbon nanocages(CNCs)was prepared.By isovolumetric im pregnation,Co_(3)O_(4) could be uniformly dispersed on surface of CNCs,which possess tiny particle size and strong electron transfer capability.The catalytic performance of the prepared Co_(3)O_(4)/CNCs catalysts with different Co_(3)O_(4) loadings was systematically evaluated and compared with Co_(3)O_(4)/CNTs.It is found that 20 wt.%Co_(3)O_(4)/CNCs shows the best catalytic performance,achieving an ammonia nitrogen conversion rate of 71.0%and a nitrogen selectivity of 81.8%.Compared to commonly used Co_(3)O_(4),ammonia conversion and nitrogen selectivity of Co_(3)O_(4)/CNCs increased by 28.9%and 15.8%respectively.In the five consecutive cycles,the catalytic activity remained stable.The mechanism that CNCs support effectively increases the surface oxygen vacancies of Co_(3)O_(4) through XPS analysis was also elucidated,and DFT calculations confirm strong electron transfer between CNCs and Co_(3)O_(4),rendering Co_(3)O_(4) nanoparticles as the primary catalytic active sites.The results may contribute to the development of highperformance catalytic ozone oxidation catalysts for ammonia nitrogen.
文摘Photoelectrocatalytic(PEC)seawater splitting as a green and sustainable route to harvest hydrogen is attractive yet hampered by low activity of photoanodes and unexpected high selectivity to the corrosive and toxic chlorine.Especially,it is full of challenges to unveil the key factors influencing the selectivity of such complex PEC processes.Herein,by regulating the energy band and surface structure of the anatase TiO_(2) nanotube array photoanode via nitrogen-doping,the seawater PEC oxidation shifts from Cl^(-)oxidation reaction(ClOR)dominant on the TiO_(2) photoanode(61.6%)to oxygen evolution reaction(OER)dominant on the N-TiO_(2) photoanode(62.9%).Comprehensive investigations including operando photoelectrochemical FTIR and DFT calculations unveil that the asymmetric hydrogen-bonding water at the N-TiO_(2) electrode/electrolyte interface enriches under illumination,facilitating proton transfer and moderate adsorption strength of oxygen-intermediates,which lowers the energy barrier for the OER yet elevates the energy barrier for the ClOR,resulting to a promoted selectivity towards the OER.The work sheds light on the underlying mechanism of the PEC water oxidation processes,and highlights the crucial role of interfacial water on the PEC selectivity,which could be regulated by controlling the energy band and the surface structure of semiconductors.
基金National Natural Science Foundation of China,Grant/Award Numbers:22179093,22379111Department of Education of Guangdong Province for Higher Educational Institution,Grant/Award Number:2022ZDZX4104Shenzhen General Project for Institutions of Higher Education,Grant/Award Number:20231127113219001。
文摘Electrochemical nitrogen looping represents a promising carbon-free and sustainable solution for the energy transition,in which electrochemical ammonia oxidation stays at the central position.However,the various nitrogen-containing intermediates tend to poison and corrode the electrocatalysts,even the state-of-the-art noble-metal ones,which is worsened at a high applied potential.Herein,we present an ultrarapid laser quenching strategy for constructing a corrosion-resistant and nanostructured CuNi alloy metallic glass electrocatalyst.In this material,single-atom Cu species are firmly bonded with the surrounding Ni atoms,endowing exceptional resistance against ammonia corrosion relative of conventional CuNi alloys.Remarkably,a record-high durability for over 300 h is achieved.Ultrarapid quenching also allows a much higher Cu content than typical single-atom alloys,simultaneously yielding a high rate and selectivity for ammonia oxidation reaction(AOR).Consequently,an outstanding ammonia conversion rate of up to 95%is achieved with 91.8%selectivity toward nitrite after 8 h.Theoretical simulations reveal that the structural amorphization of CuNi alloy could effectively modify the electronic configuration and reaction pathway,generating stable singleatom Cu active sites with low kinetic barriers for AOR.This ultrarapid laser quenching strategy thus provides a new avenue for constructing metallic glasses with well-defined nanostructures,presenting feasible opportunities for performance enhancement for AOR and other electrocatalytic processes.
基金Project supported by the National Natural Science Foundation of China(22072096,22108184)。
文摘In this work,a series of Ce-Ti composite oxides with different Ti/Ce molar ratios was prepared by coprecipitation method,and investigated for the catalytic degradation of toluene and selective catalytic reduction of NO.The phase transition process between Ce species and Ti species is limited by modulating the interaction between Ce4+and Ti4+,while a completely amorphous composite is generated with an appropriate molar ratio of Ti/Ce(1.5/1).The catalyst CeTi1.5Oxexhibits the best catalytic performance,where the values of T90and T50for deep degradation of toluene are 297 and 330℃respectively at high weight hours space velocity(WHSV=120000 mL/(g·h)).Compared with CeO_(2),T90and T50decrease by48 and 34℃respectively while declining by 67 and 70℃compared to TiO_(2).For the SCR reaction,CeTi1.5Oxreaches 100%NO conversion at 250℃with WHSV=60000 mL/(g·h),reduced by 50℃compared to pure CeO_(2).The amorphous nanostructure with highly dispersed Ce and Ti species was confirmed by transmission electron microscopy(TEM)and X-ray diffraction(XRD)characterizations.The X-ray photoelectron spectroscopy(XPS)and Raman analyses show that a large number of active Ce-O-Ti species and surface oxygen vacancies are generated due to the strong interaction between Ti^(4+)and Ce^(4+)in CeTi_(1.5)O_(x).Additionally,H_(2)-TPR and O_(2)-TPD further confirm that the interaction promotes the low-temperature reducibility and mobility of surface-active oxygen species.Meanwhile,in-situ DRIFTS study reveals that CeTi1.5Oxwith amorphous nanostructure can dramatically enhance the dissociative and complete oxidation capacity for toluene.
基金Supported by the National Natural Science Foundation of China(12261018)Universities Key Laboratory of Mathematical Modeling and Data Mining in Guizhou Province(2023013)。
文摘In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asymptotic stability of the trivial solution and the positive periodic solution.Finally,numerical simulations are presented to validate our results.Our results show that age-selective harvesting is more conducive to sustainable population survival than non-age-selective harvesting.
文摘Gold nanoparticles(AuNPs)supported on the Cu-doped LaMnO_(3)perovskites exhibit strong Au-Mn-Cu synergy in the aerobic oxidation of gaseous ethanol to acetaldehyde(AC).The Au/LaMnCuO_(3)catalysts achieve AC yields exceeding 90%and a space-time yield of 715 g_(AC)g_(AU)^(-1)h^(-1)at 225℃,outperforming reported catalysts.The outstanding performance is attributed to adjacent Cu^(+)and Mn^(2+)ions in the perovskite surface,which,together with nearby AuNPs,contribute to the high activity and stability.The best-performing catalyst contains a Cu/Mn ratio of 1/3 in the perovskite.Doping too much Cu into the perovskite leads to metallic Cu,suppressing catalyst performance.Density functional theory(reaction energetics,electronic structure analysis)and microkinetics simulations aided in understanding the synergy between Cu and Mn and the role of AuNPs.The reaction involves two H abstraction steps:(1)O-H cleavage of adsorbed ethanol by the basic perovskite lattice oxygen atom and(2)α-C-H cleavage by AuNPs,yielding AC and adsorbed water.Molecular O_(2)adsorbs in the oxygen vacancy(O_(V))formed by water removal,generating a peroxide anion(O_(2)^(2-))as the activated oxygen species.In the second part of the catalytic cycle,the basic O_(2)^(2-)species abstracts the H atom from another ethanol molecule,followed byα-C-H cleavage by AuNPs,AC production,and water removal.Water formation in the second part of the catalytic cycle is the rate-controlling step for Au/LaMnO_(3)and Au/LaMnCuO_(3)models.Moderate Cu doping enhances the essential Cu^(+)-OV-Mn^(2+)sites and lowers the barrier for water formation due to the weaker Cu-O bond than the Mn-O bond.In contrast,excessive Cu doping creates unstable Cu^(2+)-O-Cu^(2+)sites and shifts the barrier to theα-C-H cleavage.
文摘Ethylene glycol(EG)is a biomass derivative of polyethylene terephthalate(PET),and its electrocatalytic conversion into high-value chemicals has sparked widespread interest.This study reviews the most recent research development in electrocatalysis-based EG to glycolic acid(GA)conversion.Firstly,the strategies and research results of modulating the electronic structure of catalysts for efficient selective GA production from EG are reviewed.Second,by reviewing the data of in-situ Fourier transform infrared spectroscopy and in-situ electrochemically attenuated total reflection surface enhanced infrared absorption spectroscopy,the reaction pathway and catalytic mechanism of EG partial oxidation to GA were clarified.Finally,the design and regulation of catalysts for selective oxidation of EG by electrocatalysis in the future are prospected.
基金supported by National Natural Science Fund for Excellent Young Scholars(22222813)the National Natural Science Foundation of China(22078338)+2 种基金the National Key Research and Development Program of China(2023YFA1506803)the Postdoctoral Fellowship Program of CPSF(GZC20232700)the“Special Research Assistant Project”of the Chinese Academy of Sciences.
文摘Nanostructured ceria has attracted much attention in the field of redox catalysts due to the numerous active sites with excellent redox ability.Based on the acidic medium etching strategy,we constructed the strong binding centers(hydroxyl sites and strong acid sites)on the surfaces of nanostructured ceria,which regulate the adsorption process of KA-Oil(the mixture of cyclohexanol and cyclohexanone)and to promote high KA-Oil selectivity in cyclohexane oxidation.The three CeO_(2)(nanocube,nanorod and nanopolyhedron)with different exposed crystal planes were treated by acid etching to change the surface sites and catalytic properties.The transition behavior of surface sites during etching was revealed,abundant strong binding centers were proved to be constructed successfully.And especially for the nanorod treated by acid(Acid@CeO_(2)-NR)with the strongest response for sulfuric acid etching,the strong adsorption of cyclohexanone by strong binding centers was confirmed based on the in-situ DRIFTs.The sulfuric acid etching strategy to enhance the selective oxidation of cyclohexane based on the construction of strong binding centers was proved to be feasible and effective,Acid@CeO_(2)-NR with strongest etching response achieved the dramatic promotion of KA-Oil selectivity from 64.1%to 92.3%.
基金The authors sincerely appreciate funding from“Producing Hydrogen in Trentino-H2@TN”(PAT-Trento)through the research grant(SAP 40104237)Researchers Supporting Project number(RSP2025R399)King Saud University,Riyadh,Saudi Arabia.
文摘Simultaneously inducing dual built-in electric fields(EFs)both within a single component and at the heterojunction interface creates a dual-driving force that is crucial for promoting spatial charge separation.This is particularly significant in challenging coupled systems,such as CO_(2)photoreduction integrated with selective oxidation of toluene to benzaldehyde.However,developing such a system is quite challenging and often requires a precise design and engineering.Herein,we demonstrate a unique Ni-CdS@Ni(OH)_(2)heterojunction synthesized via an in-situ self-assembly method.Comprehensive mechanistic and theoretical investigations reveal that the NiCdS@Ni(OH)_(2)heterojunction induces dual electric fields(EFs):an intrinsic polarized electric-field within the CdS lattice from Ni doping and an interfacial electric-field from the growth of ultrathin nanosheets of Ni(OH)_(2)on NiCdS nanorods,enabling efficient spatial charge separation and enhanced redox potential.As proof of concept,the Ni-CdS@Ni(OH)_(2)heterojunction simultaneously exhibits outstanding bifunctional photocatalytic performance,producing CO at a rate of 427μmol g^(-1)h^(-1)and selectively oxidizing toluene to benzaldehyde at a rate of 1476μmol g^(-1)h^(-1)with a selectivity exceeding 85%.This work offers a promising strategy to optimize the utilization of photogenerated carriers in heterojunction photocatalysts,advancing synergistic photocatalytic redox systems.
基金Supported by Open Project of Jiangsu Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Geriatric Diseases,No.202232.
文摘BACKGROUND Post-stroke depression(PSD)is associated with hypothalamic-pituitary-adrenal(HPA)axis dysfunction and neurotransmitter deficits.Selective serotonin reuptake inhibitors(SSRIs)are commonly used,but their efficacy is limited.This study investigated whether combining SSRIs with traditional Chinese medicine(TCM)Free San could enhance their therapeutic effects.AIM To evaluate the clinical efficacy and safety of combining SSRIs with Free San in treating PSD,and to assess its impact on HPA axis function.METHODS Ninety-two patients with PSD were enrolled and randomly divided into control groups(n=46)and study groups(n=46).The control group received the SSRI paroxetine alone,whereas the study group received paroxetine combined with Free San for 4 weeks.Hamilton Depression Scale and TCM syndrome scores were assessed before and after treatment.Serum serotonin,norepinephrine,cortisol,cor-ticotropin-releasing hormone,and adrenocorticotropic hormone were measured.The treatment responses and adverse reactions were recorded.RESULTS After treatment,the Hamilton Depression Scale and TCM syndrome scores were significantly lower in the study group than in the control group(P<0.05).Serum serotonin and norepinephrine levels were significantly higher in the study group than in the control group,whereas cortisol,corticotropin-releasing hormone,and adrenocorticotropic hormone levels were significantly lower(P<0.05).The total efficacy rates were 84.78%and 65.22%in the study and control groups,respectively(P<0.05).No significant differences in adverse reactions were observed between the two groups(P>0.05).CONCLUSION Combining SSRIs with Free San can enhance therapeutic efficacy,improve depressive symptoms,and regulate HPA axis function in patients with PSD with good safety and clinical application value.
基金the National Nature Science Foundation of China for Excellent Young Scientists Fund(32222058)Fundamental Research Foundation of CAF(CAFYBB2022QB001).
文摘Developing biomass platform compounds into high value-added chemicals is a key step in renewable resource utilization.Herein,we report porous carbon-supported Ni-ZnO nanoparticles catalyst(Ni-ZnO/AC)synthesized via low-temperature coprecipitation,exhibiting excellent performance for the selective hydrogenation of 5-hydroxymethylfurfural(HMF).A linear correlation is first observed between solvent polarity(E_(T)(30))and product selectivity within both polar aprotic and protic solvent classes,suggesting that solvent properties play a vital role in directing reaction pathways.Among these,1,4-dioxane(aprotic)favors the formation of 2,5-bis(hydroxymethyl)furan(BHMF)with 97.5%selectivity,while isopropanol(iPrOH,protic)promotes 2,5-dimethylfuran production with up to 99.5%selectivity.Mechanistic investigations further reveal that beyond polarity,proton-donating ability is critical in facilitating hydrodeoxygenation.iPrOH enables a hydrogen shuttle mechanism where protons assist in hydroxyl group removal,lowering the activation barrier.In contrast,1,4-dioxane,lacking hydrogen bond donors,stabilizes BHMF and hinders further conversion.Density functional theory calculations confirm a lower activation energy in iPrOH(0.60 eV)compared to 1,4-dioxane(1.07 eV).This work offers mechanistic insights and a practical strategy for solvent-mediated control of product selectivity in biomass hydrogenation,highlighting the decisive role of solvent-catalyst-substrate interactions.
基金supported by the Original Exploratory Program of the National Natural Science Foundation of China(No.52450012)。
文摘TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance.
基金the financial support from the National Natural Science Foundation of China(52172110,52472231,52311530113)Shanghai"Science and Technology Innovation Action Plan"intergovernmental international science and technology cooperation project(23520710600)+1 种基金Science and Technology Commission of Shanghai Municipality(22DZ1205600)the Central Guidance on Science and Technology Development Fund of Zhejiang Province(2024ZY01011)。
文摘Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols.Herein,we report efficient electrocatalytic oxidations of saturated alcohols(C_(1)-C_(6))to selectively form formate using Ni Co hydroxide(Ni Co-OH)derived Ni Co_(2)O_(4)solid-acid electrocatalysts with balanced Lewis acid(LASs)and Brønsted acid sites(BASs).Thermal treatment transforms BASs-rich(89.6%)Ni Co-OH into Ni Co_(2)O_(4)with nearly equal distribution of LASs(53.1%)and BASs(46.9%)which synergistically promote adsorption and activation of OH-and alcohol molecules for enhanced oxidation activity.In contrast,BASs-enriched Ni Co-OH facilitates formation of higher valence metal sites,beneficial for water oxidation.The combined experimental studies and theoretical calculation imply the oxidation ability of C1-C6alcohols increases as increased number of hydroxyl groups and decreased HOMO-LUMO gaps:methanol(C_(1))<ethylene glycol(C_(2))<glycerol(C3)<meso-erythritol(C4)<xylitol(C5)<sorbitol(C6),while the formate selectivity shows the opposite trend from 100 to 80%.This study unveils synergistic roles of LASs and BASs,as well as hydroxyl group effect in electro-upgrading of alcohols using solid-acid electrocatalysts.
基金supported by the National Basic Research Program of China (973 Program,2013CB934104)the China Postdoctoral Science Foundation(2014M560202)~~
文摘A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and catalytic properties of the copper manganese oxides was investigated using elemental analysis, nitrogen physisorption, X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, H2 temperature-programmed reduc- tion, and Oz temperature-programmed desorption combined with catalytic oxidation of CO. It was found that ammonia can selectively remove copper species from the copper manganese oxides, which correspondingly generates more defects in these oxides. An oxygen spillover from the man- ganese to the copper species was observed by H2 temperature-programmed desorption, indicating that ammonia etching enhanced the mobility of lattice oxygen species in these oxides. The Oz tem- perature-programmed desorption measurements further revealed that ammonia etching improved the ability of these oxides to release lattice oxygen. The improvement in redox properties of the copper manganese oxides following ammonia etching was associated with enhanced catalytic performance for CO oxidation.