Chemical processes are complex, for which traditional neural network models usually can not lead to satisfactory accuracy. Selective neural network ensemble is an effective way to enhance the generalization accuracy o...Chemical processes are complex, for which traditional neural network models usually can not lead to satisfactory accuracy. Selective neural network ensemble is an effective way to enhance the generalization accuracy of networks, but there are some problems, e.g., lacking of unified definition of diversity among component neural networks and difficult to improve the accuracy by selecting if the diversities of available networks are small. In this study, the output errors of networks are vectorized, the diversity of networks is defined based on the error vectors, and the size of ensemble is analyzed. Then an error vectorization based selective neural network ensemble (EVSNE) is proposed, in which the error vector of each network can offset that of the other networks by training the component networks orderly. Thus the component networks have large diversity. Experiments and comparisons over standard data sets and actual chemical process data set for production of high-density polyethylene demonstrate that EVSNE performs better in generalization ability.展开更多
Many industrial products are normally processed through multiple manufacturing process stages before it becomes a final product.Statistical process control techniques often utilize standard Shewhart control charts to ...Many industrial products are normally processed through multiple manufacturing process stages before it becomes a final product.Statistical process control techniques often utilize standard Shewhart control charts to monitor these process stages.If the process stages are independent,this is a meaningful procedure.However,they are not independent in many manufacturing scenarios.The standard Shewhart control charts can not provide the information to determine which process stage or group of process stages has caused the problems(i.e.,standard Shewhart control charts could not diagnose dependent manufacturing process stages).This study proposes a selective neural network ensemble-based cause-selecting system of control charts to monitor these process stages and distinguish incoming quality problems and problems in the current stage of a manufacturing process.Numerical results show that the proposed method is an improvement over the use of separate Shewhart control chart for each of dependent process stages,and even ordinary quality practitioners who lack of expertise in theoretical analysis can implement regression estimation and neural computing readily.展开更多
基金Supported by the National Natural Science Foundation of China (61074153, 61104131)the Fundamental Research Fundsfor Central Universities of China (ZY1111, JD1104)
文摘Chemical processes are complex, for which traditional neural network models usually can not lead to satisfactory accuracy. Selective neural network ensemble is an effective way to enhance the generalization accuracy of networks, but there are some problems, e.g., lacking of unified definition of diversity among component neural networks and difficult to improve the accuracy by selecting if the diversities of available networks are small. In this study, the output errors of networks are vectorized, the diversity of networks is defined based on the error vectors, and the size of ensemble is analyzed. Then an error vectorization based selective neural network ensemble (EVSNE) is proposed, in which the error vector of each network can offset that of the other networks by training the component networks orderly. Thus the component networks have large diversity. Experiments and comparisons over standard data sets and actual chemical process data set for production of high-density polyethylene demonstrate that EVSNE performs better in generalization ability.
基金supported in part by the National Natural Science Foundation of China(No.51775279)the Fundamental Research Funds for the Central Universities(Nos. 1005-YAH15055,NS2017034)+2 种基金the China Postdoctoral Science Foundation(No.2016M591838)the Natural Science Foundation of Jiangsu Province (No.BK20150745)the Postdoctoral Science Foundation of of Jiangsu Province(No.1501024C)
文摘Many industrial products are normally processed through multiple manufacturing process stages before it becomes a final product.Statistical process control techniques often utilize standard Shewhart control charts to monitor these process stages.If the process stages are independent,this is a meaningful procedure.However,they are not independent in many manufacturing scenarios.The standard Shewhart control charts can not provide the information to determine which process stage or group of process stages has caused the problems(i.e.,standard Shewhart control charts could not diagnose dependent manufacturing process stages).This study proposes a selective neural network ensemble-based cause-selecting system of control charts to monitor these process stages and distinguish incoming quality problems and problems in the current stage of a manufacturing process.Numerical results show that the proposed method is an improvement over the use of separate Shewhart control chart for each of dependent process stages,and even ordinary quality practitioners who lack of expertise in theoretical analysis can implement regression estimation and neural computing readily.