Co-associated rare earth elements(lanthanide and yttrium,REY)in coal and its by-products have been considered important potential nontraditional rare earth sources.In this study,a coal gangue sample collected from a c...Co-associated rare earth elements(lanthanide and yttrium,REY)in coal and its by-products have been considered important potential nontraditional rare earth sources.In this study,a coal gangue sample collected from a coal processing plant in Jinsha County of Guizhou Province,southwest China,was used as the research object.The content,modes of occurrence,and extraction(acid leaching after pretreatment of selective grinding,tailings discarding,and alkali roasting)of REY from the sample were analyzed.The result shows that the content of REY(1038.26μg/g)in pyrite and quartz is low but mainly enriched in kaolinite.Under the following conditions of a filling ratio of 40%(grinding media steel ball)and grinding time of 8 min,selective grinding pretreatment is applied to achieve 176.95μg/g(yield 24.08%)and 1104.93μg/g(yield 75.92%)of REY in+2 mm and-2 mm fractions,respectively.Thus,the-2 mm coal gangue fraction is selected,used as the feed,and roasted and leached with HCl.When Na_(2)CO_(3)and NaCl are separately used as roasting activators,the REY leaching ratios are 91.41%and 68.88%,respectively,under the optimum conditions.The contents of REY in the final leachate are 1010.02 and 761.08μg/g when Na_(2)CO_(3)and NaCl are used,respectively.The two REY contents are relatively higher than the impurity ions in the leachate,which facilitates further REY separation.The mechanism study reveals that high-temperature roasting increases the pore size and the total pore area of the gangue,which promotes leachate penetration and improves reaction efficiency.In addition,roasting facilitates the reaction between the sodium salt activator and kaolinite and other aluminosilicate minerals in the coal gangue to generate soluble salts,thus releasing REY into the solution.The appropriate roasting temperature transforms the activator into a molten state.Thus,the reaction between coal gangue and activator is a solid-liquid reaction rather than a solid-solid reaction,which improves the efficiency of the chemical reaction.展开更多
The grinding characteristics of two or multi-component material of cli nker with limestone, blast furnace slag and fly ash were studied. Investigation was carried out on the particle size distribution, the Blaine fin...The grinding characteristics of two or multi-component material of cli nker with limestone, blast furnace slag and fly ash were studied. Investigation was carried out on the particle size distribution, the Blaine fineness and the s ieve residue of the separate and interground products. The relative contents of clinker and limestone in different size fractions of the interground product wer e examined, and the interaction of two components, which have different grindabi lities, was analyzed. The results show there exists a selective grinding effect during intergrinding, one component can help or hinder the grinding of the other . Making good use of this interaction appropriately not only enhances the grinda bilities of two or multi-component mixtures, which can promote the grinding pro cess of clinker with industrial wastes, but also improves their particle size di stribution and properties.展开更多
Extracting lithium from coal measures can alleviate the shortage of strategic metal resources.However,the lattice substitution characteristics of lithium in carrier minerals and its extremely fine intercalation and en...Extracting lithium from coal measures can alleviate the shortage of strategic metal resources.However,the lattice substitution characteristics of lithium in carrier minerals and its extremely fine intercalation and entrainment behavior are the challenges that constrain the extraction efficiency of lithium from coal series.This study focuses on improving the separation efficiency between lithium-contain-ing minerals and other minerals and the release behavior of lithium in the liquid phase.First,the feasibility of extracting lithium from car-rier minerals is confirmed based on the occurrence state and the process mineralogy characterized by Bgrimm process mineralogy analyz-ing system(BPMA)and time of flight secondary ion mass spectrometry(TOF-SIMS).The optimal selective grinding behavior is achieved within 15 min,allowing Li carrier minerals,including chlorite,kaolinite,and halloysite,to deliver the best dispersion effect with other minerals.Thus,the enriched lithium carrier minerals have been preenriched through screening.The leaching efficiency of Li has reached 97.43%under 1 mol/L hydrochloric acid,15 g/L pulp density,70℃,and 20 min.Leaching kinetics studies indicate that the de-crease in apparent energy validates the impact of grinding on metal leaching,aligning with the rate-controlling step of a chemical reaction.The process proposed in this study achieves the coordinated control of size and components in coal gangue and actualizes the effective se-lective enrichment of lithium through its low energy consumption and environmentally friendly nature.展开更多
High pressure roll grinding(HPRG)and ball milling were compared to investigate the influence of mechanical activation on the acid leaching dephosphorization of a high-phosphorus iron ore concentrate,which was manufa...High pressure roll grinding(HPRG)and ball milling were compared to investigate the influence of mechanical activation on the acid leaching dephosphorization of a high-phosphorus iron ore concentrate,which was manufactured through magnetizing roasting-magnetic separation of high-phosphorus oolitic iron ores.The results indicated that when high-phosphorus iron ore concentrates containing 54.92 mass% iron and 0.76 mass% phosphorus were directly processed through acid leaching,iron ore concentrates containing 55.74mass%iron and 0.33mass%phosphorus with an iron recovery of 84.64%and dephosphorization of 63.79% were obtained.When high-phosphorus iron ore concentrates activated by ball milling were processed by acid leaching,iron ore concentrates containing56.03mass%iron and 0.21mass% phosphorus with an iron recovery of 85.65% and dephosphorization of 77.49%were obtained.Meanwhile,when high-phosphorus iron ore concentrates activated by HPRG were processed by acid leaching,iron ore concentrates containing 58.02mass%iron and 0.10mass% phosphorus were obtained,with the iron recovery reaching 88.42% and the dephosphorization rate reaching 88.99%.Mechanistic studies demonstrated that ball milling can reduce the particle size,demonstrating aprominent reunion phenomenon.In contrast,HPRG pretreatment contributes to the formation of more cracks within the particles and selective dissociation of iron and P bearing minerals,which can provide the favorable kinetic conditions to accelerate the solid-liquid reaction rate.As such,the crystal structure is destroyed and the surface energy of mineral particles is strengthened by mechanical activation,further strengthening the dephosphorization.展开更多
基金Project supported by the National Natural Science Foundation of China(51964009)。
文摘Co-associated rare earth elements(lanthanide and yttrium,REY)in coal and its by-products have been considered important potential nontraditional rare earth sources.In this study,a coal gangue sample collected from a coal processing plant in Jinsha County of Guizhou Province,southwest China,was used as the research object.The content,modes of occurrence,and extraction(acid leaching after pretreatment of selective grinding,tailings discarding,and alkali roasting)of REY from the sample were analyzed.The result shows that the content of REY(1038.26μg/g)in pyrite and quartz is low but mainly enriched in kaolinite.Under the following conditions of a filling ratio of 40%(grinding media steel ball)and grinding time of 8 min,selective grinding pretreatment is applied to achieve 176.95μg/g(yield 24.08%)and 1104.93μg/g(yield 75.92%)of REY in+2 mm and-2 mm fractions,respectively.Thus,the-2 mm coal gangue fraction is selected,used as the feed,and roasted and leached with HCl.When Na_(2)CO_(3)and NaCl are separately used as roasting activators,the REY leaching ratios are 91.41%and 68.88%,respectively,under the optimum conditions.The contents of REY in the final leachate are 1010.02 and 761.08μg/g when Na_(2)CO_(3)and NaCl are used,respectively.The two REY contents are relatively higher than the impurity ions in the leachate,which facilitates further REY separation.The mechanism study reveals that high-temperature roasting increases the pore size and the total pore area of the gangue,which promotes leachate penetration and improves reaction efficiency.In addition,roasting facilitates the reaction between the sodium salt activator and kaolinite and other aluminosilicate minerals in the coal gangue to generate soluble salts,thus releasing REY into the solution.The appropriate roasting temperature transforms the activator into a molten state.Thus,the reaction between coal gangue and activator is a solid-liquid reaction rather than a solid-solid reaction,which improves the efficiency of the chemical reaction.
基金Funded by Committee on Science and Technology Foundation of Guangdong (C11305)
文摘The grinding characteristics of two or multi-component material of cli nker with limestone, blast furnace slag and fly ash were studied. Investigation was carried out on the particle size distribution, the Blaine fineness and the s ieve residue of the separate and interground products. The relative contents of clinker and limestone in different size fractions of the interground product wer e examined, and the interaction of two components, which have different grindabi lities, was analyzed. The results show there exists a selective grinding effect during intergrinding, one component can help or hinder the grinding of the other . Making good use of this interaction appropriately not only enhances the grinda bilities of two or multi-component mixtures, which can promote the grinding pro cess of clinker with industrial wastes, but also improves their particle size di stribution and properties.
基金supported by the National Key R&D Program of China(No.2023YFC2907701)This work was also supported by the Fundamental Research Program of Shanxi Province,China(No.202103021223045)+4 种基金the Shanxi Scholarship Council of China(No.2022-062)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi,China(No.2021L064)This study was also funded by Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2025-26)This work was supported by the National Natural Science Foundation of China(No.52104260)This work was supported by Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001).
文摘Extracting lithium from coal measures can alleviate the shortage of strategic metal resources.However,the lattice substitution characteristics of lithium in carrier minerals and its extremely fine intercalation and entrainment behavior are the challenges that constrain the extraction efficiency of lithium from coal series.This study focuses on improving the separation efficiency between lithium-contain-ing minerals and other minerals and the release behavior of lithium in the liquid phase.First,the feasibility of extracting lithium from car-rier minerals is confirmed based on the occurrence state and the process mineralogy characterized by Bgrimm process mineralogy analyz-ing system(BPMA)and time of flight secondary ion mass spectrometry(TOF-SIMS).The optimal selective grinding behavior is achieved within 15 min,allowing Li carrier minerals,including chlorite,kaolinite,and halloysite,to deliver the best dispersion effect with other minerals.Thus,the enriched lithium carrier minerals have been preenriched through screening.The leaching efficiency of Li has reached 97.43%under 1 mol/L hydrochloric acid,15 g/L pulp density,70℃,and 20 min.Leaching kinetics studies indicate that the de-crease in apparent energy validates the impact of grinding on metal leaching,aligning with the rate-controlling step of a chemical reaction.The process proposed in this study achieves the coordinated control of size and components in coal gangue and actualizes the effective se-lective enrichment of lithium through its low energy consumption and environmentally friendly nature.
基金Item Sponsored by National Torch Program Project of China(2011GH561685)
文摘High pressure roll grinding(HPRG)and ball milling were compared to investigate the influence of mechanical activation on the acid leaching dephosphorization of a high-phosphorus iron ore concentrate,which was manufactured through magnetizing roasting-magnetic separation of high-phosphorus oolitic iron ores.The results indicated that when high-phosphorus iron ore concentrates containing 54.92 mass% iron and 0.76 mass% phosphorus were directly processed through acid leaching,iron ore concentrates containing 55.74mass%iron and 0.33mass%phosphorus with an iron recovery of 84.64%and dephosphorization of 63.79% were obtained.When high-phosphorus iron ore concentrates activated by ball milling were processed by acid leaching,iron ore concentrates containing56.03mass%iron and 0.21mass% phosphorus with an iron recovery of 85.65% and dephosphorization of 77.49%were obtained.Meanwhile,when high-phosphorus iron ore concentrates activated by HPRG were processed by acid leaching,iron ore concentrates containing 58.02mass%iron and 0.10mass% phosphorus were obtained,with the iron recovery reaching 88.42% and the dephosphorization rate reaching 88.99%.Mechanistic studies demonstrated that ball milling can reduce the particle size,demonstrating aprominent reunion phenomenon.In contrast,HPRG pretreatment contributes to the formation of more cracks within the particles and selective dissociation of iron and P bearing minerals,which can provide the favorable kinetic conditions to accelerate the solid-liquid reaction rate.As such,the crystal structure is destroyed and the surface energy of mineral particles is strengthened by mechanical activation,further strengthening the dephosphorization.