The Financial Technology(FinTech)sector has witnessed rapid growth,resulting in increasingly complex and high-volume digital transactions.Although this expansion improves efficiency and accessibility,it also introduce...The Financial Technology(FinTech)sector has witnessed rapid growth,resulting in increasingly complex and high-volume digital transactions.Although this expansion improves efficiency and accessibility,it also introduces significant vulnerabilities,including fraud,money laundering,and market manipulation.Traditional anomaly detection techniques often fail to capture the relational and dynamic characteristics of financial data.Graph Neural Networks(GNNs),capable of modeling intricate interdependencies among entities,have emerged as a powerful framework for detecting subtle and sophisticated anomalies.However,the high-dimensionality and inherent noise of FinTech datasets demand robust feature selection strategies to improve model scalability,performance,and interpretability.This paper presents a comprehensive survey of GNN-based approaches for anomaly detection in FinTech,with an emphasis on the synergistic role of feature selection.We examine the theoretical foundations of GNNs,review state-of-the-art feature selection techniques,analyze their integration with GNNs,and categorize prevalent anomaly types in FinTech applications.In addition,we discuss practical implementation challenges,highlight representative case studies,and propose future research directions to advance the field of graph-based anomaly detection in financial systems.展开更多
With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy...With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy.However,efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging.To address these issues,we propose Federated Learning with Client Selection and Adaptive Weighting(FedCW),a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks.FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts aggregation weights to optimize both data diversity and model convergence.Experimental results show that FedCW significantly outperforms existing FL algorithms such as FedAvg,FedProx,and SCAFFOLD,particularly in non-IID settings,achieving faster convergence,higher accuracy,and reduced communication overhead.These findings demonstrate that FedCW provides an effective solution for enhancing the performance of FL in heterogeneous,edge-based computing environments.展开更多
Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic...Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage.展开更多
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from...Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%.展开更多
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal...Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics.展开更多
Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these i...Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications.展开更多
Clear aligner treatment is a novel technique in current orthodontic practice.Distinct from traditional fixed orthodontic appliances,clear aligners have different material features and biomechanical characteristics and...Clear aligner treatment is a novel technique in current orthodontic practice.Distinct from traditional fixed orthodontic appliances,clear aligners have different material features and biomechanical characteristics and treatment efficiencies,presenting new clinical challenges.Therefore,a comprehensive and systematic description of the key clinical aspects of clear aligner treatment is essential to enhance treatment efficacy and facilitate the advancement and wide adoption of this new technique.This expert consensus discusses case selection and grading of treatment difficulty,principle of clear aligner therapy,clinical procedures and potential complications,which are crucial to the clinical success of clear aligner treatment.展开更多
The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more e...The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more efficient and reliable intrusion detection systems(IDSs).However,the advent of larger IDS datasets has negatively impacted the performance and computational complexity of AI-based IDSs.Many researchers used data preprocessing techniques such as feature selection and normalization to overcome such issues.While most of these researchers reported the success of these preprocessing techniques on a shallow level,very few studies have been performed on their effects on a wider scale.Furthermore,the performance of an IDS model is subject to not only the utilized preprocessing techniques but also the dataset and the ML/DL algorithm used,which most of the existing studies give little emphasis on.Thus,this study provides an in-depth analysis of feature selection and normalization effects on IDS models built using three IDS datasets:NSL-KDD,UNSW-NB15,and CSE–CIC–IDS2018,and various AI algorithms.A wrapper-based approach,which tends to give superior performance,and min-max normalization methods were used for feature selection and normalization,respectively.Numerous IDS models were implemented using the full and feature-selected copies of the datasets with and without normalization.The models were evaluated using popular evaluation metrics in IDS modeling,intra-and inter-model comparisons were performed between models and with state-of-the-art works.Random forest(RF)models performed better on NSL-KDD and UNSW-NB15 datasets with accuracies of 99.86%and 96.01%,respectively,whereas artificial neural network(ANN)achieved the best accuracy of 95.43%on the CSE–CIC–IDS2018 dataset.The RF models also achieved an excellent performance compared to recent works.The results show that normalization and feature selection positively affect IDS modeling.Furthermore,while feature selection benefits simpler algorithms(such as RF),normalization is more useful for complex algorithms like ANNs and deep neural networks(DNNs),and algorithms such as Naive Bayes are unsuitable for IDS modeling.The study also found that the UNSW-NB15 and CSE–CIC–IDS2018 datasets are more complex and more suitable for building and evaluating modern-day IDS than the NSL-KDD dataset.Our findings suggest that prioritizing robust algorithms like RF,alongside complex models such as ANN and DNN,can significantly enhance IDS performance.These insights provide valuable guidance for managers to develop more effective security measures by focusing on high detection rates and low false alert rates.展开更多
Nitrogen(N)enrichment has resulted in widespread alteration of grassland ecosystem processes and functions mainly through disturbance in soil enzyme activities.However,we lack a comprehensive understanding of how N de...Nitrogen(N)enrichment has resulted in widespread alteration of grassland ecosystem processes and functions mainly through disturbance in soil enzyme activities.However,we lack a comprehensive understanding of how N deposition affects specific key soil enzymes that mediate plant-soil feedback of grassland.Here,with a meta-analysis on 1446 cases from field observations in China,we show that N deposition differently affects soil enzymes associated with soil biochemical processes.Specifically,N-promoted C,N,and P-acquiring hydrolase activities significantly increased by 8.73%,7.67%,and 8.69%,respectively,related to an increase in microbial-specific enzyme secretion.The increased relative N availability and soil acidification were two potential mechanisms accounting for the changes in soil enzyme activities with N enrichment.The mixed N addition in combination of NH_(4)NO_(3) and urea showed greater stimulation effect on soil enzyme activities.However,the high rate and long-term N addition tended to weaken the positive responses of soil C-,Nand P-acquiring hydrolase activities to N enrichment.Spatially increased mean annual precipitation and temperature primarily promoted the positive effects of N enrichment on N-and P-acquiring hydrolase activities,and the stimulation of C-and N-acquiring hydrolase activities by N enrichment was intensified with the increase in soil depth.Finally,multimodal inference showed that grassland type was the most important regulator of responses of microbial C,N,and P-acquiring hydrolase activities to N enrichment.This meta-analysis provides a comprehensive insight into understanding the key role of N enrichment in shaping soil enzyme activities of grassland ecosystems.展开更多
Early correction of childhood malocclusion is timely managing morphological,structural,and functional abnormalities at different dentomaxillofacial developmental stages.The selection of appropriate imaging examination...Early correction of childhood malocclusion is timely managing morphological,structural,and functional abnormalities at different dentomaxillofacial developmental stages.The selection of appropriate imaging examination and comprehensive radiological diagnosis and analysis play an important role in early correction of childhood malocclusion.This expert consensus is a collaborative effort by multidisciplinary experts in dentistry across the nation based on the current clinical evidence,aiming to provide general guidance on appropriate imaging examination selection,comprehensive and accurate imaging assessment for early orthodontic treatment patients.展开更多
Emerging new races of wheat stem rust(Puccinia graminis f.sp.tritici)are threatening global wheat(Triticum aestivum L.)production.Host resistance is the most effective and environmentally friendly method of controllin...Emerging new races of wheat stem rust(Puccinia graminis f.sp.tritici)are threatening global wheat(Triticum aestivum L.)production.Host resistance is the most effective and environmentally friendly method of controlling stem rust.The stem rust resistance gene Sr59 was previously identified within a T2DS 2RL wheat-rye whole arm translocation,providing broad-spectrum resistance to various stem rust races.Seedling evaluation,molecular marker analysis,and cytogenetic studies identified wheat-rye introgression line#284 containing a new translocation chromosome T2BL 2BS-2RL.This line has demonstrated broad-spectrum resistance to stem rust at the seedling stage.Seedling evaluation and cytogenetic analysis of three backcross populations between the line#284 and the adapted cultivars SLU-Elite,Navruz,and Linkert confirmed that Sr59 is located within the short distal 2RL translocation.This study aimed physical mapping of Sr59 in the 2RL introgression segment and develop a robust molecular marker for marker-assisted selection.Using genotyping-by-sequencing(GBS),GBS-derived SNPs were aligned with full-length annotated rye nucleotide-binding leucine-rich repeat(NLR)genes in the parental lines CS ph1b,SLU238,SLU-Elite,Navruz,and Linkert,as well as in 33 BC4F5progeny.Four NLR genes were identified on the 2R chromosome,with Chr2R_NLR_60 being tightly linked to the Sr59resistance gene.In-silico functional enrichment analysis of the translocated 2RL region(25,681,915 bp)identified 223 genes,with seven candidate genes associated with plant disease resistance and three linked to agronomic performance,contributing to oxidative stress response,protein kinase activity,and cellular homeostasis.These findings facilitate a better understanding of the genetic basis of stem rust resistance provided by Sr59.展开更多
The principle of genomic selection(GS) entails estimating breeding values(BVs) by summing all the SNP polygenic effects. The visible/near-infrared spectroscopy(VIS/NIRS) wavelength and abundance values can directly re...The principle of genomic selection(GS) entails estimating breeding values(BVs) by summing all the SNP polygenic effects. The visible/near-infrared spectroscopy(VIS/NIRS) wavelength and abundance values can directly reflect the concentrations of chemical substances, and the measurement of meat traits by VIS/NIRS is similar to the processing of genomic selection data by summing all ‘polygenic effects' associated with spectral feature peaks. Therefore, it is meaningful to investigate the incorporation of VIS/NIRS information into GS models to establish an efficient and low-cost breeding model. In this study, we measured 6 meat quality traits in 359Duroc×Landrace×Yorkshire pigs from Guangxi Zhuang Autonomous Region, China, and genotyped them with high-density SNP chips. According to the completeness of the information for the target population, we proposed 4breeding strategies applied to different scenarios: Ⅰ, only spectral and genotypic data exist for the target population;Ⅱ, only spectral data exist for the target population;Ⅲ, only spectral and genotypic data but with different prediction processes exist for the target population;and Ⅳ, only spectral and phenotypic data exist for the target population.The 4 scenarios were used to evaluate the genomic estimated breeding value(GEBV) accuracy by increasing the VIS/NIR spectral information. In the results of the 5-fold cross-validation, the genetic algorithm showed remarkable potential for preselection of feature wavelengths. The breeding efficiency of Strategies Ⅱ, Ⅲ, and Ⅳ was superior to that of traditional GS for most traits, and the GEBV prediction accuracy was improved by 32.2, 40.8 and 15.5%, respectively on average. Among them, the prediction accuracy of Strategy Ⅱ for fat(%) even improved by 50.7% compared to traditional GS. The GEBV prediction accuracy of Strategy Ⅰ was nearly identical to that of traditional GS, and the fluctuation range was less than 7%. Moreover, the breeding cost of the 4 strategies was lower than that of traditional GS methods, with Strategy Ⅳ being the lowest as it did not require genotyping.Our findings demonstrate that GS methods based on VIS/NIRS data have significant predictive potential and are worthy of further research to provide a valuable reference for the development of effective and affordable breeding strategies.展开更多
Anomaly Detection (AD) has been extensively adopted in industrial settings to facilitate quality control of products. It is critical to industrial production, especially to areas such as aircraft manufacturing, which ...Anomaly Detection (AD) has been extensively adopted in industrial settings to facilitate quality control of products. It is critical to industrial production, especially to areas such as aircraft manufacturing, which require strict part qualification rates. Although being more efficient and practical, few-shot AD has not been well explored. The existing AD methods only extract features in a single frequency while defects exist in multiple frequency domains. Moreover, current methods have not fully leveraged the few-shot support samples to extract input-related normal patterns. To address these issues, we propose an industrial few-shot AD method, Feature Extender for Anomaly Detection (FEAD), which extracts normal patterns in multiple frequency domains from few-shot samples under the guidance of the input sample. Firstly, to achieve better coverage of normal patterns in the input sample, we introduce a Sample-Conditioned Transformation Module (SCTM), which transforms support features under the guidance of the input sample to obtain extra normal patterns. Secondly, to effectively distinguish and localize anomaly patterns in multiple frequency domains, we devise an Adaptive Descriptor Construction Module (ADCM) to build and select pattern descriptors in a series of frequencies adaptively. Finally, an auxiliary task for SCTM is designed to ensure the diversity of transformations and include more normal patterns into support features. Extensive experiments on two widely used industrial AD datasets (MVTec-AD and VisA) demonstrate the effectiveness of the proposed FEAD.展开更多
In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(...In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(CSI),which is difficult to achieve in practice.To be more practical,it is important to investigate covert communications against a warden with uncertain locations and imperfect CSI,which makes it difficult for legitimate transceivers to estimate the detection probability of the warden.First,the uncertainty caused by the unknown warden location must be removed,and the Optimal Detection Position(OPTDP)of the warden is derived which can provide the best detection performance(i.e.,the worst case for a covert communication).Then,to further avoid the impractical assumption of perfect CSI,the covert throughput is maximized using only the channel distribution information.Given this OPTDP based worst case for covert communications,the jammer selection,the jamming power,the transmission power,and the transmission rate are jointly optimized to maximize the covert throughput(OPTDP-JP).To solve this coupling problem,a Heuristic algorithm based on Maximum Distance Ratio(H-MAXDR)is proposed to provide a sub-optimal solution.First,according to the analysis of the covert throughput,the node with the maximum distance ratio(i.e.,the ratio of the distances from the jammer to the receiver and that to the warden)is selected as the friendly jammer(MAXDR).Then,the optimal transmission and jamming power can be derived,followed by the optimal transmission rate obtained via the bisection method.In numerical and simulation results,it is shown that although the location of the warden is unknown,by assuming the OPTDP of the warden,the proposed OPTDP-JP can always satisfy the covertness constraint.In addition,with an uncertain warden and imperfect CSI,the covert throughput provided by OPTDP-JP is 80%higher than the existing schemes when the covertness constraint is 0.9,showing the effectiveness of OPTDP-JP.展开更多
Psathyrostachys huashanica Keng ex P.C.Kuo(2n=2x=14,NsNs),a wild relative of wheat,represents a valuable germplasm resource for genetic improvement of wheat.We previously confirmed that a chromosome 7Ns from P.huashan...Psathyrostachys huashanica Keng ex P.C.Kuo(2n=2x=14,NsNs),a wild relative of wheat,represents a valuable germplasm resource for genetic improvement of wheat.We previously confirmed that a chromosome 7Ns from P.huashanica carries genes that accelerate heading and maturity in wheat.Here,we developed three small segment translocation lines(T7NsS-2BL 2BS,T7NsS-1AS 1AL#1,and T7NsS-1AS 1AL#2)along with one additional small segment translocation line(T7NsS-7BS 7BL)through^(60)Co-γ irradiation,identified using genomic in situ hybridization(GISH),fluorescence in situ hybridization(FISH),and liquid chip array analyses.Our findings demonstrated that chromosome 7NsS contained a major early heading date gene,tentatively designated Ehd-7Ns,which was mapped to an approximate31.45 Mb region,corresponding to the short arm of wheat chromosome 7A(IWGSC RefSeq v1.0).The T7NsS-1AS 1AL#2 line exhibited no significant yield penalty and possessed superior agronomic traits relative to the other translocation lines in the field,making it a promising pre-breeding donor for breeding early maturing wheat.Furthermore,21 specific Kompetitive Allele Specific PCR(KASP)markers were developed based on transcriptome data,enabling effective tracing of alien chromosomal segments carrying this source of Ehd-7Ns in marker-assisted breeding.Collectively,these newly developed translocation lines and specific KASP markers will facilitate the transfer and utilization of favorable genes from P.huashanica chromosome 7Ns in future wheat breeding programs.展开更多
Transcutaneous electrical acupoint stimulation(TEAS)is a kind of physical therapy that use electric cur-rent through the electrodes placed on the surface of acupoints to produce clinical effects in the human body,whic...Transcutaneous electrical acupoint stimulation(TEAS)is a kind of physical therapy that use electric cur-rent through the electrodes placed on the surface of acupoints to produce clinical effects in the human body,which is characterized by less adverse reaction and convenient operation.It has been widely used in the treatment of various diseases.This review introduces six major clinical applications of TEAS,named analgesia,regulation of gastrointestinal function,improvement of reproductive function,enhancement of cognitive function,promotion of limb function recovery and relief of fatigue.Besides,TEAS has been ap-plied to the treatment of other chronic diseases such as hypertension and diabetes,achieving satisfactory clinical effects.However,two crucial challenges are encountered in the development of TEAS.One is the lack of standardization in the selection of parameters such as waveform,frequency,intensity and stimula-tion duration.The other is the limitation on the flexibility in the acupoint selection.This review analyzes key issues that need to be addressed in the current clinical application of TEAS,such as the selection of parameters and acupoints,and this review provides a certain reference value for optimizing regimens of TEAS and promoting its development and application.展开更多
Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain c...Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain conditioning factor selection method rather than systematically study this uncertainty issue.Targeted,this study aims to systematically explore the influence rules of various commonly used conditioning factor selection methods on LSP,and on this basis to innovatively propose a principle with universal application for optimal selection of conditioning factors.An'yuan County in southern China is taken as example considering 431 landslides and 29 types of conditioning factors.Five commonly used factor selection methods,namely,the correlation analysis(CA),linear regression(LR),principal component analysis(PCA),rough set(RS)and artificial neural network(ANN),are applied to select the optimal factor combinations from the original 29 conditioning factors.The factor selection results are then used as inputs of four types of common machine learning models to construct 20 types of combined models,such as CA-multilayer perceptron,CA-random forest.Additionally,multifactor-based multilayer perceptron random forest models that selecting conditioning factors based on the proposed principle of“accurate data,rich types,clear significance,feasible operation and avoiding duplication”are constructed for comparisons.Finally,the LSP uncertainties are evaluated by the accuracy,susceptibility index distribution,etc.Results show that:(1)multifactor-based models have generally higher LSP performance and lower uncertainties than those of factors selection-based models;(2)Influence degree of different machine learning on LSP accuracy is greater than that of different factor selection methods.Conclusively,the above commonly used conditioning factor selection methods are not ideal for improving LSP performance and may complicate the LSP processes.In contrast,a satisfied combination of conditioning factors can be constructed according to the proposed principle.展开更多
The operation of deep-sea underwater vehicles relies entirely on onboard batteries.However,the extreme deep-sea conditions,characterized by ultrahigh hydraulic pressure,low temperature,and seawater conductivity,pose s...The operation of deep-sea underwater vehicles relies entirely on onboard batteries.However,the extreme deep-sea conditions,characterized by ultrahigh hydraulic pressure,low temperature,and seawater conductivity,pose significant challenges for battery development.These conditions drive the need for specialized designs in deep-sea batteries,incorporating critical aspects of power generation,protection,distribution,and management.Over time,deep-sea battery technology has evolved through multiple generations,with lithium(Li)batteries emerging in recent decades as the preferred power source due to their high energy and reduced operational risks.Although the rapid progress of Li batteries has notably advanced the capabilities of underwater vehicles,critical technical issues remain unresolved.This review first systematically presents the whole picture of deep-sea battery manufacturing,focusing on Li batteries as the current mainstream solution for underwater power.It examines the key aspects of deep-sea Li battery development,including materials selection informed by electro-chemo-mechanics models,component modification and testing,and battery management systems specialized in software and hardware.Finally,it discusses the main challenges limiting the utilization of deep-sea batteries and outlines promising directions for future development.Based on the systematic reflection on deep-sea batteries and discussion on deep-sea Li batteries,this review aims to provide a research foundation for developing underwater power tailored for extreme environmental exploration.展开更多
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp...Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.展开更多
基金supported by Ho Chi Minh City Open University,Vietnam under grant number E2024.02.1CD and Suan Sunandha Rajabhat University,Thailand.
文摘The Financial Technology(FinTech)sector has witnessed rapid growth,resulting in increasingly complex and high-volume digital transactions.Although this expansion improves efficiency and accessibility,it also introduces significant vulnerabilities,including fraud,money laundering,and market manipulation.Traditional anomaly detection techniques often fail to capture the relational and dynamic characteristics of financial data.Graph Neural Networks(GNNs),capable of modeling intricate interdependencies among entities,have emerged as a powerful framework for detecting subtle and sophisticated anomalies.However,the high-dimensionality and inherent noise of FinTech datasets demand robust feature selection strategies to improve model scalability,performance,and interpretability.This paper presents a comprehensive survey of GNN-based approaches for anomaly detection in FinTech,with an emphasis on the synergistic role of feature selection.We examine the theoretical foundations of GNNs,review state-of-the-art feature selection techniques,analyze their integration with GNNs,and categorize prevalent anomaly types in FinTech applications.In addition,we discuss practical implementation challenges,highlight representative case studies,and propose future research directions to advance the field of graph-based anomaly detection in financial systems.
文摘With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy.However,efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging.To address these issues,we propose Federated Learning with Client Selection and Adaptive Weighting(FedCW),a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks.FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts aggregation weights to optimize both data diversity and model convergence.Experimental results show that FedCW significantly outperforms existing FL algorithms such as FedAvg,FedProx,and SCAFFOLD,particularly in non-IID settings,achieving faster convergence,higher accuracy,and reduced communication overhead.These findings demonstrate that FedCW provides an effective solution for enhancing the performance of FL in heterogeneous,edge-based computing environments.
基金funded by Deanship of Graduate studies and Scientific Research at Jouf University under grant No.(DGSSR-2024-02-01264).
文摘Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage.
基金supported by the Major Science and Technology Programs in Henan Province(No.241100210100)Henan Provincial Science and Technology Research Project(No.252102211085,No.252102211105)+3 种基金Endogenous Security Cloud Network Convergence R&D Center(No.602431011PQ1)The Special Project for Research and Development in Key Areas of Guangdong Province(No.2021ZDZX1098)The Stabilization Support Program of Science,Technology and Innovation Commission of Shenzhen Municipality(No.20231128083944001)The Key scientific research projects of Henan higher education institutions(No.24A520042).
文摘Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%.
文摘Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics.
基金supported by the National Natural Science Foundation of China(42250101)the Macao Foundation。
文摘Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications.
文摘Clear aligner treatment is a novel technique in current orthodontic practice.Distinct from traditional fixed orthodontic appliances,clear aligners have different material features and biomechanical characteristics and treatment efficiencies,presenting new clinical challenges.Therefore,a comprehensive and systematic description of the key clinical aspects of clear aligner treatment is essential to enhance treatment efficacy and facilitate the advancement and wide adoption of this new technique.This expert consensus discusses case selection and grading of treatment difficulty,principle of clear aligner therapy,clinical procedures and potential complications,which are crucial to the clinical success of clear aligner treatment.
文摘The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more efficient and reliable intrusion detection systems(IDSs).However,the advent of larger IDS datasets has negatively impacted the performance and computational complexity of AI-based IDSs.Many researchers used data preprocessing techniques such as feature selection and normalization to overcome such issues.While most of these researchers reported the success of these preprocessing techniques on a shallow level,very few studies have been performed on their effects on a wider scale.Furthermore,the performance of an IDS model is subject to not only the utilized preprocessing techniques but also the dataset and the ML/DL algorithm used,which most of the existing studies give little emphasis on.Thus,this study provides an in-depth analysis of feature selection and normalization effects on IDS models built using three IDS datasets:NSL-KDD,UNSW-NB15,and CSE–CIC–IDS2018,and various AI algorithms.A wrapper-based approach,which tends to give superior performance,and min-max normalization methods were used for feature selection and normalization,respectively.Numerous IDS models were implemented using the full and feature-selected copies of the datasets with and without normalization.The models were evaluated using popular evaluation metrics in IDS modeling,intra-and inter-model comparisons were performed between models and with state-of-the-art works.Random forest(RF)models performed better on NSL-KDD and UNSW-NB15 datasets with accuracies of 99.86%and 96.01%,respectively,whereas artificial neural network(ANN)achieved the best accuracy of 95.43%on the CSE–CIC–IDS2018 dataset.The RF models also achieved an excellent performance compared to recent works.The results show that normalization and feature selection positively affect IDS modeling.Furthermore,while feature selection benefits simpler algorithms(such as RF),normalization is more useful for complex algorithms like ANNs and deep neural networks(DNNs),and algorithms such as Naive Bayes are unsuitable for IDS modeling.The study also found that the UNSW-NB15 and CSE–CIC–IDS2018 datasets are more complex and more suitable for building and evaluating modern-day IDS than the NSL-KDD dataset.Our findings suggest that prioritizing robust algorithms like RF,alongside complex models such as ANN and DNN,can significantly enhance IDS performance.These insights provide valuable guidance for managers to develop more effective security measures by focusing on high detection rates and low false alert rates.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA28110300)National Natural Science Foundation of China(No.U23A2004)+3 种基金Natural Science Foundation of Jilin Province,China(No.YDZJ202201ZYTS522)Science and Technology Cooperation Program between Jilin Province and Chinese Academy of Sciences(No.2023SYHZ0053)Innovation Team Program of Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences(No.2023CXTD02)the European Commission under Marie Sk?odowska-Curie(No.101034371)。
文摘Nitrogen(N)enrichment has resulted in widespread alteration of grassland ecosystem processes and functions mainly through disturbance in soil enzyme activities.However,we lack a comprehensive understanding of how N deposition affects specific key soil enzymes that mediate plant-soil feedback of grassland.Here,with a meta-analysis on 1446 cases from field observations in China,we show that N deposition differently affects soil enzymes associated with soil biochemical processes.Specifically,N-promoted C,N,and P-acquiring hydrolase activities significantly increased by 8.73%,7.67%,and 8.69%,respectively,related to an increase in microbial-specific enzyme secretion.The increased relative N availability and soil acidification were two potential mechanisms accounting for the changes in soil enzyme activities with N enrichment.The mixed N addition in combination of NH_(4)NO_(3) and urea showed greater stimulation effect on soil enzyme activities.However,the high rate and long-term N addition tended to weaken the positive responses of soil C-,Nand P-acquiring hydrolase activities to N enrichment.Spatially increased mean annual precipitation and temperature primarily promoted the positive effects of N enrichment on N-and P-acquiring hydrolase activities,and the stimulation of C-and N-acquiring hydrolase activities by N enrichment was intensified with the increase in soil depth.Finally,multimodal inference showed that grassland type was the most important regulator of responses of microbial C,N,and P-acquiring hydrolase activities to N enrichment.This meta-analysis provides a comprehensive insight into understanding the key role of N enrichment in shaping soil enzyme activities of grassland ecosystems.
基金supports by the National Natural Science Foundation of China(Nos.82201135)"2015"Cultivation Program for Reserve Talents for Academic Leaders of Nanjing Stomatological School,Medical School of Nanjing University(No.0223A204).
文摘Early correction of childhood malocclusion is timely managing morphological,structural,and functional abnormalities at different dentomaxillofacial developmental stages.The selection of appropriate imaging examination and comprehensive radiological diagnosis and analysis play an important role in early correction of childhood malocclusion.This expert consensus is a collaborative effort by multidisciplinary experts in dentistry across the nation based on the current clinical evidence,aiming to provide general guidance on appropriate imaging examination selection,comprehensive and accurate imaging assessment for early orthodontic treatment patients.
基金the financial support from FORMAS(2018-01029)the Swedish Institute(01132-2022)for supporting Ivan Motsnyi’s visit and research at Swedish University of Agricultural Sciences。
文摘Emerging new races of wheat stem rust(Puccinia graminis f.sp.tritici)are threatening global wheat(Triticum aestivum L.)production.Host resistance is the most effective and environmentally friendly method of controlling stem rust.The stem rust resistance gene Sr59 was previously identified within a T2DS 2RL wheat-rye whole arm translocation,providing broad-spectrum resistance to various stem rust races.Seedling evaluation,molecular marker analysis,and cytogenetic studies identified wheat-rye introgression line#284 containing a new translocation chromosome T2BL 2BS-2RL.This line has demonstrated broad-spectrum resistance to stem rust at the seedling stage.Seedling evaluation and cytogenetic analysis of three backcross populations between the line#284 and the adapted cultivars SLU-Elite,Navruz,and Linkert confirmed that Sr59 is located within the short distal 2RL translocation.This study aimed physical mapping of Sr59 in the 2RL introgression segment and develop a robust molecular marker for marker-assisted selection.Using genotyping-by-sequencing(GBS),GBS-derived SNPs were aligned with full-length annotated rye nucleotide-binding leucine-rich repeat(NLR)genes in the parental lines CS ph1b,SLU238,SLU-Elite,Navruz,and Linkert,as well as in 33 BC4F5progeny.Four NLR genes were identified on the 2R chromosome,with Chr2R_NLR_60 being tightly linked to the Sr59resistance gene.In-silico functional enrichment analysis of the translocated 2RL region(25,681,915 bp)identified 223 genes,with seven candidate genes associated with plant disease resistance and three linked to agronomic performance,contributing to oxidative stress response,protein kinase activity,and cellular homeostasis.These findings facilitate a better understanding of the genetic basis of stem rust resistance provided by Sr59.
基金supported by the National Natural Science Foundation of China(32160782 and 32060737).
文摘The principle of genomic selection(GS) entails estimating breeding values(BVs) by summing all the SNP polygenic effects. The visible/near-infrared spectroscopy(VIS/NIRS) wavelength and abundance values can directly reflect the concentrations of chemical substances, and the measurement of meat traits by VIS/NIRS is similar to the processing of genomic selection data by summing all ‘polygenic effects' associated with spectral feature peaks. Therefore, it is meaningful to investigate the incorporation of VIS/NIRS information into GS models to establish an efficient and low-cost breeding model. In this study, we measured 6 meat quality traits in 359Duroc×Landrace×Yorkshire pigs from Guangxi Zhuang Autonomous Region, China, and genotyped them with high-density SNP chips. According to the completeness of the information for the target population, we proposed 4breeding strategies applied to different scenarios: Ⅰ, only spectral and genotypic data exist for the target population;Ⅱ, only spectral data exist for the target population;Ⅲ, only spectral and genotypic data but with different prediction processes exist for the target population;and Ⅳ, only spectral and phenotypic data exist for the target population.The 4 scenarios were used to evaluate the genomic estimated breeding value(GEBV) accuracy by increasing the VIS/NIR spectral information. In the results of the 5-fold cross-validation, the genetic algorithm showed remarkable potential for preselection of feature wavelengths. The breeding efficiency of Strategies Ⅱ, Ⅲ, and Ⅳ was superior to that of traditional GS for most traits, and the GEBV prediction accuracy was improved by 32.2, 40.8 and 15.5%, respectively on average. Among them, the prediction accuracy of Strategy Ⅱ for fat(%) even improved by 50.7% compared to traditional GS. The GEBV prediction accuracy of Strategy Ⅰ was nearly identical to that of traditional GS, and the fluctuation range was less than 7%. Moreover, the breeding cost of the 4 strategies was lower than that of traditional GS methods, with Strategy Ⅳ being the lowest as it did not require genotyping.Our findings demonstrate that GS methods based on VIS/NIRS data have significant predictive potential and are worthy of further research to provide a valuable reference for the development of effective and affordable breeding strategies.
基金supported by the National Natural Science Foundation of China(No.52188102).
文摘Anomaly Detection (AD) has been extensively adopted in industrial settings to facilitate quality control of products. It is critical to industrial production, especially to areas such as aircraft manufacturing, which require strict part qualification rates. Although being more efficient and practical, few-shot AD has not been well explored. The existing AD methods only extract features in a single frequency while defects exist in multiple frequency domains. Moreover, current methods have not fully leveraged the few-shot support samples to extract input-related normal patterns. To address these issues, we propose an industrial few-shot AD method, Feature Extender for Anomaly Detection (FEAD), which extracts normal patterns in multiple frequency domains from few-shot samples under the guidance of the input sample. Firstly, to achieve better coverage of normal patterns in the input sample, we introduce a Sample-Conditioned Transformation Module (SCTM), which transforms support features under the guidance of the input sample to obtain extra normal patterns. Secondly, to effectively distinguish and localize anomaly patterns in multiple frequency domains, we devise an Adaptive Descriptor Construction Module (ADCM) to build and select pattern descriptors in a series of frequencies adaptively. Finally, an auxiliary task for SCTM is designed to ensure the diversity of transformations and include more normal patterns into support features. Extensive experiments on two widely used industrial AD datasets (MVTec-AD and VisA) demonstrate the effectiveness of the proposed FEAD.
基金supported by the CAS Project for Young Scientists in Basic Research under Grant YSBR-035Jiangsu Provincial Key Research and Development Program under Grant BE2021013-2.
文摘In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(CSI),which is difficult to achieve in practice.To be more practical,it is important to investigate covert communications against a warden with uncertain locations and imperfect CSI,which makes it difficult for legitimate transceivers to estimate the detection probability of the warden.First,the uncertainty caused by the unknown warden location must be removed,and the Optimal Detection Position(OPTDP)of the warden is derived which can provide the best detection performance(i.e.,the worst case for a covert communication).Then,to further avoid the impractical assumption of perfect CSI,the covert throughput is maximized using only the channel distribution information.Given this OPTDP based worst case for covert communications,the jammer selection,the jamming power,the transmission power,and the transmission rate are jointly optimized to maximize the covert throughput(OPTDP-JP).To solve this coupling problem,a Heuristic algorithm based on Maximum Distance Ratio(H-MAXDR)is proposed to provide a sub-optimal solution.First,according to the analysis of the covert throughput,the node with the maximum distance ratio(i.e.,the ratio of the distances from the jammer to the receiver and that to the warden)is selected as the friendly jammer(MAXDR).Then,the optimal transmission and jamming power can be derived,followed by the optimal transmission rate obtained via the bisection method.In numerical and simulation results,it is shown that although the location of the warden is unknown,by assuming the OPTDP of the warden,the proposed OPTDP-JP can always satisfy the covertness constraint.In addition,with an uncertain warden and imperfect CSI,the covert throughput provided by OPTDP-JP is 80%higher than the existing schemes when the covertness constraint is 0.9,showing the effectiveness of OPTDP-JP.
基金funded by the National Key Research and Development Program of China(2024YFD1201202)the Major Program of National Agricultural Science and Technology of China(NK20220607)+1 种基金the Science and Technology Bureau of Sichuan Province(2023NSFSC1995,2024NSFSC1968,and 2025YFHZ0184)the Science and Technology Bureau of Chengdu City(2024-YF05-00368-SN)。
文摘Psathyrostachys huashanica Keng ex P.C.Kuo(2n=2x=14,NsNs),a wild relative of wheat,represents a valuable germplasm resource for genetic improvement of wheat.We previously confirmed that a chromosome 7Ns from P.huashanica carries genes that accelerate heading and maturity in wheat.Here,we developed three small segment translocation lines(T7NsS-2BL 2BS,T7NsS-1AS 1AL#1,and T7NsS-1AS 1AL#2)along with one additional small segment translocation line(T7NsS-7BS 7BL)through^(60)Co-γ irradiation,identified using genomic in situ hybridization(GISH),fluorescence in situ hybridization(FISH),and liquid chip array analyses.Our findings demonstrated that chromosome 7NsS contained a major early heading date gene,tentatively designated Ehd-7Ns,which was mapped to an approximate31.45 Mb region,corresponding to the short arm of wheat chromosome 7A(IWGSC RefSeq v1.0).The T7NsS-1AS 1AL#2 line exhibited no significant yield penalty and possessed superior agronomic traits relative to the other translocation lines in the field,making it a promising pre-breeding donor for breeding early maturing wheat.Furthermore,21 specific Kompetitive Allele Specific PCR(KASP)markers were developed based on transcriptome data,enabling effective tracing of alien chromosomal segments carrying this source of Ehd-7Ns in marker-assisted breeding.Collectively,these newly developed translocation lines and specific KASP markers will facilitate the transfer and utilization of favorable genes from P.huashanica chromosome 7Ns in future wheat breeding programs.
基金Supported by Shanghai 2020“Science and Technology Innovation Action Plan”Medical Innovation Research Special Program:20Y21902800Shanghai Municipal Health Commission Shanghai Three-Year Action Plan to Further Accelerate the Development of Traditional Chinese Medicine Inheritance and Innovation:ZY(2021-2023)−0302)+1 种基金Shanghai Key Specialty(Acupuncture)Construction Project:shslczdzk04701Shanghai 2024"Science and Technology Innovation Action Plan"star cultivation(Sail special):24YF2740600.
文摘Transcutaneous electrical acupoint stimulation(TEAS)is a kind of physical therapy that use electric cur-rent through the electrodes placed on the surface of acupoints to produce clinical effects in the human body,which is characterized by less adverse reaction and convenient operation.It has been widely used in the treatment of various diseases.This review introduces six major clinical applications of TEAS,named analgesia,regulation of gastrointestinal function,improvement of reproductive function,enhancement of cognitive function,promotion of limb function recovery and relief of fatigue.Besides,TEAS has been ap-plied to the treatment of other chronic diseases such as hypertension and diabetes,achieving satisfactory clinical effects.However,two crucial challenges are encountered in the development of TEAS.One is the lack of standardization in the selection of parameters such as waveform,frequency,intensity and stimula-tion duration.The other is the limitation on the flexibility in the acupoint selection.This review analyzes key issues that need to be addressed in the current clinical application of TEAS,such as the selection of parameters and acupoints,and this review provides a certain reference value for optimizing regimens of TEAS and promoting its development and application.
基金funded by the Natural Science Foundation of China(Grant Nos.42377164 and 41972280)the Badong National Observation and Research Station of Geohazards(Grant No.BNORSG-202305).
文摘Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain conditioning factor selection method rather than systematically study this uncertainty issue.Targeted,this study aims to systematically explore the influence rules of various commonly used conditioning factor selection methods on LSP,and on this basis to innovatively propose a principle with universal application for optimal selection of conditioning factors.An'yuan County in southern China is taken as example considering 431 landslides and 29 types of conditioning factors.Five commonly used factor selection methods,namely,the correlation analysis(CA),linear regression(LR),principal component analysis(PCA),rough set(RS)and artificial neural network(ANN),are applied to select the optimal factor combinations from the original 29 conditioning factors.The factor selection results are then used as inputs of four types of common machine learning models to construct 20 types of combined models,such as CA-multilayer perceptron,CA-random forest.Additionally,multifactor-based multilayer perceptron random forest models that selecting conditioning factors based on the proposed principle of“accurate data,rich types,clear significance,feasible operation and avoiding duplication”are constructed for comparisons.Finally,the LSP uncertainties are evaluated by the accuracy,susceptibility index distribution,etc.Results show that:(1)multifactor-based models have generally higher LSP performance and lower uncertainties than those of factors selection-based models;(2)Influence degree of different machine learning on LSP accuracy is greater than that of different factor selection methods.Conclusively,the above commonly used conditioning factor selection methods are not ideal for improving LSP performance and may complicate the LSP processes.In contrast,a satisfied combination of conditioning factors can be constructed according to the proposed principle.
基金support provided by National Key Research and Development Program of China(2023YFE0203000 and 2016YFC0300200)the NSAF(Grant No.U2330205)+3 种基金Full-Sea-Depth Battery Project(2020-XXXX-XX-246-00)Open project of Shaanxi Laboratory of Aerospace Power(2022ZY2-JCYJ-01-09)Fundamental Research Funds for the Central Universities,ND Basic Research Funds(G2022WD)the Innovation Team of Shaanxi Province。
文摘The operation of deep-sea underwater vehicles relies entirely on onboard batteries.However,the extreme deep-sea conditions,characterized by ultrahigh hydraulic pressure,low temperature,and seawater conductivity,pose significant challenges for battery development.These conditions drive the need for specialized designs in deep-sea batteries,incorporating critical aspects of power generation,protection,distribution,and management.Over time,deep-sea battery technology has evolved through multiple generations,with lithium(Li)batteries emerging in recent decades as the preferred power source due to their high energy and reduced operational risks.Although the rapid progress of Li batteries has notably advanced the capabilities of underwater vehicles,critical technical issues remain unresolved.This review first systematically presents the whole picture of deep-sea battery manufacturing,focusing on Li batteries as the current mainstream solution for underwater power.It examines the key aspects of deep-sea Li battery development,including materials selection informed by electro-chemo-mechanics models,component modification and testing,and battery management systems specialized in software and hardware.Finally,it discusses the main challenges limiting the utilization of deep-sea batteries and outlines promising directions for future development.Based on the systematic reflection on deep-sea batteries and discussion on deep-sea Li batteries,this review aims to provide a research foundation for developing underwater power tailored for extreme environmental exploration.
基金the Deanship of Scientifc Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/421/45supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2024/R/1446)+1 种基金supported by theResearchers Supporting Project Number(UM-DSR-IG-2023-07)Almaarefa University,Riyadh,Saudi Arabia.supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2021R1F1A1055408).
文摘Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.