期刊文献+
共找到3,802篇文章
< 1 2 191 >
每页显示 20 50 100
Detecting Anomalies in FinTech: A Graph Neural Network and Feature Selection Perspective
1
作者 Vinh Truong Hoang Nghia Dinh +3 位作者 Viet-Tuan Le Kiet Tran-Trung Bay Nguyen Van Kittikhun Meethongjan 《Computers, Materials & Continua》 2026年第1期207-246,共40页
The Financial Technology(FinTech)sector has witnessed rapid growth,resulting in increasingly complex and high-volume digital transactions.Although this expansion improves efficiency and accessibility,it also introduce... The Financial Technology(FinTech)sector has witnessed rapid growth,resulting in increasingly complex and high-volume digital transactions.Although this expansion improves efficiency and accessibility,it also introduces significant vulnerabilities,including fraud,money laundering,and market manipulation.Traditional anomaly detection techniques often fail to capture the relational and dynamic characteristics of financial data.Graph Neural Networks(GNNs),capable of modeling intricate interdependencies among entities,have emerged as a powerful framework for detecting subtle and sophisticated anomalies.However,the high-dimensionality and inherent noise of FinTech datasets demand robust feature selection strategies to improve model scalability,performance,and interpretability.This paper presents a comprehensive survey of GNN-based approaches for anomaly detection in FinTech,with an emphasis on the synergistic role of feature selection.We examine the theoretical foundations of GNNs,review state-of-the-art feature selection techniques,analyze their integration with GNNs,and categorize prevalent anomaly types in FinTech applications.In addition,we discuss practical implementation challenges,highlight representative case studies,and propose future research directions to advance the field of graph-based anomaly detection in financial systems. 展开更多
关键词 GNN SECURITY ECOMMERCE FinTech abnormal detection feature selection
在线阅读 下载PDF
FedCW: Client Selection with Adaptive Weight in Heterogeneous Federated Learning
2
作者 Haotian Wu Jiaming Pei Jinhai Li 《Computers, Materials & Continua》 2026年第1期1551-1570,共20页
With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy... With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy.However,efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging.To address these issues,we propose Federated Learning with Client Selection and Adaptive Weighting(FedCW),a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks.FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts aggregation weights to optimize both data diversity and model convergence.Experimental results show that FedCW significantly outperforms existing FL algorithms such as FedAvg,FedProx,and SCAFFOLD,particularly in non-IID settings,achieving faster convergence,higher accuracy,and reduced communication overhead.These findings demonstrate that FedCW provides an effective solution for enhancing the performance of FL in heterogeneous,edge-based computing environments. 展开更多
关键词 Federated learning non-IID client selection weight allocation vehicular networks
在线阅读 下载PDF
Efficient Arabic Essay Scoring with Hybrid Models: Feature Selection, Data Optimization, and Performance Trade-Offs
3
作者 Mohamed Ezz Meshrif Alruily +4 位作者 Ayman Mohamed Mostafa Alaa SAlaerjan Bader Aldughayfiq Hisham Allahem Abdulaziz Shehab 《Computers, Materials & Continua》 2026年第1期2274-2301,共28页
Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic... Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage. 展开更多
关键词 Automated essay scoring text-based features vector-based features embedding-based features feature selection optimal data efficiency
在线阅读 下载PDF
GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT
4
作者 Wanwei Huang Huicong Yu +3 位作者 Jiawei Ren Kun Wang Yanbu Guo Lifeng Jin 《Computers, Materials & Continua》 2026年第1期2006-2029,共24页
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from... Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%. 展开更多
关键词 Industrial Internet of Things intrusion detection system feature selection whale optimization algorithm Gaussian mutation
在线阅读 下载PDF
Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization
5
作者 Songsong Zhang Huazhong Jin +5 位作者 Zhiwei Ye Jia Yang Jixin Zhang Dongfang Wu Xiao Zheng Dingfeng Song 《Computers, Materials & Continua》 2026年第1期1141-1159,共19页
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal... Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics. 展开更多
关键词 Multi-label feature selection federated learning manifold regularization sparse constraints hybrid breeding optimization algorithm particle swarm optimizatio algorithm privacy protection
在线阅读 下载PDF
基于自适应稀疏宽度学习系统的软测量建模 被引量:1
6
作者 杜康萍 隋璘 熊伟丽 《系统仿真学报》 北大核心 2025年第6期1449-1461,共13页
针对复杂工业过程具有非线性、变量多特征耦合的特性,导致模型复杂度增加及性能降低等问题,提出一种基于自适应稀疏宽度学习系统的软测量建模方法。在特征横向增强传递的基础上,采用迹LASSO(least absolute shrinkage and selection ope... 针对复杂工业过程具有非线性、变量多特征耦合的特性,导致模型复杂度增加及性能降低等问题,提出一种基于自适应稀疏宽度学习系统的软测量建模方法。在特征横向增强传递的基础上,采用迹LASSO(least absolute shrinkage and selection operator)对网络特征权重进行优化,根据不同变量间的相关性自适应调整惩罚强度,提高模型特征提取能力;在增强节点部分引入Dropout机制,利用LASSO求解输出权重,对模型整体进行稀疏优化,剔除过量节点,减少计算过程中的冗余数据。实验结果表明:该方法能有效简化模型结构,提高其预测性能。 展开更多
关键词 软测量 宽度学习系统 迹LASSO(least absolute shrinkage and selection operator) 正则化 稀疏模型
原文传递
Influence of different data selection criteria on internal geomagnetic field modeling 被引量:4
7
作者 HongBo Yao JuYuan Xu +3 位作者 Yi Jiang Qing Yan Liang Yin PengFei Liu 《Earth and Planetary Physics》 2025年第3期541-549,共9页
Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these i... Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications. 展开更多
关键词 Macao Science Satellite-1 SWARM geomagnetic field modeling data selection core field crustal field
在线阅读 下载PDF
Expert consensus on the clinical strategies for orthodontic treatment with clear aligners 被引量:4
8
作者 Yan Wang Hu Long +17 位作者 Zhihe Zhao Ding Bai Xianglong Han Jun Wang Bing Fang Zuolin Jin Hong He Yuxin Bai Weiran Li Min Hu Yanheng Zhou Hong Ai Yuehua Liu Yang Cao Jun Lin Huang Li Jie Guo Wenli Lai 《International Journal of Oral Science》 2025年第3期314-327,共14页
Clear aligner treatment is a novel technique in current orthodontic practice.Distinct from traditional fixed orthodontic appliances,clear aligners have different material features and biomechanical characteristics and... Clear aligner treatment is a novel technique in current orthodontic practice.Distinct from traditional fixed orthodontic appliances,clear aligners have different material features and biomechanical characteristics and treatment efficiencies,presenting new clinical challenges.Therefore,a comprehensive and systematic description of the key clinical aspects of clear aligner treatment is essential to enhance treatment efficacy and facilitate the advancement and wide adoption of this new technique.This expert consensus discusses case selection and grading of treatment difficulty,principle of clear aligner therapy,clinical procedures and potential complications,which are crucial to the clinical success of clear aligner treatment. 展开更多
关键词 clinical strategies treatment difficulty clinical procedures orthodontic treatment clear aligner therapy clear aligner case selection orthodontic appliancesclear aligners
暂未订购
Effects of feature selection and normalization on network intrusion detection 被引量:2
9
作者 Mubarak Albarka Umar Zhanfang Chen +1 位作者 Khaled Shuaib Yan Liu 《Data Science and Management》 2025年第1期23-39,共17页
The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more e... The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more efficient and reliable intrusion detection systems(IDSs).However,the advent of larger IDS datasets has negatively impacted the performance and computational complexity of AI-based IDSs.Many researchers used data preprocessing techniques such as feature selection and normalization to overcome such issues.While most of these researchers reported the success of these preprocessing techniques on a shallow level,very few studies have been performed on their effects on a wider scale.Furthermore,the performance of an IDS model is subject to not only the utilized preprocessing techniques but also the dataset and the ML/DL algorithm used,which most of the existing studies give little emphasis on.Thus,this study provides an in-depth analysis of feature selection and normalization effects on IDS models built using three IDS datasets:NSL-KDD,UNSW-NB15,and CSE–CIC–IDS2018,and various AI algorithms.A wrapper-based approach,which tends to give superior performance,and min-max normalization methods were used for feature selection and normalization,respectively.Numerous IDS models were implemented using the full and feature-selected copies of the datasets with and without normalization.The models were evaluated using popular evaluation metrics in IDS modeling,intra-and inter-model comparisons were performed between models and with state-of-the-art works.Random forest(RF)models performed better on NSL-KDD and UNSW-NB15 datasets with accuracies of 99.86%and 96.01%,respectively,whereas artificial neural network(ANN)achieved the best accuracy of 95.43%on the CSE–CIC–IDS2018 dataset.The RF models also achieved an excellent performance compared to recent works.The results show that normalization and feature selection positively affect IDS modeling.Furthermore,while feature selection benefits simpler algorithms(such as RF),normalization is more useful for complex algorithms like ANNs and deep neural networks(DNNs),and algorithms such as Naive Bayes are unsuitable for IDS modeling.The study also found that the UNSW-NB15 and CSE–CIC–IDS2018 datasets are more complex and more suitable for building and evaluating modern-day IDS than the NSL-KDD dataset.Our findings suggest that prioritizing robust algorithms like RF,alongside complex models such as ANN and DNN,can significantly enhance IDS performance.These insights provide valuable guidance for managers to develop more effective security measures by focusing on high detection rates and low false alert rates. 展开更多
关键词 CYBERSECURITY Intrusion detection system Machine learning Deep learning Feature selection NORMALIZATION
在线阅读 下载PDF
Effects of nitrogen enrichment on soil enzyme activities in grassland ecosystems in China:A multilevel meta-analysis 被引量:2
10
作者 Jibo SHI Muhammad KHASHI U RAHMAN +3 位作者 Ruonan MA Qiang LI Yingxin HUANG Guangdi LI 《Pedosphere》 2025年第1期84-96,共13页
Nitrogen(N)enrichment has resulted in widespread alteration of grassland ecosystem processes and functions mainly through disturbance in soil enzyme activities.However,we lack a comprehensive understanding of how N de... Nitrogen(N)enrichment has resulted in widespread alteration of grassland ecosystem processes and functions mainly through disturbance in soil enzyme activities.However,we lack a comprehensive understanding of how N deposition affects specific key soil enzymes that mediate plant-soil feedback of grassland.Here,with a meta-analysis on 1446 cases from field observations in China,we show that N deposition differently affects soil enzymes associated with soil biochemical processes.Specifically,N-promoted C,N,and P-acquiring hydrolase activities significantly increased by 8.73%,7.67%,and 8.69%,respectively,related to an increase in microbial-specific enzyme secretion.The increased relative N availability and soil acidification were two potential mechanisms accounting for the changes in soil enzyme activities with N enrichment.The mixed N addition in combination of NH_(4)NO_(3) and urea showed greater stimulation effect on soil enzyme activities.However,the high rate and long-term N addition tended to weaken the positive responses of soil C-,Nand P-acquiring hydrolase activities to N enrichment.Spatially increased mean annual precipitation and temperature primarily promoted the positive effects of N enrichment on N-and P-acquiring hydrolase activities,and the stimulation of C-and N-acquiring hydrolase activities by N enrichment was intensified with the increase in soil depth.Finally,multimodal inference showed that grassland type was the most important regulator of responses of microbial C,N,and P-acquiring hydrolase activities to N enrichment.This meta-analysis provides a comprehensive insight into understanding the key role of N enrichment in shaping soil enzyme activities of grassland ecosystems. 展开更多
关键词 C N and P-acquiring hydrolases grassland type model selection N addition OXIDASE soil acidification
原文传递
Expert consensus on imaging diagnosis and analysis of early correction of childhood malocclusion 被引量:2
11
作者 Zitong Lin Chenchen Zhou +23 位作者 Ziyang Hu Zuyan Zhang Yong Cheng Bing Fang Hong He Hu Wang Gang Li Jun Guo Weihua Guo Xiaobing Li Guangning Zheng Zhimin Li Donglin Zeng Yan Liu Yuehua Liu Min Hu Lunguo Xia Jihong Zhao Yaling Song Huang Li Jun Ji Jinlin Song Lili Chen Tiemei Wang 《International Journal of Oral Science》 2025年第4期466-476,共11页
Early correction of childhood malocclusion is timely managing morphological,structural,and functional abnormalities at different dentomaxillofacial developmental stages.The selection of appropriate imaging examination... Early correction of childhood malocclusion is timely managing morphological,structural,and functional abnormalities at different dentomaxillofacial developmental stages.The selection of appropriate imaging examination and comprehensive radiological diagnosis and analysis play an important role in early correction of childhood malocclusion.This expert consensus is a collaborative effort by multidisciplinary experts in dentistry across the nation based on the current clinical evidence,aiming to provide general guidance on appropriate imaging examination selection,comprehensive and accurate imaging assessment for early orthodontic treatment patients. 展开更多
关键词 dentomaxillofacial developmental stagesthe childhood malocclusionthis early correction expert consensus radiological diagnosis analysis imaging diagnosis childhood malocclusion selection appropriate imaging examination
暂未订购
Identification and characterization of Sr59-mediated stem rust resistance in a novel wheat-rye translocation T2BL 2BS-2RL 被引量:1
12
作者 Mahboobeh Yazdani Matthew N.Rouse +5 位作者 Prabin Bajgain Tatiana V.Danilova Ivan Motsnyi Brian J.Steffenson Mehran Patpour Mahbubjon Rahmatov 《The Crop Journal》 2025年第3期909-918,共10页
Emerging new races of wheat stem rust(Puccinia graminis f.sp.tritici)are threatening global wheat(Triticum aestivum L.)production.Host resistance is the most effective and environmentally friendly method of controllin... Emerging new races of wheat stem rust(Puccinia graminis f.sp.tritici)are threatening global wheat(Triticum aestivum L.)production.Host resistance is the most effective and environmentally friendly method of controlling stem rust.The stem rust resistance gene Sr59 was previously identified within a T2DS 2RL wheat-rye whole arm translocation,providing broad-spectrum resistance to various stem rust races.Seedling evaluation,molecular marker analysis,and cytogenetic studies identified wheat-rye introgression line#284 containing a new translocation chromosome T2BL 2BS-2RL.This line has demonstrated broad-spectrum resistance to stem rust at the seedling stage.Seedling evaluation and cytogenetic analysis of three backcross populations between the line#284 and the adapted cultivars SLU-Elite,Navruz,and Linkert confirmed that Sr59 is located within the short distal 2RL translocation.This study aimed physical mapping of Sr59 in the 2RL introgression segment and develop a robust molecular marker for marker-assisted selection.Using genotyping-by-sequencing(GBS),GBS-derived SNPs were aligned with full-length annotated rye nucleotide-binding leucine-rich repeat(NLR)genes in the parental lines CS ph1b,SLU238,SLU-Elite,Navruz,and Linkert,as well as in 33 BC4F5progeny.Four NLR genes were identified on the 2R chromosome,with Chr2R_NLR_60 being tightly linked to the Sr59resistance gene.In-silico functional enrichment analysis of the translocated 2RL region(25,681,915 bp)identified 223 genes,with seven candidate genes associated with plant disease resistance and three linked to agronomic performance,contributing to oxidative stress response,protein kinase activity,and cellular homeostasis.These findings facilitate a better understanding of the genetic basis of stem rust resistance provided by Sr59. 展开更多
关键词 Cytogenetic analysis Marker-assisted selection NLR Resistance gene Wheat-rye introgression
在线阅读 下载PDF
Genomic selection for meat quality traits based on VIS/NIR spectral information 被引量:1
13
作者 Xi Tang Lei Xie +8 位作者 Min Yan Longyun Li Tianxiong Yao Siyi Liu Wenwu Xu Shijun Xiao Nengshui Ding Zhiyan Zhang Lusheng Huang 《Journal of Integrative Agriculture》 2025年第1期235-245,共11页
The principle of genomic selection(GS) entails estimating breeding values(BVs) by summing all the SNP polygenic effects. The visible/near-infrared spectroscopy(VIS/NIRS) wavelength and abundance values can directly re... The principle of genomic selection(GS) entails estimating breeding values(BVs) by summing all the SNP polygenic effects. The visible/near-infrared spectroscopy(VIS/NIRS) wavelength and abundance values can directly reflect the concentrations of chemical substances, and the measurement of meat traits by VIS/NIRS is similar to the processing of genomic selection data by summing all ‘polygenic effects' associated with spectral feature peaks. Therefore, it is meaningful to investigate the incorporation of VIS/NIRS information into GS models to establish an efficient and low-cost breeding model. In this study, we measured 6 meat quality traits in 359Duroc×Landrace×Yorkshire pigs from Guangxi Zhuang Autonomous Region, China, and genotyped them with high-density SNP chips. According to the completeness of the information for the target population, we proposed 4breeding strategies applied to different scenarios: Ⅰ, only spectral and genotypic data exist for the target population;Ⅱ, only spectral data exist for the target population;Ⅲ, only spectral and genotypic data but with different prediction processes exist for the target population;and Ⅳ, only spectral and phenotypic data exist for the target population.The 4 scenarios were used to evaluate the genomic estimated breeding value(GEBV) accuracy by increasing the VIS/NIR spectral information. In the results of the 5-fold cross-validation, the genetic algorithm showed remarkable potential for preselection of feature wavelengths. The breeding efficiency of Strategies Ⅱ, Ⅲ, and Ⅳ was superior to that of traditional GS for most traits, and the GEBV prediction accuracy was improved by 32.2, 40.8 and 15.5%, respectively on average. Among them, the prediction accuracy of Strategy Ⅱ for fat(%) even improved by 50.7% compared to traditional GS. The GEBV prediction accuracy of Strategy Ⅰ was nearly identical to that of traditional GS, and the fluctuation range was less than 7%. Moreover, the breeding cost of the 4 strategies was lower than that of traditional GS methods, with Strategy Ⅳ being the lowest as it did not require genotyping.Our findings demonstrate that GS methods based on VIS/NIRS data have significant predictive potential and are worthy of further research to provide a valuable reference for the development of effective and affordable breeding strategies. 展开更多
关键词 VIS/NIR genomic selection GEBV machine learning PIG meat quality
在线阅读 下载PDF
Few-shot anomaly detection with adaptive feature transformation and descriptor construction 被引量:1
14
作者 Zhengnan HU Xiangrui ZENG +4 位作者 Yiqun LI Zhouping YIN Erli MENG Leyan ZHU Xianghao KONG 《Chinese Journal of Aeronautics》 2025年第3期491-504,共14页
Anomaly Detection (AD) has been extensively adopted in industrial settings to facilitate quality control of products. It is critical to industrial production, especially to areas such as aircraft manufacturing, which ... Anomaly Detection (AD) has been extensively adopted in industrial settings to facilitate quality control of products. It is critical to industrial production, especially to areas such as aircraft manufacturing, which require strict part qualification rates. Although being more efficient and practical, few-shot AD has not been well explored. The existing AD methods only extract features in a single frequency while defects exist in multiple frequency domains. Moreover, current methods have not fully leveraged the few-shot support samples to extract input-related normal patterns. To address these issues, we propose an industrial few-shot AD method, Feature Extender for Anomaly Detection (FEAD), which extracts normal patterns in multiple frequency domains from few-shot samples under the guidance of the input sample. Firstly, to achieve better coverage of normal patterns in the input sample, we introduce a Sample-Conditioned Transformation Module (SCTM), which transforms support features under the guidance of the input sample to obtain extra normal patterns. Secondly, to effectively distinguish and localize anomaly patterns in multiple frequency domains, we devise an Adaptive Descriptor Construction Module (ADCM) to build and select pattern descriptors in a series of frequencies adaptively. Finally, an auxiliary task for SCTM is designed to ensure the diversity of transformations and include more normal patterns into support features. Extensive experiments on two widely used industrial AD datasets (MVTec-AD and VisA) demonstrate the effectiveness of the proposed FEAD. 展开更多
关键词 Industrial applications Anomaly detection Learning algorithms Feature extraction Feature selection
原文传递
Joint jammer selection and power optimization in covert communications against a warden with uncertain locations 被引量:1
15
作者 Zhijun Han Yiqing Zhou +3 位作者 Yu Zhang Tong-Xing Zheng Ling Liu Jinglin Shi 《Digital Communications and Networks》 2025年第4期1113-1123,共11页
In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(... In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(CSI),which is difficult to achieve in practice.To be more practical,it is important to investigate covert communications against a warden with uncertain locations and imperfect CSI,which makes it difficult for legitimate transceivers to estimate the detection probability of the warden.First,the uncertainty caused by the unknown warden location must be removed,and the Optimal Detection Position(OPTDP)of the warden is derived which can provide the best detection performance(i.e.,the worst case for a covert communication).Then,to further avoid the impractical assumption of perfect CSI,the covert throughput is maximized using only the channel distribution information.Given this OPTDP based worst case for covert communications,the jammer selection,the jamming power,the transmission power,and the transmission rate are jointly optimized to maximize the covert throughput(OPTDP-JP).To solve this coupling problem,a Heuristic algorithm based on Maximum Distance Ratio(H-MAXDR)is proposed to provide a sub-optimal solution.First,according to the analysis of the covert throughput,the node with the maximum distance ratio(i.e.,the ratio of the distances from the jammer to the receiver and that to the warden)is selected as the friendly jammer(MAXDR).Then,the optimal transmission and jamming power can be derived,followed by the optimal transmission rate obtained via the bisection method.In numerical and simulation results,it is shown that although the location of the warden is unknown,by assuming the OPTDP of the warden,the proposed OPTDP-JP can always satisfy the covertness constraint.In addition,with an uncertain warden and imperfect CSI,the covert throughput provided by OPTDP-JP is 80%higher than the existing schemes when the covertness constraint is 0.9,showing the effectiveness of OPTDP-JP. 展开更多
关键词 Covert communications Uncertain warden Jammer selection Power optimization Throughput maximization
在线阅读 下载PDF
Development and identification of wheat-Psathyrostachys huashanica 7NsS small segment translocation lines with early heading date gene Ehd-7Ns 被引量:1
16
作者 Binwen Tan Jing Gao +13 位作者 Zhijun Yao Wei Zhu Lili Xu Yiran Cheng Yi Wang Jian Zeng Xing Fan Lina Sha Haiqin Zhang Peng Qin Yinghui Li Yonghong Zhou Dandan Wu Houyang Kang 《The Crop Journal》 2025年第4期1186-1196,共11页
Psathyrostachys huashanica Keng ex P.C.Kuo(2n=2x=14,NsNs),a wild relative of wheat,represents a valuable germplasm resource for genetic improvement of wheat.We previously confirmed that a chromosome 7Ns from P.huashan... Psathyrostachys huashanica Keng ex P.C.Kuo(2n=2x=14,NsNs),a wild relative of wheat,represents a valuable germplasm resource for genetic improvement of wheat.We previously confirmed that a chromosome 7Ns from P.huashanica carries genes that accelerate heading and maturity in wheat.Here,we developed three small segment translocation lines(T7NsS-2BL 2BS,T7NsS-1AS 1AL#1,and T7NsS-1AS 1AL#2)along with one additional small segment translocation line(T7NsS-7BS 7BL)through^(60)Co-γ irradiation,identified using genomic in situ hybridization(GISH),fluorescence in situ hybridization(FISH),and liquid chip array analyses.Our findings demonstrated that chromosome 7NsS contained a major early heading date gene,tentatively designated Ehd-7Ns,which was mapped to an approximate31.45 Mb region,corresponding to the short arm of wheat chromosome 7A(IWGSC RefSeq v1.0).The T7NsS-1AS 1AL#2 line exhibited no significant yield penalty and possessed superior agronomic traits relative to the other translocation lines in the field,making it a promising pre-breeding donor for breeding early maturing wheat.Furthermore,21 specific Kompetitive Allele Specific PCR(KASP)markers were developed based on transcriptome data,enabling effective tracing of alien chromosomal segments carrying this source of Ehd-7Ns in marker-assisted breeding.Collectively,these newly developed translocation lines and specific KASP markers will facilitate the transfer and utilization of favorable genes from P.huashanica chromosome 7Ns in future wheat breeding programs. 展开更多
关键词 Early maturity KASP markers Marker assisted selection Wheat breeding
在线阅读 下载PDF
Transcutaneous electrical acupoint stimulation(TEAS):Applications and challenges 被引量:1
17
作者 Wen-lai ZHOU Jing LI +4 位作者 Xiao-ning SHEN Xia-tong HUA Jing XIE Yan-li ZHOU Lu ZHU 《World Journal of Acupuncture-Moxibustion》 2025年第1期10-16,共7页
Transcutaneous electrical acupoint stimulation(TEAS)is a kind of physical therapy that use electric cur-rent through the electrodes placed on the surface of acupoints to produce clinical effects in the human body,whic... Transcutaneous electrical acupoint stimulation(TEAS)is a kind of physical therapy that use electric cur-rent through the electrodes placed on the surface of acupoints to produce clinical effects in the human body,which is characterized by less adverse reaction and convenient operation.It has been widely used in the treatment of various diseases.This review introduces six major clinical applications of TEAS,named analgesia,regulation of gastrointestinal function,improvement of reproductive function,enhancement of cognitive function,promotion of limb function recovery and relief of fatigue.Besides,TEAS has been ap-plied to the treatment of other chronic diseases such as hypertension and diabetes,achieving satisfactory clinical effects.However,two crucial challenges are encountered in the development of TEAS.One is the lack of standardization in the selection of parameters such as waveform,frequency,intensity and stimula-tion duration.The other is the limitation on the flexibility in the acupoint selection.This review analyzes key issues that need to be addressed in the current clinical application of TEAS,such as the selection of parameters and acupoints,and this review provides a certain reference value for optimizing regimens of TEAS and promoting its development and application. 展开更多
关键词 Transcutaneous electrical acupoint stimulation(TEAS) Clinical application Influence factors Parameter selection
原文传递
Optimization method of conditioning factors selection and combination for landslide susceptibility prediction 被引量:1
18
作者 Faming Huang Keji Liu +4 位作者 Shuihua Jiang Filippo Catani Weiping Liu Xuanmei Fan Jinsong Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期722-746,共25页
Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain c... Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain conditioning factor selection method rather than systematically study this uncertainty issue.Targeted,this study aims to systematically explore the influence rules of various commonly used conditioning factor selection methods on LSP,and on this basis to innovatively propose a principle with universal application for optimal selection of conditioning factors.An'yuan County in southern China is taken as example considering 431 landslides and 29 types of conditioning factors.Five commonly used factor selection methods,namely,the correlation analysis(CA),linear regression(LR),principal component analysis(PCA),rough set(RS)and artificial neural network(ANN),are applied to select the optimal factor combinations from the original 29 conditioning factors.The factor selection results are then used as inputs of four types of common machine learning models to construct 20 types of combined models,such as CA-multilayer perceptron,CA-random forest.Additionally,multifactor-based multilayer perceptron random forest models that selecting conditioning factors based on the proposed principle of“accurate data,rich types,clear significance,feasible operation and avoiding duplication”are constructed for comparisons.Finally,the LSP uncertainties are evaluated by the accuracy,susceptibility index distribution,etc.Results show that:(1)multifactor-based models have generally higher LSP performance and lower uncertainties than those of factors selection-based models;(2)Influence degree of different machine learning on LSP accuracy is greater than that of different factor selection methods.Conclusively,the above commonly used conditioning factor selection methods are not ideal for improving LSP performance and may complicate the LSP processes.In contrast,a satisfied combination of conditioning factors can be constructed according to the proposed principle. 展开更多
关键词 Landslide susceptibility prediction Conditioning factors selection Support vector machine Random forest Rough set Artificial neural network
在线阅读 下载PDF
Manufacturing of lithium battery toward deep-sea environment 被引量:1
19
作者 Yaohua Zhao Nan Li +4 位作者 Keyu Xie Chuan Wang Sisi Zhou Xianggong Zhang Cong Ye 《International Journal of Extreme Manufacturing》 2025年第2期310-335,共26页
The operation of deep-sea underwater vehicles relies entirely on onboard batteries.However,the extreme deep-sea conditions,characterized by ultrahigh hydraulic pressure,low temperature,and seawater conductivity,pose s... The operation of deep-sea underwater vehicles relies entirely on onboard batteries.However,the extreme deep-sea conditions,characterized by ultrahigh hydraulic pressure,low temperature,and seawater conductivity,pose significant challenges for battery development.These conditions drive the need for specialized designs in deep-sea batteries,incorporating critical aspects of power generation,protection,distribution,and management.Over time,deep-sea battery technology has evolved through multiple generations,with lithium(Li)batteries emerging in recent decades as the preferred power source due to their high energy and reduced operational risks.Although the rapid progress of Li batteries has notably advanced the capabilities of underwater vehicles,critical technical issues remain unresolved.This review first systematically presents the whole picture of deep-sea battery manufacturing,focusing on Li batteries as the current mainstream solution for underwater power.It examines the key aspects of deep-sea Li battery development,including materials selection informed by electro-chemo-mechanics models,component modification and testing,and battery management systems specialized in software and hardware.Finally,it discusses the main challenges limiting the utilization of deep-sea batteries and outlines promising directions for future development.Based on the systematic reflection on deep-sea batteries and discussion on deep-sea Li batteries,this review aims to provide a research foundation for developing underwater power tailored for extreme environmental exploration. 展开更多
关键词 manufacturing of deep-sea battery Li battery materials selection component modification and test specialized battery management system
在线阅读 下载PDF
Congruent Feature Selection Method to Improve the Efficacy of Machine Learning-Based Classification in Medical Image Processing
20
作者 Mohd Anjum Naoufel Kraiem +2 位作者 Hong Min Ashit Kumar Dutta Yousef Ibrahim Daradkeh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期357-384,共28页
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp... Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset. 展开更多
关键词 Computer vision feature selection machine learning region detection texture analysis image classification medical images
在线阅读 下载PDF
上一页 1 2 191 下一页 到第
使用帮助 返回顶部