This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod ...This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod projectiles into semi-infinite metal targets from experimental measurements.The derived mathematical expressions of dimensionless quantities are simplified by the examination of the exponent matrix and coupling relationships between feature variables.As a physics-based dimension reduction methodology,this way reduces high-dimensional parameter spaces to descriptions involving only a few physically interpretable dimensionless quantities in penetrating cases.Then the relative importance of various dimensionless feature variables on the penetration efficiencies for four impacting conditions is evaluated through feature selection engineering.The results indicate that the selected critical dimensionless feature variables by this synergistic method,without referring to the complex theoretical equations and aiding in the detailed knowledge of penetration mechanics,are in accordance with those reported in the reference.Lastly,the determined dimensionless quantities can be efficiently applied to conduct semi-empirical analysis for the specific penetrating case,and the reliability of regression functions is validated.展开更多
The variable selection of high dimensional nonparametric nonlinear systems aims to select the contributing variables or to eliminate the redundant variables.For a high dimensional nonparametric nonlinear system,howeve...The variable selection of high dimensional nonparametric nonlinear systems aims to select the contributing variables or to eliminate the redundant variables.For a high dimensional nonparametric nonlinear system,however,identifying whether a variable contributes or not is not easy.Therefore,based on the Fourier spectrum of densityweighted derivative,one novel variable selection approach is developed,which does not suffer from the dimensionality curse and improves the identification accuracy.Furthermore,a necessary and sufficient condition for testing a variable whether it contributes or not is provided.The proposed approach does not require strong assumptions on the distribution,such as elliptical distribution.The simulation study verifies the effectiveness of the novel variable selection algorithm.展开更多
Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is ext...Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is extremely high,so we introduce a hybrid filter-wrapper feature selection algorithm based on an improved equilibrium optimizer for constructing an emotion recognition system.The proposed algorithm implements multi-objective emotion recognition with the minimum number of selected features and maximum accuracy.First,we use the information gain and Fisher Score to sort the features extracted from signals.Then,we employ a multi-objective ranking method to evaluate these features and assign different importance to them.Features with high rankings have a large probability of being selected.Finally,we propose a repair strategy to address the problem of duplicate solutions in multi-objective feature selection,which can improve the diversity of solutions and avoid falling into local traps.Using random forest and K-nearest neighbor classifiers,four English speech emotion datasets are employed to test the proposed algorithm(MBEO)as well as other multi-objective emotion identification techniques.The results illustrate that it performs well in inverted generational distance,hypervolume,Pareto solutions,and execution time,and MBEO is appropriate for high-dimensional English SER.展开更多
Lung cancer is among the most frequent cancers in the world,with over one million deaths per year.Classification is required for lung cancer diagnosis and therapy to be effective,accurate,and reliable.Gene expression ...Lung cancer is among the most frequent cancers in the world,with over one million deaths per year.Classification is required for lung cancer diagnosis and therapy to be effective,accurate,and reliable.Gene expression microarrays have made it possible to find genetic biomarkers for cancer diagnosis and prediction in a high-throughput manner.Machine Learning(ML)has been widely used to diagnose and classify lung cancer where the performance of ML methods is evaluated to identify the appropriate technique.Identifying and selecting the gene expression patterns can help in lung cancer diagnoses and classification.Normally,microarrays include several genes and may cause confusion or false prediction.Therefore,the Arithmetic Optimization Algorithm(AOA)is used to identify the optimal gene subset to reduce the number of selected genes.Which can allow the classifiers to yield the best performance for lung cancer classification.In addition,we proposed a modified version of AOA which can work effectively on the high dimensional dataset.In the modified AOA,the features are ranked by their weights and are used to initialize the AOA population.The exploitation process of AOA is then enhanced by developing a local search algorithm based on two neighborhood strategies.Finally,the efficiency of the proposed methods was evaluated on gene expression datasets related to Lung cancer using stratified 4-fold cross-validation.The method’s efficacy in selecting the optimal gene subset is underscored by its ability to maintain feature proportions between 10%to 25%.Moreover,the approach significantly enhances lung cancer prediction accuracy.For instance,Lung_Harvard1 achieved an accuracy of 97.5%,Lung_Harvard2 and Lung_Michigan datasets both achieved 100%,Lung_Adenocarcinoma obtained an accuracy of 88.2%,and Lung_Ontario achieved an accuracy of 87.5%.In conclusion,the results indicate the potential promise of the proposed modified AOA approach in classifying microarray cancer data.展开更多
With the increasing dimensionality of the data,High-dimensional Feature Selection(HFS)becomes an increasingly dif-ficult task.It is not simple to find the best subset of features due to the breadth of the search space...With the increasing dimensionality of the data,High-dimensional Feature Selection(HFS)becomes an increasingly dif-ficult task.It is not simple to find the best subset of features due to the breadth of the search space and the intricacy of the interactions between features.Many of the Feature Selection(FS)approaches now in use for these problems perform sig-nificantly less well when faced with such intricate situations involving high-dimensional search spaces.It is demonstrated that meta-heuristic algorithms can provide sub-optimal results in an acceptable amount of time.This paper presents a new binary Boosted version of the Spider Wasp Optimizer(BSWO)called Binary Boosted SWO(BBSWO),which combines a number of successful and promising strategies,in order to deal with HFS.The shortcomings of the original BSWO,including early convergence,settling into local optimums,limited exploration and exploitation,and lack of population diversity,were addressed by the proposal of this new variant of SWO.The concept of chaos optimization is introduced in BSWO,where initialization is consistently produced by utilizing the properties of sine chaos mapping.A new convergence parameter was then incorporated into BSWO to achieve a promising balance between exploration and exploitation.Multiple exploration mechanisms were then applied in conjunction with several exploitation strategies to effectively enrich the search process of BSWO within the search space.Finally,quantum-based optimization was added to enhance the diversity of the search agents in BSWO.The proposed BBSWO not only offers the most suitable subset of features located,but it also lessens the data's redundancy structure.BBSWO was evaluated using the k-Nearest Neighbor(k-NN)classifier on 23 HFS problems from the biomedical domain taken from the UCI repository.The results were compared with those of traditional BSWO and other well-known meta-heuristics-based FS.The findings indicate that,in comparison to other competing techniques,the proposed BBSWO can,on average,identify the least significant subsets of features with efficient classification accuracy of the k-NN classifier.展开更多
Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these i...Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications.展开更多
The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more e...The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more efficient and reliable intrusion detection systems(IDSs).However,the advent of larger IDS datasets has negatively impacted the performance and computational complexity of AI-based IDSs.Many researchers used data preprocessing techniques such as feature selection and normalization to overcome such issues.While most of these researchers reported the success of these preprocessing techniques on a shallow level,very few studies have been performed on their effects on a wider scale.Furthermore,the performance of an IDS model is subject to not only the utilized preprocessing techniques but also the dataset and the ML/DL algorithm used,which most of the existing studies give little emphasis on.Thus,this study provides an in-depth analysis of feature selection and normalization effects on IDS models built using three IDS datasets:NSL-KDD,UNSW-NB15,and CSE–CIC–IDS2018,and various AI algorithms.A wrapper-based approach,which tends to give superior performance,and min-max normalization methods were used for feature selection and normalization,respectively.Numerous IDS models were implemented using the full and feature-selected copies of the datasets with and without normalization.The models were evaluated using popular evaluation metrics in IDS modeling,intra-and inter-model comparisons were performed between models and with state-of-the-art works.Random forest(RF)models performed better on NSL-KDD and UNSW-NB15 datasets with accuracies of 99.86%and 96.01%,respectively,whereas artificial neural network(ANN)achieved the best accuracy of 95.43%on the CSE–CIC–IDS2018 dataset.The RF models also achieved an excellent performance compared to recent works.The results show that normalization and feature selection positively affect IDS modeling.Furthermore,while feature selection benefits simpler algorithms(such as RF),normalization is more useful for complex algorithms like ANNs and deep neural networks(DNNs),and algorithms such as Naive Bayes are unsuitable for IDS modeling.The study also found that the UNSW-NB15 and CSE–CIC–IDS2018 datasets are more complex and more suitable for building and evaluating modern-day IDS than the NSL-KDD dataset.Our findings suggest that prioritizing robust algorithms like RF,alongside complex models such as ANN and DNN,can significantly enhance IDS performance.These insights provide valuable guidance for managers to develop more effective security measures by focusing on high detection rates and low false alert rates.展开更多
In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(...In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(CSI),which is difficult to achieve in practice.To be more practical,it is important to investigate covert communications against a warden with uncertain locations and imperfect CSI,which makes it difficult for legitimate transceivers to estimate the detection probability of the warden.First,the uncertainty caused by the unknown warden location must be removed,and the Optimal Detection Position(OPTDP)of the warden is derived which can provide the best detection performance(i.e.,the worst case for a covert communication).Then,to further avoid the impractical assumption of perfect CSI,the covert throughput is maximized using only the channel distribution information.Given this OPTDP based worst case for covert communications,the jammer selection,the jamming power,the transmission power,and the transmission rate are jointly optimized to maximize the covert throughput(OPTDP-JP).To solve this coupling problem,a Heuristic algorithm based on Maximum Distance Ratio(H-MAXDR)is proposed to provide a sub-optimal solution.First,according to the analysis of the covert throughput,the node with the maximum distance ratio(i.e.,the ratio of the distances from the jammer to the receiver and that to the warden)is selected as the friendly jammer(MAXDR).Then,the optimal transmission and jamming power can be derived,followed by the optimal transmission rate obtained via the bisection method.In numerical and simulation results,it is shown that although the location of the warden is unknown,by assuming the OPTDP of the warden,the proposed OPTDP-JP can always satisfy the covertness constraint.In addition,with an uncertain warden and imperfect CSI,the covert throughput provided by OPTDP-JP is 80%higher than the existing schemes when the covertness constraint is 0.9,showing the effectiveness of OPTDP-JP.展开更多
The principle of genomic selection(GS) entails estimating breeding values(BVs) by summing all the SNP polygenic effects. The visible/near-infrared spectroscopy(VIS/NIRS) wavelength and abundance values can directly re...The principle of genomic selection(GS) entails estimating breeding values(BVs) by summing all the SNP polygenic effects. The visible/near-infrared spectroscopy(VIS/NIRS) wavelength and abundance values can directly reflect the concentrations of chemical substances, and the measurement of meat traits by VIS/NIRS is similar to the processing of genomic selection data by summing all ‘polygenic effects' associated with spectral feature peaks. Therefore, it is meaningful to investigate the incorporation of VIS/NIRS information into GS models to establish an efficient and low-cost breeding model. In this study, we measured 6 meat quality traits in 359Duroc×Landrace×Yorkshire pigs from Guangxi Zhuang Autonomous Region, China, and genotyped them with high-density SNP chips. According to the completeness of the information for the target population, we proposed 4breeding strategies applied to different scenarios: Ⅰ, only spectral and genotypic data exist for the target population;Ⅱ, only spectral data exist for the target population;Ⅲ, only spectral and genotypic data but with different prediction processes exist for the target population;and Ⅳ, only spectral and phenotypic data exist for the target population.The 4 scenarios were used to evaluate the genomic estimated breeding value(GEBV) accuracy by increasing the VIS/NIR spectral information. In the results of the 5-fold cross-validation, the genetic algorithm showed remarkable potential for preselection of feature wavelengths. The breeding efficiency of Strategies Ⅱ, Ⅲ, and Ⅳ was superior to that of traditional GS for most traits, and the GEBV prediction accuracy was improved by 32.2, 40.8 and 15.5%, respectively on average. Among them, the prediction accuracy of Strategy Ⅱ for fat(%) even improved by 50.7% compared to traditional GS. The GEBV prediction accuracy of Strategy Ⅰ was nearly identical to that of traditional GS, and the fluctuation range was less than 7%. Moreover, the breeding cost of the 4 strategies was lower than that of traditional GS methods, with Strategy Ⅳ being the lowest as it did not require genotyping.Our findings demonstrate that GS methods based on VIS/NIRS data have significant predictive potential and are worthy of further research to provide a valuable reference for the development of effective and affordable breeding strategies.展开更多
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp...Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.展开更多
This article constructs statistical selection procedures for exponential populations that may differ in only the threshold parameters. The scale parameters of the populations are assumed common and known. The independ...This article constructs statistical selection procedures for exponential populations that may differ in only the threshold parameters. The scale parameters of the populations are assumed common and known. The independent samples drawn from the populations are taken to be of the same size. The best population is defined as the one associated with the largest threshold parameter. In case more than one population share the largest threshold, one of these is tagged at random and denoted the best. Two procedures are developed for choosing a subset of the populations having the property that the chosen subset contains the best population with a prescribed probability. One procedure is based on the sample minimum values drawn from the populations, and another is based on the sample means from the populations. An “Indifference Zone” (IZ) selection procedure is also developed based on the sample minimum values. The IZ procedure asserts that the population with the largest test statistic (e.g., the sample minimum) is the best population. With this approach, the sample size is chosen so as to guarantee that the probability of a correct selection is no less than a prescribed probability in the parameter region where the largest threshold is at least a prescribed amount larger than the remaining thresholds. Numerical examples are given, and the computer R-codes for all calculations are given in the Appendices.展开更多
Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain c...Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain conditioning factor selection method rather than systematically study this uncertainty issue.Targeted,this study aims to systematically explore the influence rules of various commonly used conditioning factor selection methods on LSP,and on this basis to innovatively propose a principle with universal application for optimal selection of conditioning factors.An'yuan County in southern China is taken as example considering 431 landslides and 29 types of conditioning factors.Five commonly used factor selection methods,namely,the correlation analysis(CA),linear regression(LR),principal component analysis(PCA),rough set(RS)and artificial neural network(ANN),are applied to select the optimal factor combinations from the original 29 conditioning factors.The factor selection results are then used as inputs of four types of common machine learning models to construct 20 types of combined models,such as CA-multilayer perceptron,CA-random forest.Additionally,multifactor-based multilayer perceptron random forest models that selecting conditioning factors based on the proposed principle of“accurate data,rich types,clear significance,feasible operation and avoiding duplication”are constructed for comparisons.Finally,the LSP uncertainties are evaluated by the accuracy,susceptibility index distribution,etc.Results show that:(1)multifactor-based models have generally higher LSP performance and lower uncertainties than those of factors selection-based models;(2)Influence degree of different machine learning on LSP accuracy is greater than that of different factor selection methods.Conclusively,the above commonly used conditioning factor selection methods are not ideal for improving LSP performance and may complicate the LSP processes.In contrast,a satisfied combination of conditioning factors can be constructed according to the proposed principle.展开更多
In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by re...In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by replacing them with a minimally adequate collection of their linear combinations without loss of information.Recently,regularization methods have been proposed in SIR to incorporate a sparse structure of predictors for better interpretability.However,existing methods consider convex relaxation to bypass the sparsity constraint,which may not lead to the best subset,and particularly tends to include irrelevant variables when predictors are correlated.In this study,we approach sparse SIR as a nonconvex optimization problem and directly tackle the sparsity constraint by establishing the optimal conditions and iteratively solving them by means of the splicing technique.Without employing convex relaxation on the sparsity constraint and the orthogonal constraint,our algorithm exhibits superior empirical merits,as evidenced by extensive numerical studies.Computationally,our algorithm is much faster than the relaxed approach for the natural sparse SIR estimator.Statistically,our algorithm surpasses existing methods in terms of accuracy for central subspace estimation and best subset selection and sustains high performance even with correlated predictors.展开更多
Mitochondria play a key role in lipid metabolism,and mitochondrial DNA(mtDNA)mutations are thus considered to affect obesity susceptibility by altering oxidative phosphorylation and mitochondrial function.In this stud...Mitochondria play a key role in lipid metabolism,and mitochondrial DNA(mtDNA)mutations are thus considered to affect obesity susceptibility by altering oxidative phosphorylation and mitochondrial function.In this study,we investigate mtDNA variants that may affect obesity risk in 2877 Han Chinese individuals from 3 independent populations.The association analysis of 16 basal mtDNA haplogroups with body mass index,waist circumference,and waist-to-hip ratio reveals that only haplogroup M7 is significantly negatively correlated with all three adiposity-related anthropometric traits in the overall cohort,verified by the analysis of a single population,i.e.,the Zhengzhou population.Furthermore,subhaplogroup analysis suggests that M7b1a1 is the most likely haplogroup associated with a decreased obesity risk,and the variation T12811C(causing Y159H in ND5)harbored in M7b1a1 may be the most likely candidate for altering the mitochondrial function.Specifically,we find that proportionally more nonsynonymous mutations accumulate in M7b1a1 carriers,indicating that M7b1a1 is either under positive selection or subject to a relaxation of selective constraints.We also find that nuclear variants,especially in DACT2 and PIEZO1,may functionally interact with M7b1a1.展开更多
Nestedness is one of the important patterns in island biogeography,community ecology and conservation biology.However,most previous nestedness studies focus on the taxonomic dimension while neglecting the functional a...Nestedness is one of the important patterns in island biogeography,community ecology and conservation biology.However,most previous nestedness studies focus on the taxonomic dimension while neglecting the functional and phylogenetic processes in generating nestedness.Moreover,few studies have examined the seasonal change of the nestedness and underlying processes.Here,we examined the seasonal nestedness of bird assemblages in taxonomic,functional,and phylogenetic dimensions,and determined the underlying processes of nestedness patterns in the Zhoushan Archipelago,China.We surveyed the occurrence, abundance,and habitats of birds on 40 islands.We calculated taxonomic,functional,and phylogenetic nestedness using WNODF and treeNODF.We determined the processes underlying nestedness by relating nestedness ranks to island characteristics and species traits.The WNODF analyses showed that bird assemblages in winter and summer were both significantly nested.The habitat-by-site matrix was also significantly nested.The nestedness of bird assemblages was significantly correlated with island area,habitat diversity,habitat specificity,minimum area requirement,habitat specificity and hand-wing index(HWI) of birds in both seasons.While the distance to the nearest mainland(DTM) exerted the influence on nestedness in summer,the distance to the nearest larger island(DTNL)affected nestedness only in winter.However,the nestedness of bird assemblages was not caused by passive sampling or human disturbance.The results of treeNODF analyses illustrated that bird assemblages were functionally and phylogenetically nested in summer and winter,but the exact mechanisms were somewhat different in these two seasons.Overall,our results supported the habitat nestedness hypothesis,selective extinction hypothesis,and selective colonization hypothesis in both seasons.From a conservation viewpoint,we should protect islands with large area and diverse habitats,islands close to the mainland,and species with large area requirement and high habitat specificity to prevent local extinction.展开更多
The phenomenon of photothermally induced transparency(PTIT)arises from the nonlinear behavior of an optical cavity,resulting from the heating of mirrors.By introducing a coupling field in the form of a standing wave,P...The phenomenon of photothermally induced transparency(PTIT)arises from the nonlinear behavior of an optical cavity,resulting from the heating of mirrors.By introducing a coupling field in the form of a standing wave,PTIT can be transitioned into photothermally induced grating(PTIG).A two-dimensional(2D)diffraction pattern is achieved through the adjustment of key parameters such as coupling strength and effective detuning.Notably,we observe first,second,and third-order intensity distributions,with the ability to transfer probe energy predominantly to the third order by fine-tuning the coupling strength.The intensity distribution is characterized by(±m,±n),where m,n=1,2,3.This proposed 2D grating system offers a novel platform for manipulating PTIG,presenting unique possibilities for enhanced functionality and control.展开更多
Let T:T^(d)→T^(d),defined by Tx=AX(mod 1),where A is a d×d integer matrix with eigenvalues 1<|λ_(1)|≤|λ_(2)|≤…≤|λ_(d)|,We investigate the Hausdorff dimension of the recurrence set R(ψ)={x∈T^(d):T^(n)...Let T:T^(d)→T^(d),defined by Tx=AX(mod 1),where A is a d×d integer matrix with eigenvalues 1<|λ_(1)|≤|λ_(2)|≤…≤|λ_(d)|,We investigate the Hausdorff dimension of the recurrence set R(ψ)={x∈T^(d):T^(n)x∈B(x,ψ(n))for infinitely many n}forα≥log|λ_(d)/λ_(1)|,whereψis a positive decreasing function defined onℕand its lower order at infinity isα=lim inf_(n→∞)-logψ(n)/n.In the case that A is diagonalizable overℚwith integral eigenvalues,we obtain the dimension formula.展开更多
Based on the fractal theory,this paper takes the form of performing architecture as the research object,and systematically discusses the application value of fractal dimension in architectural design.By expounding the...Based on the fractal theory,this paper takes the form of performing architecture as the research object,and systematically discusses the application value of fractal dimension in architectural design.By expounding the self-affine,self-similarity,and iterative generation characteristics of fractal geometry,the Box-Counting Dimension method is introduced as a quantitative tool to measure the dimensions of the roof plane,facade,and spatial shape of Wuzhen Grand Theatre and Harbin Grand Theatre.The research shows that the geometric complexity of Wuzhen Grand Theater in the“fifth façade”and multi-faceted façade is significantly higher than that of Harbin Grand Theater,and its morphological design is more inclined to echo the texture of the surrounding water towns.The Harbin Grand Theater realizes the dialogue with the natural environment with simple nonlinear lines.The research proves that fractal dimension can effectively quantify the complexity of architectural form,provide a scientific basis for the form design,environmental integration,and form interpretation of performance architecture,and expand the mathematical analysis dimension of architectural form design.展开更多
Non-orthogonal multiple access(NOMA)is a promising technology for the next generation wireless communication networks.The benefits of this technology can be further enhanced through deployment in conjunction with mult...Non-orthogonal multiple access(NOMA)is a promising technology for the next generation wireless communication networks.The benefits of this technology can be further enhanced through deployment in conjunction with multiple-input multipleoutput(MIMO)systems.Antenna selection plays a critical role in MIMO–NOMA systems as it has the potential to significantly reduce the cost and complexity associated with radio frequency chains.This paper considers antenna selection for downlink MIMO–NOMA networks with multiple-antenna basestation(BS)and multiple-antenna user equipments(UEs).An iterative antenna selection scheme is developed for a two-user system,and to determine the initial power required for this selection scheme,a power estimation method is also proposed.The proposed algorithm is then extended to a general multiuser NOMA system.Numerical results demonstrate that the proposed antenna selection algorithm achieves near-optimal performance with much lower computational complexity in both two-user and multiuser scenarios.展开更多
Detecting the complexity of natural systems,such as hydrological systems,can help improve our understanding of complex interactions and feedback between variables in these systems.The correlation dimension method,as o...Detecting the complexity of natural systems,such as hydrological systems,can help improve our understanding of complex interactions and feedback between variables in these systems.The correlation dimension method,as one of the most useful methods,has been applied in many studies to investigate the chaos and detect the intrinsic dimensions of underlying dynamic systems.However,this method often relies on manual inspection due to uncertainties from iden-tifying the scaling region,making the correlation dimension value calculation troublesome and subjective.Therefore,it is necessary to propose a fast and intelligent algorithm to solve the above problem.This study implies the distinct windows tracking technique and fuzzy C-means clustering algorithm to accu-rately identify the scaling range and estimate the correlation dimension values.The proposed method is verified using the classic Lorenz chaotic system and 10 streamflow series in the Daling River basin of Liaoning Province,China.The results reveal that the proposed method is an intelligent and robust method for rapidly and accurately calculating the correlation dimension values,and the average operation efficiency of the proposed algorithm is 30 times faster than that of the original Grassberger-Procaccia algorithm.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12272257,12102292,12032006)the special fund for Science and Technology Innovation Teams of Shanxi Province(Nos.202204051002006).
文摘This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod projectiles into semi-infinite metal targets from experimental measurements.The derived mathematical expressions of dimensionless quantities are simplified by the examination of the exponent matrix and coupling relationships between feature variables.As a physics-based dimension reduction methodology,this way reduces high-dimensional parameter spaces to descriptions involving only a few physically interpretable dimensionless quantities in penetrating cases.Then the relative importance of various dimensionless feature variables on the penetration efficiencies for four impacting conditions is evaluated through feature selection engineering.The results indicate that the selected critical dimensionless feature variables by this synergistic method,without referring to the complex theoretical equations and aiding in the detailed knowledge of penetration mechanics,are in accordance with those reported in the reference.Lastly,the determined dimensionless quantities can be efficiently applied to conduct semi-empirical analysis for the specific penetrating case,and the reliability of regression functions is validated.
基金Project supported by the National Key Research and Development Program of China(No.2021YFB3400700)the National Natural Science Foundation of China(Nos.12422201,12072188,12121002,and 12372017)。
文摘The variable selection of high dimensional nonparametric nonlinear systems aims to select the contributing variables or to eliminate the redundant variables.For a high dimensional nonparametric nonlinear system,however,identifying whether a variable contributes or not is not easy.Therefore,based on the Fourier spectrum of densityweighted derivative,one novel variable selection approach is developed,which does not suffer from the dimensionality curse and improves the identification accuracy.Furthermore,a necessary and sufficient condition for testing a variable whether it contributes or not is provided.The proposed approach does not require strong assumptions on the distribution,such as elliptical distribution.The simulation study verifies the effectiveness of the novel variable selection algorithm.
文摘Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is extremely high,so we introduce a hybrid filter-wrapper feature selection algorithm based on an improved equilibrium optimizer for constructing an emotion recognition system.The proposed algorithm implements multi-objective emotion recognition with the minimum number of selected features and maximum accuracy.First,we use the information gain and Fisher Score to sort the features extracted from signals.Then,we employ a multi-objective ranking method to evaluate these features and assign different importance to them.Features with high rankings have a large probability of being selected.Finally,we propose a repair strategy to address the problem of duplicate solutions in multi-objective feature selection,which can improve the diversity of solutions and avoid falling into local traps.Using random forest and K-nearest neighbor classifiers,four English speech emotion datasets are employed to test the proposed algorithm(MBEO)as well as other multi-objective emotion identification techniques.The results illustrate that it performs well in inverted generational distance,hypervolume,Pareto solutions,and execution time,and MBEO is appropriate for high-dimensional English SER.
基金supported by the Deanship of Scientific Research,at Imam Abdulrahman Bin Faisal University.Grant Number:2019-416-ASCS.
文摘Lung cancer is among the most frequent cancers in the world,with over one million deaths per year.Classification is required for lung cancer diagnosis and therapy to be effective,accurate,and reliable.Gene expression microarrays have made it possible to find genetic biomarkers for cancer diagnosis and prediction in a high-throughput manner.Machine Learning(ML)has been widely used to diagnose and classify lung cancer where the performance of ML methods is evaluated to identify the appropriate technique.Identifying and selecting the gene expression patterns can help in lung cancer diagnoses and classification.Normally,microarrays include several genes and may cause confusion or false prediction.Therefore,the Arithmetic Optimization Algorithm(AOA)is used to identify the optimal gene subset to reduce the number of selected genes.Which can allow the classifiers to yield the best performance for lung cancer classification.In addition,we proposed a modified version of AOA which can work effectively on the high dimensional dataset.In the modified AOA,the features are ranked by their weights and are used to initialize the AOA population.The exploitation process of AOA is then enhanced by developing a local search algorithm based on two neighborhood strategies.Finally,the efficiency of the proposed methods was evaluated on gene expression datasets related to Lung cancer using stratified 4-fold cross-validation.The method’s efficacy in selecting the optimal gene subset is underscored by its ability to maintain feature proportions between 10%to 25%.Moreover,the approach significantly enhances lung cancer prediction accuracy.For instance,Lung_Harvard1 achieved an accuracy of 97.5%,Lung_Harvard2 and Lung_Michigan datasets both achieved 100%,Lung_Adenocarcinoma obtained an accuracy of 88.2%,and Lung_Ontario achieved an accuracy of 87.5%.In conclusion,the results indicate the potential promise of the proposed modified AOA approach in classifying microarray cancer data.
基金supported from the Deanship of Research and Graduate Studies(DRG)at Ajman University,Ajman,UAE(Grant No.2023-IRG-ENIT-34).
文摘With the increasing dimensionality of the data,High-dimensional Feature Selection(HFS)becomes an increasingly dif-ficult task.It is not simple to find the best subset of features due to the breadth of the search space and the intricacy of the interactions between features.Many of the Feature Selection(FS)approaches now in use for these problems perform sig-nificantly less well when faced with such intricate situations involving high-dimensional search spaces.It is demonstrated that meta-heuristic algorithms can provide sub-optimal results in an acceptable amount of time.This paper presents a new binary Boosted version of the Spider Wasp Optimizer(BSWO)called Binary Boosted SWO(BBSWO),which combines a number of successful and promising strategies,in order to deal with HFS.The shortcomings of the original BSWO,including early convergence,settling into local optimums,limited exploration and exploitation,and lack of population diversity,were addressed by the proposal of this new variant of SWO.The concept of chaos optimization is introduced in BSWO,where initialization is consistently produced by utilizing the properties of sine chaos mapping.A new convergence parameter was then incorporated into BSWO to achieve a promising balance between exploration and exploitation.Multiple exploration mechanisms were then applied in conjunction with several exploitation strategies to effectively enrich the search process of BSWO within the search space.Finally,quantum-based optimization was added to enhance the diversity of the search agents in BSWO.The proposed BBSWO not only offers the most suitable subset of features located,but it also lessens the data's redundancy structure.BBSWO was evaluated using the k-Nearest Neighbor(k-NN)classifier on 23 HFS problems from the biomedical domain taken from the UCI repository.The results were compared with those of traditional BSWO and other well-known meta-heuristics-based FS.The findings indicate that,in comparison to other competing techniques,the proposed BBSWO can,on average,identify the least significant subsets of features with efficient classification accuracy of the k-NN classifier.
基金supported by the National Natural Science Foundation of China(42250101)the Macao Foundation。
文摘Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications.
文摘The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more efficient and reliable intrusion detection systems(IDSs).However,the advent of larger IDS datasets has negatively impacted the performance and computational complexity of AI-based IDSs.Many researchers used data preprocessing techniques such as feature selection and normalization to overcome such issues.While most of these researchers reported the success of these preprocessing techniques on a shallow level,very few studies have been performed on their effects on a wider scale.Furthermore,the performance of an IDS model is subject to not only the utilized preprocessing techniques but also the dataset and the ML/DL algorithm used,which most of the existing studies give little emphasis on.Thus,this study provides an in-depth analysis of feature selection and normalization effects on IDS models built using three IDS datasets:NSL-KDD,UNSW-NB15,and CSE–CIC–IDS2018,and various AI algorithms.A wrapper-based approach,which tends to give superior performance,and min-max normalization methods were used for feature selection and normalization,respectively.Numerous IDS models were implemented using the full and feature-selected copies of the datasets with and without normalization.The models were evaluated using popular evaluation metrics in IDS modeling,intra-and inter-model comparisons were performed between models and with state-of-the-art works.Random forest(RF)models performed better on NSL-KDD and UNSW-NB15 datasets with accuracies of 99.86%and 96.01%,respectively,whereas artificial neural network(ANN)achieved the best accuracy of 95.43%on the CSE–CIC–IDS2018 dataset.The RF models also achieved an excellent performance compared to recent works.The results show that normalization and feature selection positively affect IDS modeling.Furthermore,while feature selection benefits simpler algorithms(such as RF),normalization is more useful for complex algorithms like ANNs and deep neural networks(DNNs),and algorithms such as Naive Bayes are unsuitable for IDS modeling.The study also found that the UNSW-NB15 and CSE–CIC–IDS2018 datasets are more complex and more suitable for building and evaluating modern-day IDS than the NSL-KDD dataset.Our findings suggest that prioritizing robust algorithms like RF,alongside complex models such as ANN and DNN,can significantly enhance IDS performance.These insights provide valuable guidance for managers to develop more effective security measures by focusing on high detection rates and low false alert rates.
基金supported by the CAS Project for Young Scientists in Basic Research under Grant YSBR-035Jiangsu Provincial Key Research and Development Program under Grant BE2021013-2.
文摘In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(CSI),which is difficult to achieve in practice.To be more practical,it is important to investigate covert communications against a warden with uncertain locations and imperfect CSI,which makes it difficult for legitimate transceivers to estimate the detection probability of the warden.First,the uncertainty caused by the unknown warden location must be removed,and the Optimal Detection Position(OPTDP)of the warden is derived which can provide the best detection performance(i.e.,the worst case for a covert communication).Then,to further avoid the impractical assumption of perfect CSI,the covert throughput is maximized using only the channel distribution information.Given this OPTDP based worst case for covert communications,the jammer selection,the jamming power,the transmission power,and the transmission rate are jointly optimized to maximize the covert throughput(OPTDP-JP).To solve this coupling problem,a Heuristic algorithm based on Maximum Distance Ratio(H-MAXDR)is proposed to provide a sub-optimal solution.First,according to the analysis of the covert throughput,the node with the maximum distance ratio(i.e.,the ratio of the distances from the jammer to the receiver and that to the warden)is selected as the friendly jammer(MAXDR).Then,the optimal transmission and jamming power can be derived,followed by the optimal transmission rate obtained via the bisection method.In numerical and simulation results,it is shown that although the location of the warden is unknown,by assuming the OPTDP of the warden,the proposed OPTDP-JP can always satisfy the covertness constraint.In addition,with an uncertain warden and imperfect CSI,the covert throughput provided by OPTDP-JP is 80%higher than the existing schemes when the covertness constraint is 0.9,showing the effectiveness of OPTDP-JP.
基金supported by the National Natural Science Foundation of China(32160782 and 32060737).
文摘The principle of genomic selection(GS) entails estimating breeding values(BVs) by summing all the SNP polygenic effects. The visible/near-infrared spectroscopy(VIS/NIRS) wavelength and abundance values can directly reflect the concentrations of chemical substances, and the measurement of meat traits by VIS/NIRS is similar to the processing of genomic selection data by summing all ‘polygenic effects' associated with spectral feature peaks. Therefore, it is meaningful to investigate the incorporation of VIS/NIRS information into GS models to establish an efficient and low-cost breeding model. In this study, we measured 6 meat quality traits in 359Duroc×Landrace×Yorkshire pigs from Guangxi Zhuang Autonomous Region, China, and genotyped them with high-density SNP chips. According to the completeness of the information for the target population, we proposed 4breeding strategies applied to different scenarios: Ⅰ, only spectral and genotypic data exist for the target population;Ⅱ, only spectral data exist for the target population;Ⅲ, only spectral and genotypic data but with different prediction processes exist for the target population;and Ⅳ, only spectral and phenotypic data exist for the target population.The 4 scenarios were used to evaluate the genomic estimated breeding value(GEBV) accuracy by increasing the VIS/NIR spectral information. In the results of the 5-fold cross-validation, the genetic algorithm showed remarkable potential for preselection of feature wavelengths. The breeding efficiency of Strategies Ⅱ, Ⅲ, and Ⅳ was superior to that of traditional GS for most traits, and the GEBV prediction accuracy was improved by 32.2, 40.8 and 15.5%, respectively on average. Among them, the prediction accuracy of Strategy Ⅱ for fat(%) even improved by 50.7% compared to traditional GS. The GEBV prediction accuracy of Strategy Ⅰ was nearly identical to that of traditional GS, and the fluctuation range was less than 7%. Moreover, the breeding cost of the 4 strategies was lower than that of traditional GS methods, with Strategy Ⅳ being the lowest as it did not require genotyping.Our findings demonstrate that GS methods based on VIS/NIRS data have significant predictive potential and are worthy of further research to provide a valuable reference for the development of effective and affordable breeding strategies.
基金the Deanship of Scientifc Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/421/45supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2024/R/1446)+1 种基金supported by theResearchers Supporting Project Number(UM-DSR-IG-2023-07)Almaarefa University,Riyadh,Saudi Arabia.supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2021R1F1A1055408).
文摘Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.
文摘This article constructs statistical selection procedures for exponential populations that may differ in only the threshold parameters. The scale parameters of the populations are assumed common and known. The independent samples drawn from the populations are taken to be of the same size. The best population is defined as the one associated with the largest threshold parameter. In case more than one population share the largest threshold, one of these is tagged at random and denoted the best. Two procedures are developed for choosing a subset of the populations having the property that the chosen subset contains the best population with a prescribed probability. One procedure is based on the sample minimum values drawn from the populations, and another is based on the sample means from the populations. An “Indifference Zone” (IZ) selection procedure is also developed based on the sample minimum values. The IZ procedure asserts that the population with the largest test statistic (e.g., the sample minimum) is the best population. With this approach, the sample size is chosen so as to guarantee that the probability of a correct selection is no less than a prescribed probability in the parameter region where the largest threshold is at least a prescribed amount larger than the remaining thresholds. Numerical examples are given, and the computer R-codes for all calculations are given in the Appendices.
基金funded by the Natural Science Foundation of China(Grant Nos.42377164 and 41972280)the Badong National Observation and Research Station of Geohazards(Grant No.BNORSG-202305).
文摘Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain conditioning factor selection method rather than systematically study this uncertainty issue.Targeted,this study aims to systematically explore the influence rules of various commonly used conditioning factor selection methods on LSP,and on this basis to innovatively propose a principle with universal application for optimal selection of conditioning factors.An'yuan County in southern China is taken as example considering 431 landslides and 29 types of conditioning factors.Five commonly used factor selection methods,namely,the correlation analysis(CA),linear regression(LR),principal component analysis(PCA),rough set(RS)and artificial neural network(ANN),are applied to select the optimal factor combinations from the original 29 conditioning factors.The factor selection results are then used as inputs of four types of common machine learning models to construct 20 types of combined models,such as CA-multilayer perceptron,CA-random forest.Additionally,multifactor-based multilayer perceptron random forest models that selecting conditioning factors based on the proposed principle of“accurate data,rich types,clear significance,feasible operation and avoiding duplication”are constructed for comparisons.Finally,the LSP uncertainties are evaluated by the accuracy,susceptibility index distribution,etc.Results show that:(1)multifactor-based models have generally higher LSP performance and lower uncertainties than those of factors selection-based models;(2)Influence degree of different machine learning on LSP accuracy is greater than that of different factor selection methods.Conclusively,the above commonly used conditioning factor selection methods are not ideal for improving LSP performance and may complicate the LSP processes.In contrast,a satisfied combination of conditioning factors can be constructed according to the proposed principle.
文摘In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by replacing them with a minimally adequate collection of their linear combinations without loss of information.Recently,regularization methods have been proposed in SIR to incorporate a sparse structure of predictors for better interpretability.However,existing methods consider convex relaxation to bypass the sparsity constraint,which may not lead to the best subset,and particularly tends to include irrelevant variables when predictors are correlated.In this study,we approach sparse SIR as a nonconvex optimization problem and directly tackle the sparsity constraint by establishing the optimal conditions and iteratively solving them by means of the splicing technique.Without employing convex relaxation on the sparsity constraint and the orthogonal constraint,our algorithm exhibits superior empirical merits,as evidenced by extensive numerical studies.Computationally,our algorithm is much faster than the relaxed approach for the natural sparse SIR estimator.Statistically,our algorithm surpasses existing methods in terms of accuracy for central subspace estimation and best subset selection and sustains high performance even with correlated predictors.
基金supported by the National Natural Science Foundation of China(32270670,32288101,32271186,and 32200482)the National Basic Research Program of China(2015FY111700)the CAMS Innovation Fund for Medical Sciences(2019-I2M-5-066).
文摘Mitochondria play a key role in lipid metabolism,and mitochondrial DNA(mtDNA)mutations are thus considered to affect obesity susceptibility by altering oxidative phosphorylation and mitochondrial function.In this study,we investigate mtDNA variants that may affect obesity risk in 2877 Han Chinese individuals from 3 independent populations.The association analysis of 16 basal mtDNA haplogroups with body mass index,waist circumference,and waist-to-hip ratio reveals that only haplogroup M7 is significantly negatively correlated with all three adiposity-related anthropometric traits in the overall cohort,verified by the analysis of a single population,i.e.,the Zhengzhou population.Furthermore,subhaplogroup analysis suggests that M7b1a1 is the most likely haplogroup associated with a decreased obesity risk,and the variation T12811C(causing Y159H in ND5)harbored in M7b1a1 may be the most likely candidate for altering the mitochondrial function.Specifically,we find that proportionally more nonsynonymous mutations accumulate in M7b1a1 carriers,indicating that M7b1a1 is either under positive selection or subject to a relaxation of selective constraints.We also find that nuclear variants,especially in DACT2 and PIEZO1,may functionally interact with M7b1a1.
基金supported by the National Natural Science Foundation of China (32271734)。
文摘Nestedness is one of the important patterns in island biogeography,community ecology and conservation biology.However,most previous nestedness studies focus on the taxonomic dimension while neglecting the functional and phylogenetic processes in generating nestedness.Moreover,few studies have examined the seasonal change of the nestedness and underlying processes.Here,we examined the seasonal nestedness of bird assemblages in taxonomic,functional,and phylogenetic dimensions,and determined the underlying processes of nestedness patterns in the Zhoushan Archipelago,China.We surveyed the occurrence, abundance,and habitats of birds on 40 islands.We calculated taxonomic,functional,and phylogenetic nestedness using WNODF and treeNODF.We determined the processes underlying nestedness by relating nestedness ranks to island characteristics and species traits.The WNODF analyses showed that bird assemblages in winter and summer were both significantly nested.The habitat-by-site matrix was also significantly nested.The nestedness of bird assemblages was significantly correlated with island area,habitat diversity,habitat specificity,minimum area requirement,habitat specificity and hand-wing index(HWI) of birds in both seasons.While the distance to the nearest mainland(DTM) exerted the influence on nestedness in summer,the distance to the nearest larger island(DTNL)affected nestedness only in winter.However,the nestedness of bird assemblages was not caused by passive sampling or human disturbance.The results of treeNODF analyses illustrated that bird assemblages were functionally and phylogenetically nested in summer and winter,but the exact mechanisms were somewhat different in these two seasons.Overall,our results supported the habitat nestedness hypothesis,selective extinction hypothesis,and selective colonization hypothesis in both seasons.From a conservation viewpoint,we should protect islands with large area and diverse habitats,islands close to the mainland,and species with large area requirement and high habitat specificity to prevent local extinction.
文摘The phenomenon of photothermally induced transparency(PTIT)arises from the nonlinear behavior of an optical cavity,resulting from the heating of mirrors.By introducing a coupling field in the form of a standing wave,PTIT can be transitioned into photothermally induced grating(PTIG).A two-dimensional(2D)diffraction pattern is achieved through the adjustment of key parameters such as coupling strength and effective detuning.Notably,we observe first,second,and third-order intensity distributions,with the ability to transfer probe energy predominantly to the third order by fine-tuning the coupling strength.The intensity distribution is characterized by(±m,±n),where m,n=1,2,3.This proposed 2D grating system offers a novel platform for manipulating PTIG,presenting unique possibilities for enhanced functionality and control.
基金supported by the Science Foundation of China University of Petroleum,Beijing(2462023SZBH013)the China Postdoctoral Science Foundation(2023M743878)+2 种基金the Postdoctoral Fellowship Program of CPSF(GZB20240848)supported partially by the NSFC(12271176)the Guangdong Natural Science Foundation(2024A1515010946).
文摘Let T:T^(d)→T^(d),defined by Tx=AX(mod 1),where A is a d×d integer matrix with eigenvalues 1<|λ_(1)|≤|λ_(2)|≤…≤|λ_(d)|,We investigate the Hausdorff dimension of the recurrence set R(ψ)={x∈T^(d):T^(n)x∈B(x,ψ(n))for infinitely many n}forα≥log|λ_(d)/λ_(1)|,whereψis a positive decreasing function defined onℕand its lower order at infinity isα=lim inf_(n→∞)-logψ(n)/n.In the case that A is diagonalizable overℚwith integral eigenvalues,we obtain the dimension formula.
基金Jiangxi Province Intelligent Building Engineering Research Center Open Fund Project,Fractal Theory of Performing Architectural Form Design Research(Project No.:EZ202111440).
文摘Based on the fractal theory,this paper takes the form of performing architecture as the research object,and systematically discusses the application value of fractal dimension in architectural design.By expounding the self-affine,self-similarity,and iterative generation characteristics of fractal geometry,the Box-Counting Dimension method is introduced as a quantitative tool to measure the dimensions of the roof plane,facade,and spatial shape of Wuzhen Grand Theatre and Harbin Grand Theatre.The research shows that the geometric complexity of Wuzhen Grand Theater in the“fifth façade”and multi-faceted façade is significantly higher than that of Harbin Grand Theater,and its morphological design is more inclined to echo the texture of the surrounding water towns.The Harbin Grand Theater realizes the dialogue with the natural environment with simple nonlinear lines.The research proves that fractal dimension can effectively quantify the complexity of architectural form,provide a scientific basis for the form design,environmental integration,and form interpretation of performance architecture,and expand the mathematical analysis dimension of architectural form design.
文摘Non-orthogonal multiple access(NOMA)is a promising technology for the next generation wireless communication networks.The benefits of this technology can be further enhanced through deployment in conjunction with multiple-input multipleoutput(MIMO)systems.Antenna selection plays a critical role in MIMO–NOMA systems as it has the potential to significantly reduce the cost and complexity associated with radio frequency chains.This paper considers antenna selection for downlink MIMO–NOMA networks with multiple-antenna basestation(BS)and multiple-antenna user equipments(UEs).An iterative antenna selection scheme is developed for a two-user system,and to determine the initial power required for this selection scheme,a power estimation method is also proposed.The proposed algorithm is then extended to a general multiuser NOMA system.Numerical results demonstrate that the proposed antenna selection algorithm achieves near-optimal performance with much lower computational complexity in both two-user and multiuser scenarios.
基金IWHR Basic Scientific Research Project,Grant/Award Number:JZ110145B0072024IWHR Internationally-Oriented Talent for International Academic Leader Program,Grant/Award Number:0203982012National Natural Science Foundation of China,Grant/Award Number:51609257。
文摘Detecting the complexity of natural systems,such as hydrological systems,can help improve our understanding of complex interactions and feedback between variables in these systems.The correlation dimension method,as one of the most useful methods,has been applied in many studies to investigate the chaos and detect the intrinsic dimensions of underlying dynamic systems.However,this method often relies on manual inspection due to uncertainties from iden-tifying the scaling region,making the correlation dimension value calculation troublesome and subjective.Therefore,it is necessary to propose a fast and intelligent algorithm to solve the above problem.This study implies the distinct windows tracking technique and fuzzy C-means clustering algorithm to accu-rately identify the scaling range and estimate the correlation dimension values.The proposed method is verified using the classic Lorenz chaotic system and 10 streamflow series in the Daling River basin of Liaoning Province,China.The results reveal that the proposed method is an intelligent and robust method for rapidly and accurately calculating the correlation dimension values,and the average operation efficiency of the proposed algorithm is 30 times faster than that of the original Grassberger-Procaccia algorithm.