Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic...Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage.展开更多
Feature selection(FS)is a pivotal pre-processing step in developing data-driven models,influencing reliability,performance and optimization.Although existing FS techniques can yield high-performance metrics for certai...Feature selection(FS)is a pivotal pre-processing step in developing data-driven models,influencing reliability,performance and optimization.Although existing FS techniques can yield high-performance metrics for certain models,they do not invariably guarantee the extraction of the most critical or impactful features.Prior literature underscores the significance of equitable FS practices and has proposed diverse methodologies for the identification of appropriate features.However,the challenge of discerning the most relevant and influential features persists,particularly in the context of the exponential growth and heterogeneity of big data—a challenge that is increasingly salient in modern artificial intelligence(AI)applications.In response,this study introduces an innovative,automated statistical method termed Farea Similarity for Feature Selection(FSFS).The FSFS approach computes a similarity metric for each feature by benchmarking it against the record-wise mean,thereby finding feature dependencies and mitigating the influence of outliers that could potentially distort evaluation outcomes.Features are subsequently ranked according to their similarity scores,with the threshold established at the average similarity score.Notably,lower FSFS values indicate higher similarity and stronger data correlations,whereas higher values suggest lower similarity.The FSFS method is designed not only to yield reliable evaluation metrics but also to reduce data complexity without compromising model performance.Comparative analyses were performed against several established techniques,including Chi-squared(CS),Correlation Coefficient(CC),Genetic Algorithm(GA),Exhaustive Approach,Greedy Stepwise Approach,Gain Ratio,and Filtered Subset Eval,using a variety of datasets such as the Experimental Dataset,Breast Cancer Wisconsin(Original),KDD CUP 1999,NSL-KDD,UNSW-NB15,and Edge-IIoT.In the absence of the FSFS method,the highest classifier accuracies observed were 60.00%,95.13%,97.02%,98.17%,95.86%,and 94.62%for the respective datasets.When the FSFS technique was integrated with data normalization,encoding,balancing,and feature importance selection processes,accuracies improved to 100.00%,97.81%,98.63%,98.94%,94.27%,and 98.46%,respectively.The FSFS method,with a computational complexity of O(fn log n),demonstrates robust scalability and is well-suited for datasets of large size,ensuring efficient processing even when the number of features is substantial.By automatically eliminating outliers and redundant data,FSFS reduces computational overhead,resulting in faster training and improved model performance.Overall,the FSFS framework not only optimizes performance but also enhances the interpretability and explainability of data-driven models,thereby facilitating more trustworthy decision-making in AI applications.展开更多
The Financial Technology(FinTech)sector has witnessed rapid growth,resulting in increasingly complex and high-volume digital transactions.Although this expansion improves efficiency and accessibility,it also introduce...The Financial Technology(FinTech)sector has witnessed rapid growth,resulting in increasingly complex and high-volume digital transactions.Although this expansion improves efficiency and accessibility,it also introduces significant vulnerabilities,including fraud,money laundering,and market manipulation.Traditional anomaly detection techniques often fail to capture the relational and dynamic characteristics of financial data.Graph Neural Networks(GNNs),capable of modeling intricate interdependencies among entities,have emerged as a powerful framework for detecting subtle and sophisticated anomalies.However,the high-dimensionality and inherent noise of FinTech datasets demand robust feature selection strategies to improve model scalability,performance,and interpretability.This paper presents a comprehensive survey of GNN-based approaches for anomaly detection in FinTech,with an emphasis on the synergistic role of feature selection.We examine the theoretical foundations of GNNs,review state-of-the-art feature selection techniques,analyze their integration with GNNs,and categorize prevalent anomaly types in FinTech applications.In addition,we discuss practical implementation challenges,highlight representative case studies,and propose future research directions to advance the field of graph-based anomaly detection in financial systems.展开更多
With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy...With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy.However,efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging.To address these issues,we propose Federated Learning with Client Selection and Adaptive Weighting(FedCW),a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks.FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts aggregation weights to optimize both data diversity and model convergence.Experimental results show that FedCW significantly outperforms existing FL algorithms such as FedAvg,FedProx,and SCAFFOLD,particularly in non-IID settings,achieving faster convergence,higher accuracy,and reduced communication overhead.These findings demonstrate that FedCW provides an effective solution for enhancing the performance of FL in heterogeneous,edge-based computing environments.展开更多
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from...Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%.展开更多
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal...Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics.展开更多
Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based ...Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based on engineering properties to simulate the gradual collapse of the roof during longwall top coal caving(LTCC).A numerical model is established using the material point method(MPM)and the strain-softening damage constitutive model according to the structure of the physical model.Numerical simulations are conducted to analyze the LTCC process under different hard roofs for ground hydraulic fracturing.The results show that ground hydraulic fracturing releases the energy and stress of the target stratum,resulting in a substantial lag in the fracturing of the overburden before collapse occurs in the hydraulic fracturing stratum.Ground hydraulic fracturing of a low hard roof reduces the lag effect of hydraulic fractures,dissipates the energy consumed by the fracture of the hard roof,and reduces the abutment stress.Therefore,it is advisable to prioritize the selection of the lower hard roof as the target stratum.展开更多
To lower the amylose content (AC) of the indica rice restorer line 057 with high AC, backcrosses were made respectively by using four indica varieties (R367, 91499, Yanhui 559, Hui 527) as low AC donor parents and...To lower the amylose content (AC) of the indica rice restorer line 057 with high AC, backcrosses were made respectively by using four indica varieties (R367, 91499, Yanhui 559, Hui 527) as low AC donor parents and 057 as the recurrent parent. A molecular marker (PCR-Acc Ⅰ) was used to identify the genotypes (GG, TT and GT) of the waxy (Wx) gene. Plants with GT genotype were selected and used as female parent and crossed with 057 to advance generation. The ACs of rice grains harvested from plants with different Wx genotypes were measured and compared to analyze the efficiency of marker-assisted selection. The ACs of the rice grain, harvested from the plants of Wx genotypes GG, GT and TT, were higher than 20%, in the range of 17.7-28.5%, and less than 18%, respectively. The PCR-Acc Ⅰ marker could be used for efficiently lowering the AC of 057 through backcrossing, and there were some influence of parental genetic background on the AC of rice grains with the same Wx genotype.展开更多
More and more enterprises are outsourcing activities that are neither cost efficient if done in-house nor central to their businesses. Most of the studies in outsourcing decision making focus on vendor selection. Howe...More and more enterprises are outsourcing activities that are neither cost efficient if done in-house nor central to their businesses. Most of the studies in outsourcing decision making focus on vendor selection. However, little research has been done about location selection, which is also a critical step in offshore service outsourcing. The purpose of this paper is to offer a new method to deal with the destination selection problem in China. We employed the additive SE-DEA model to overcome the drawbacks of traditional DEA and SE-DEA methods, and calculated the relative efficiency of 20 service outsourcing model cities(excluding Xiamen). Based on two years of longitudinal study, we made a comparison of the 20 cities. Finally we classified the model cities by combining them with the service outsourcing ability dimension and also gave some selection suggestions and development suggestions for outsourcers' outsourcing service and the model cities, respectively.展开更多
A multiobjective quality of service (QoS) routing algorithm was proposed and used as the QoS-aware path selection approach in differentiated services and multi-protocol label switching (DiffServ-MPLS) networks. It sim...A multiobjective quality of service (QoS) routing algorithm was proposed and used as the QoS-aware path selection approach in differentiated services and multi-protocol label switching (DiffServ-MPLS) networks. It simultaneously optimizes multiple QoS objectives by a genetic algorithm in conjunction with concept of Pareto dominance. The simulation demonstrates that the proposed algorithm is capable of discovering a set of QoS-based near optimal paths within in a few iterations. In addition, the simulation results also show the scalability of the algorithm with increasing number of network nodes.展开更多
For data mining tasks on large-scale data,feature selection is a pivotal stage that plays an important role in removing redundant or irrelevant features while improving classifier performance.Traditional wrapper featu...For data mining tasks on large-scale data,feature selection is a pivotal stage that plays an important role in removing redundant or irrelevant features while improving classifier performance.Traditional wrapper feature selection methodologies typically require extensive model training and evaluation,which cannot deliver desired outcomes within a reasonable computing time.In this paper,an innovative wrapper approach termed Contribution Tracking Feature Selection(CTFS)is proposed for feature selection of large-scale data,which can locate informative features without population-level evolution.In other words,fewer evaluations are needed for CTFS compared to other evolutionary methods.We initially introduce a refined sparse autoencoder to assess the prominence of each feature in the subsequent wrapper method.Subsequently,we utilize an enhanced wrapper feature selection technique that merges Mutual Information(MI)with individual feature contributions.Finally,a fine-tuning contribution tracking mechanism discerns informative features within the optimal feature subset,operating via a dominance accumulation mechanism.Experimental results for multiple classification performance metrics demonstrate that the proposed method effectively yields smaller feature subsets without degrading classification performance in an acceptable runtime compared to state-of-the-art algorithms across most large-scale benchmark datasets.展开更多
In recent years,feature selection(FS)optimization of high-dimensional gene expression data has become one of the most promising approaches for cancer prediction and classification.This work reviews FS and classificati...In recent years,feature selection(FS)optimization of high-dimensional gene expression data has become one of the most promising approaches for cancer prediction and classification.This work reviews FS and classification methods that utilize evolutionary algorithms(EAs)for gene expression profiles in cancer or medical applications based on research motivations,challenges,and recommendations.Relevant studies were retrieved from four major academic databases-IEEE,Scopus,Springer,and ScienceDirect-using the keywords‘cancer classification’,‘optimization’,‘FS’,and‘gene expression profile’.A total of 67 papers were finally selected with key advancements identified as follows:(1)The majority of papers(44.8%)focused on developing algorithms and models for FS and classification.(2)The second category encompassed studies on biomarker identification by EAs,including 20 papers(30%).(3)The third category comprised works that applied FS to cancer data for decision support system purposes,addressing high-dimensional data and the formulation of chromosome length.These studies accounted for 12%of the total number of studies.(4)The remaining three papers(4.5%)were reviews and surveys focusing on models and developments in prediction and classification optimization for cancer classification under current technical conditions.This review highlights the importance of optimizing FS in EAs to manage high-dimensional data effectively.Despite recent advancements,significant limitations remain:the dynamic formulation of chromosome length remains an underexplored area.Thus,further research is needed on dynamic-length chromosome techniques for more sophisticated biomarker gene selection techniques.The findings suggest that further advancements in dynamic chromosome length formulations and adaptive algorithms could enhance cancer classification accuracy and efficiency.展开更多
The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more e...The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more efficient and reliable intrusion detection systems(IDSs).However,the advent of larger IDS datasets has negatively impacted the performance and computational complexity of AI-based IDSs.Many researchers used data preprocessing techniques such as feature selection and normalization to overcome such issues.While most of these researchers reported the success of these preprocessing techniques on a shallow level,very few studies have been performed on their effects on a wider scale.Furthermore,the performance of an IDS model is subject to not only the utilized preprocessing techniques but also the dataset and the ML/DL algorithm used,which most of the existing studies give little emphasis on.Thus,this study provides an in-depth analysis of feature selection and normalization effects on IDS models built using three IDS datasets:NSL-KDD,UNSW-NB15,and CSE–CIC–IDS2018,and various AI algorithms.A wrapper-based approach,which tends to give superior performance,and min-max normalization methods were used for feature selection and normalization,respectively.Numerous IDS models were implemented using the full and feature-selected copies of the datasets with and without normalization.The models were evaluated using popular evaluation metrics in IDS modeling,intra-and inter-model comparisons were performed between models and with state-of-the-art works.Random forest(RF)models performed better on NSL-KDD and UNSW-NB15 datasets with accuracies of 99.86%and 96.01%,respectively,whereas artificial neural network(ANN)achieved the best accuracy of 95.43%on the CSE–CIC–IDS2018 dataset.The RF models also achieved an excellent performance compared to recent works.The results show that normalization and feature selection positively affect IDS modeling.Furthermore,while feature selection benefits simpler algorithms(such as RF),normalization is more useful for complex algorithms like ANNs and deep neural networks(DNNs),and algorithms such as Naive Bayes are unsuitable for IDS modeling.The study also found that the UNSW-NB15 and CSE–CIC–IDS2018 datasets are more complex and more suitable for building and evaluating modern-day IDS than the NSL-KDD dataset.Our findings suggest that prioritizing robust algorithms like RF,alongside complex models such as ANN and DNN,can significantly enhance IDS performance.These insights provide valuable guidance for managers to develop more effective security measures by focusing on high detection rates and low false alert rates.展开更多
基金funded by Deanship of Graduate studies and Scientific Research at Jouf University under grant No.(DGSSR-2024-02-01264).
文摘Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage.
文摘Feature selection(FS)is a pivotal pre-processing step in developing data-driven models,influencing reliability,performance and optimization.Although existing FS techniques can yield high-performance metrics for certain models,they do not invariably guarantee the extraction of the most critical or impactful features.Prior literature underscores the significance of equitable FS practices and has proposed diverse methodologies for the identification of appropriate features.However,the challenge of discerning the most relevant and influential features persists,particularly in the context of the exponential growth and heterogeneity of big data—a challenge that is increasingly salient in modern artificial intelligence(AI)applications.In response,this study introduces an innovative,automated statistical method termed Farea Similarity for Feature Selection(FSFS).The FSFS approach computes a similarity metric for each feature by benchmarking it against the record-wise mean,thereby finding feature dependencies and mitigating the influence of outliers that could potentially distort evaluation outcomes.Features are subsequently ranked according to their similarity scores,with the threshold established at the average similarity score.Notably,lower FSFS values indicate higher similarity and stronger data correlations,whereas higher values suggest lower similarity.The FSFS method is designed not only to yield reliable evaluation metrics but also to reduce data complexity without compromising model performance.Comparative analyses were performed against several established techniques,including Chi-squared(CS),Correlation Coefficient(CC),Genetic Algorithm(GA),Exhaustive Approach,Greedy Stepwise Approach,Gain Ratio,and Filtered Subset Eval,using a variety of datasets such as the Experimental Dataset,Breast Cancer Wisconsin(Original),KDD CUP 1999,NSL-KDD,UNSW-NB15,and Edge-IIoT.In the absence of the FSFS method,the highest classifier accuracies observed were 60.00%,95.13%,97.02%,98.17%,95.86%,and 94.62%for the respective datasets.When the FSFS technique was integrated with data normalization,encoding,balancing,and feature importance selection processes,accuracies improved to 100.00%,97.81%,98.63%,98.94%,94.27%,and 98.46%,respectively.The FSFS method,with a computational complexity of O(fn log n),demonstrates robust scalability and is well-suited for datasets of large size,ensuring efficient processing even when the number of features is substantial.By automatically eliminating outliers and redundant data,FSFS reduces computational overhead,resulting in faster training and improved model performance.Overall,the FSFS framework not only optimizes performance but also enhances the interpretability and explainability of data-driven models,thereby facilitating more trustworthy decision-making in AI applications.
基金supported by Ho Chi Minh City Open University,Vietnam under grant number E2024.02.1CD and Suan Sunandha Rajabhat University,Thailand.
文摘The Financial Technology(FinTech)sector has witnessed rapid growth,resulting in increasingly complex and high-volume digital transactions.Although this expansion improves efficiency and accessibility,it also introduces significant vulnerabilities,including fraud,money laundering,and market manipulation.Traditional anomaly detection techniques often fail to capture the relational and dynamic characteristics of financial data.Graph Neural Networks(GNNs),capable of modeling intricate interdependencies among entities,have emerged as a powerful framework for detecting subtle and sophisticated anomalies.However,the high-dimensionality and inherent noise of FinTech datasets demand robust feature selection strategies to improve model scalability,performance,and interpretability.This paper presents a comprehensive survey of GNN-based approaches for anomaly detection in FinTech,with an emphasis on the synergistic role of feature selection.We examine the theoretical foundations of GNNs,review state-of-the-art feature selection techniques,analyze their integration with GNNs,and categorize prevalent anomaly types in FinTech applications.In addition,we discuss practical implementation challenges,highlight representative case studies,and propose future research directions to advance the field of graph-based anomaly detection in financial systems.
文摘With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy.However,efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging.To address these issues,we propose Federated Learning with Client Selection and Adaptive Weighting(FedCW),a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks.FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts aggregation weights to optimize both data diversity and model convergence.Experimental results show that FedCW significantly outperforms existing FL algorithms such as FedAvg,FedProx,and SCAFFOLD,particularly in non-IID settings,achieving faster convergence,higher accuracy,and reduced communication overhead.These findings demonstrate that FedCW provides an effective solution for enhancing the performance of FL in heterogeneous,edge-based computing environments.
基金supported by the Major Science and Technology Programs in Henan Province(No.241100210100)Henan Provincial Science and Technology Research Project(No.252102211085,No.252102211105)+3 种基金Endogenous Security Cloud Network Convergence R&D Center(No.602431011PQ1)The Special Project for Research and Development in Key Areas of Guangdong Province(No.2021ZDZX1098)The Stabilization Support Program of Science,Technology and Innovation Commission of Shenzhen Municipality(No.20231128083944001)The Key scientific research projects of Henan higher education institutions(No.24A520042).
文摘Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%.
文摘Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics.
基金the National Natural Science Foundation of China(No.51974042)National Key Research and Development Program of China(No.2023YFC3009005).
文摘Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based on engineering properties to simulate the gradual collapse of the roof during longwall top coal caving(LTCC).A numerical model is established using the material point method(MPM)and the strain-softening damage constitutive model according to the structure of the physical model.Numerical simulations are conducted to analyze the LTCC process under different hard roofs for ground hydraulic fracturing.The results show that ground hydraulic fracturing releases the energy and stress of the target stratum,resulting in a substantial lag in the fracturing of the overburden before collapse occurs in the hydraulic fracturing stratum.Ground hydraulic fracturing of a low hard roof reduces the lag effect of hydraulic fractures,dissipates the energy consumed by the fracture of the hard roof,and reduces the abutment stress.Therefore,it is advisable to prioritize the selection of the lower hard roof as the target stratum.
文摘To lower the amylose content (AC) of the indica rice restorer line 057 with high AC, backcrosses were made respectively by using four indica varieties (R367, 91499, Yanhui 559, Hui 527) as low AC donor parents and 057 as the recurrent parent. A molecular marker (PCR-Acc Ⅰ) was used to identify the genotypes (GG, TT and GT) of the waxy (Wx) gene. Plants with GT genotype were selected and used as female parent and crossed with 057 to advance generation. The ACs of rice grains harvested from plants with different Wx genotypes were measured and compared to analyze the efficiency of marker-assisted selection. The ACs of the rice grain, harvested from the plants of Wx genotypes GG, GT and TT, were higher than 20%, in the range of 17.7-28.5%, and less than 18%, respectively. The PCR-Acc Ⅰ marker could be used for efficiently lowering the AC of 057 through backcrossing, and there were some influence of parental genetic background on the AC of rice grains with the same Wx genotype.
基金Funded by the Soft Science of Anhui Province(Grant NO.1302053004)
文摘More and more enterprises are outsourcing activities that are neither cost efficient if done in-house nor central to their businesses. Most of the studies in outsourcing decision making focus on vendor selection. However, little research has been done about location selection, which is also a critical step in offshore service outsourcing. The purpose of this paper is to offer a new method to deal with the destination selection problem in China. We employed the additive SE-DEA model to overcome the drawbacks of traditional DEA and SE-DEA methods, and calculated the relative efficiency of 20 service outsourcing model cities(excluding Xiamen). Based on two years of longitudinal study, we made a comparison of the 20 cities. Finally we classified the model cities by combining them with the service outsourcing ability dimension and also gave some selection suggestions and development suggestions for outsourcers' outsourcing service and the model cities, respectively.
文摘A multiobjective quality of service (QoS) routing algorithm was proposed and used as the QoS-aware path selection approach in differentiated services and multi-protocol label switching (DiffServ-MPLS) networks. It simultaneously optimizes multiple QoS objectives by a genetic algorithm in conjunction with concept of Pareto dominance. The simulation demonstrates that the proposed algorithm is capable of discovering a set of QoS-based near optimal paths within in a few iterations. In addition, the simulation results also show the scalability of the algorithm with increasing number of network nodes.
基金supported in part by the National Key Research and Development Program of China under Grant(No.2021YFB3300900)the NSFC Key Supported Project of the Major Research Plan under Grant(No.92267206)+2 种基金the National Natural Science Foundation of China under Grant(Nos.72201052,62032013,62173076)the Fundamental Research Funds for the Central Universities under Grant(No.N2204017)the Fundamental Research Funds for State Key Laboratory of Synthetical Automation for Process Industries under Grant(No.2013ZCX11).
文摘For data mining tasks on large-scale data,feature selection is a pivotal stage that plays an important role in removing redundant or irrelevant features while improving classifier performance.Traditional wrapper feature selection methodologies typically require extensive model training and evaluation,which cannot deliver desired outcomes within a reasonable computing time.In this paper,an innovative wrapper approach termed Contribution Tracking Feature Selection(CTFS)is proposed for feature selection of large-scale data,which can locate informative features without population-level evolution.In other words,fewer evaluations are needed for CTFS compared to other evolutionary methods.We initially introduce a refined sparse autoencoder to assess the prominence of each feature in the subsequent wrapper method.Subsequently,we utilize an enhanced wrapper feature selection technique that merges Mutual Information(MI)with individual feature contributions.Finally,a fine-tuning contribution tracking mechanism discerns informative features within the optimal feature subset,operating via a dominance accumulation mechanism.Experimental results for multiple classification performance metrics demonstrate that the proposed method effectively yields smaller feature subsets without degrading classification performance in an acceptable runtime compared to state-of-the-art algorithms across most large-scale benchmark datasets.
基金funded by the Ministry of Higher Education of Malaysia,grant number FRGS/1/2022/ICT02/UPSI/02/1.
文摘In recent years,feature selection(FS)optimization of high-dimensional gene expression data has become one of the most promising approaches for cancer prediction and classification.This work reviews FS and classification methods that utilize evolutionary algorithms(EAs)for gene expression profiles in cancer or medical applications based on research motivations,challenges,and recommendations.Relevant studies were retrieved from four major academic databases-IEEE,Scopus,Springer,and ScienceDirect-using the keywords‘cancer classification’,‘optimization’,‘FS’,and‘gene expression profile’.A total of 67 papers were finally selected with key advancements identified as follows:(1)The majority of papers(44.8%)focused on developing algorithms and models for FS and classification.(2)The second category encompassed studies on biomarker identification by EAs,including 20 papers(30%).(3)The third category comprised works that applied FS to cancer data for decision support system purposes,addressing high-dimensional data and the formulation of chromosome length.These studies accounted for 12%of the total number of studies.(4)The remaining three papers(4.5%)were reviews and surveys focusing on models and developments in prediction and classification optimization for cancer classification under current technical conditions.This review highlights the importance of optimizing FS in EAs to manage high-dimensional data effectively.Despite recent advancements,significant limitations remain:the dynamic formulation of chromosome length remains an underexplored area.Thus,further research is needed on dynamic-length chromosome techniques for more sophisticated biomarker gene selection techniques.The findings suggest that further advancements in dynamic chromosome length formulations and adaptive algorithms could enhance cancer classification accuracy and efficiency.
文摘The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more efficient and reliable intrusion detection systems(IDSs).However,the advent of larger IDS datasets has negatively impacted the performance and computational complexity of AI-based IDSs.Many researchers used data preprocessing techniques such as feature selection and normalization to overcome such issues.While most of these researchers reported the success of these preprocessing techniques on a shallow level,very few studies have been performed on their effects on a wider scale.Furthermore,the performance of an IDS model is subject to not only the utilized preprocessing techniques but also the dataset and the ML/DL algorithm used,which most of the existing studies give little emphasis on.Thus,this study provides an in-depth analysis of feature selection and normalization effects on IDS models built using three IDS datasets:NSL-KDD,UNSW-NB15,and CSE–CIC–IDS2018,and various AI algorithms.A wrapper-based approach,which tends to give superior performance,and min-max normalization methods were used for feature selection and normalization,respectively.Numerous IDS models were implemented using the full and feature-selected copies of the datasets with and without normalization.The models were evaluated using popular evaluation metrics in IDS modeling,intra-and inter-model comparisons were performed between models and with state-of-the-art works.Random forest(RF)models performed better on NSL-KDD and UNSW-NB15 datasets with accuracies of 99.86%and 96.01%,respectively,whereas artificial neural network(ANN)achieved the best accuracy of 95.43%on the CSE–CIC–IDS2018 dataset.The RF models also achieved an excellent performance compared to recent works.The results show that normalization and feature selection positively affect IDS modeling.Furthermore,while feature selection benefits simpler algorithms(such as RF),normalization is more useful for complex algorithms like ANNs and deep neural networks(DNNs),and algorithms such as Naive Bayes are unsuitable for IDS modeling.The study also found that the UNSW-NB15 and CSE–CIC–IDS2018 datasets are more complex and more suitable for building and evaluating modern-day IDS than the NSL-KDD dataset.Our findings suggest that prioritizing robust algorithms like RF,alongside complex models such as ANN and DNN,can significantly enhance IDS performance.These insights provide valuable guidance for managers to develop more effective security measures by focusing on high detection rates and low false alert rates.