An M=6.0 earthquake occurred on February 23, 2001 in the western Sichuan Province, China. The macro seismic epicenter situated in the high mountain-narrow valley region between Yajiang and Kangding counties. According...An M=6.0 earthquake occurred on February 23, 2001 in the western Sichuan Province, China. The macro seismic epicenter situated in the high mountain-narrow valley region between Yajiang and Kangding counties. According to field investigation in the region, the intensity of epicentral area reached VIII and the areas with intensity VIII, VII and VI are 180 km2, 1 472 km2 and 3 998 km2, respectively. The isoseismals are generally in elliptic shape with major axis trending near N-S direction. The earthquake destroyed many buildings and produced some phenomena of ground failure and mountainous disasters in the area with intensity VIII. This event may be resulted from long-term activities of the Litang fault and Yunongxi fault, two main faults in the western Sichuan. The movements between the main faults made the crust stress adjusted and concentrated, and finally the earthquake on a secondary fault in the block released a quite large energy.展开更多
Using the joint inversion method with the amplitude ratio of P-wave,SV-wave and SHwaves,this paper calculates the focal mechanisms of the aftershock sequence of the Yaoan earthquake with MS6. 0. According to the spati...Using the joint inversion method with the amplitude ratio of P-wave,SV-wave and SHwaves,this paper calculates the focal mechanisms of the aftershock sequence of the Yaoan earthquake with MS6. 0. According to the spatial distribution of earthquake sequence,the author analyzes the characteristics of the stress field and seismogenic fault. The result shows that:( 1) the seismogenic fault of the Yaoan earthquake is a vertical right-lateral strike-slip fault,striking NWW-SEE. The result is reliable and consistent with the nodal planes of the Harvard CMT solution and also in accord with the predominant direction of aftershocks.( 2) The predominant direction of principal compressive stress,NWW-SEE is consistent with the regional tectonic stress,and some aftershocks are different from the main shock. The stress field of the main shock is controlled by the regional tectonic stress field,indicating the diversity and complexity in the seismic area.( 3) By comprehensively analyzing the distribution of the earthquake sequence,focal mechanism and fault structure in the seismic area,it is found that the Maweijing fault is the seismogenic fault of the Yaoan earthquake.展开更多
The characteristics of seismogenic structures are an important basis for delineating the potential seismic source areas and determining the annual occurrence rate of earthquakes. The potential seismic source area does...The characteristics of seismogenic structures are an important basis for delineating the potential seismic source areas and determining the annual occurrence rate of earthquakes. The potential seismic source area does not only have the intension that “this area has the possibility for destructive earthquakes to occur in the future" but also means that earthquakes of high magnitude interval have the characteristics of similar recurrence. When determining the seismic activity parameters of a statistical unit, some active tectonic blocks in the unit may have different background earthquakes. In order to better reflect the heterogeneity in space of seismic activities, it is necessary to divide the potential seismic source areas into three orders. By analyzing the recurrence characteristics of earthquakes of high magnitude interval in the potential source area and calculating the occurrence probability of earthquakes of high magnitude interval in the potential seismic source area in the time window for prediction, the average annual occurrence rate of earthquakes can be obtained by the method of probability equivalent conversion in the time window for prediction. This would be helpful for considering the recurrence characteristics of strong earthquakes in potential source areas within the framework of seismic risk analysis of China. Besides, the insufficient frequency of characteristic earthquakes of the next high magnitude interval in the potential source area and the heterogeneity of strong earthquakes on seismogenic structures are analyzed to see their application in seismic risk analysis.展开更多
We constructed a more complete earthquake catalog in the 2021 Yangbi M6.4 focal area by re-scanning the continuous waveforms integrated with deep learning and template matching techniques,to explore the seismogenic st...We constructed a more complete earthquake catalog in the 2021 Yangbi M6.4 focal area by re-scanning the continuous waveforms integrated with deep learning and template matching techniques,to explore the seismogenic structures of the Yangbi mainshock and its nucleation process.The new catalog has three times the number of earthquakes than the CENC catalog,and the magnitude completeness has dropped from 1.1 to 0.5.The distribution of earthquakes indicates a broom-shaped structure consisting of several oblique secondary faults and a strike-slip main fault which strikes to 315°with 80°dipping to NE.The earthquakes extend along the fault strike about 27 km in width and 2-13 km at depth and have noticeable variations on seismicity in the mainshock’s north and south.Compared with the north,the south has denser and higher magnitude aftershocks and also has a seismic gap probably weakened by the fluid at the depth range of about 5-6 km.The foreshocks were mainly active in the 8-kilometer-long fault zone south of the mainshock,which show a steady drop in b-values over time and a migration pattern toward the epicenter of two steep jumps,stagnation,and then acceleration which finally triggered the mainshock.While in the north,seldom foreshock occurred,and the aftershocks were delayed triggered 3 hours after the mainshock,and sparsely scattered shallow at depth and small in magnitude.To summarize,the northern part of the Yangbi seismogenic fault is thought to be relatively locked,whereas the southern part has a weakening zone and promotes pre-slip.The nucleation mechanism of the mainshock and its onset at the junction of the locked and pre-slip zones may be a combination of pre-slip and cascade triggering.展开更多
The Tan-Lu Fault Zone is a large NNE-trending fault zone that has a substantial effect on the development of eastern China and its earthquake disaster prevention efforts. Aiming at the azimuthally anisotropic structur...The Tan-Lu Fault Zone is a large NNE-trending fault zone that has a substantial effect on the development of eastern China and its earthquake disaster prevention efforts. Aiming at the azimuthally anisotropic structure in the upper crust and seismogenic tectonics in the Hefei segment of this fault, we collected phase velocity dispersion data of fundamental mode Rayleigh waves from ambient noise cross-correlation functions of ~400 temporal seismographs in an area of approximately 80 × 70 km along the fault zone. The period band of the dispersion data was ~0.5–10 s. We inverted for the upper crustal three-dimensional(3-D) shear velocity model with azimuthal anisotropy from the surface to 10 km depth by using a 3-D direct azimuthal anisotropy inversion method. The inversion result shows the spatial distribution characteristics of the tectonic units in the upper crust. Additionally, the deformation of the Tan-Lu Fault Zone and its conjugated fault systems could be inferred from the anisotropy model. In particular, the faults that have remained active from the early and middle Pleistocene control the anisotropic characteristics of the upper crustal structure in this area. The direction of fast axes near the fault zone area in the upper crust is consistent with the strike of the faults, whereas for the region far away from the fault zone, the direction of fast axes is consistent with the direction of the regional principal stress caused by plate movement. Combined with the azimuthal anisotropy models in the deep crust and uppermost mantle from the surface wave and Pn wave, the different anisotropic patterns caused by the Tan-Lu Fault Zone and its conjugated fault system nearby are shown in the upper and lower crust. Furthermore,by using the double-difference method, we relocated the Lujiang earthquake series, which contained 32 earthquakes with a depth shallower than 10 km. Both the Vs model and earthquake relocation results indicate that earthquakes mostly occurred in the vicinity of structural boundaries with fractured media, with high-level development of cracks and small-scale faults jammed between more rigid areas.展开更多
On April 3,2024,an M 7.3 earthquake occurred in the offshore area of Hualien County,Taiwan,China.The seismogenic structure at the epicentral location was highly complex,and studying this earthquake is paramount for un...On April 3,2024,an M 7.3 earthquake occurred in the offshore area of Hualien County,Taiwan,China.The seismogenic structure at the epicentral location was highly complex,and studying this earthquake is paramount for understanding regional fault activity.In this study,we employed ascending and descending orbit Sentinel-1 Synthetic Aperture Radar(SAR)data and utilized differential interferometry(InSAR)technique to obtain the co-seismic deformation field of this event.The line-of-sight deformation field revealed that the main deformation caused by this earthquake was predominantly uplift,with maximum uplift values of approximately 38.8 cm and 46.1 cm for the ascending and descending orbits,respectively.By integrating the three-dimensional GNSS coseismic deformation field,we identified the seismogenic fault located in the offshore thrust zone east of Hualien,trending towards the northwest.The fault geometry parameters,obtained through the inversion of an elastic half-space homogeneous model,indicated an optimal fault strike of 196°,a dip angle of 30.9°,and an average strike-slip of 0.4 m and dip-slip of-2.6 m.This suggests that the predominant motion along the seismogenic fault is thrusting.The distribution of post-seismic Coulomb stress changes revealed that aftershocks mainly occurred in stress-loaded regions.However,stress loading was observed along the northern segment of the Longitudinal Valley Fault,with fewer aftershocks.This highlights the importance of closely monitoring the seismic hazard associated with this fault segment.展开更多
NLLoc is a nonlinear search positioning method.In this study,we use simulated arrival time data to quantitatively evaluate the NLLoc method from three aspects:arrival time picking accuracy,station distribution,and vel...NLLoc is a nonlinear search positioning method.In this study,we use simulated arrival time data to quantitatively evaluate the NLLoc method from three aspects:arrival time picking accuracy,station distribution,and velocity model.The results show that the NLLoc method exhibits high positioning accuracy and stability in terms of arrival time picking accuracy and station distribution;however,it is sensitive to the velocity model.The positioning accuracy is higher when the velocity model is smaller than the true velocity.We combined absolute and relative positioning methods.First,we use the NLLoc method for absolute positioning of seismic data and then the double difference positioning method for relative positioning to obtain a more accurate relocation result.Furthermore,we used the combined method to locate the earthquake sequence after collecting dense seismic array data on the Luanzhou M_(S)4.3 earthquake that occurred on April 16,2021,in Hebei Province.By fitting the fault plane with the relocated earthquake sequences,the results show that the strike and dip angles of the seismogenic fault of the Luanzhou M_(S)4.3 earthquake are 208.5°and 85.6°,respectively.This indicates a high-dip angle fault with North-North-East strike and North-West dip directions.Furthermore,we infer that the seismogenic fault of the Luanzhou M_(S)4.3 earthquake is the Lulong fault.展开更多
At 20:08,on September 18,2024,an M4.7 earthquake occurred along the Tanlu fault zone in the Feidong County of Hefei,Anhui Province.This earthquake is the largest event in the modern history of Hefei,which caused subst...At 20:08,on September 18,2024,an M4.7 earthquake occurred along the Tanlu fault zone in the Feidong County of Hefei,Anhui Province.This earthquake is the largest event in the modern history of Hefei,which caused substantial social impact.To reveal the seismogenic structure of the M4.7 Feidong earthquake sequence and assess seismic risks,we use data from both the permanent seismic network and a temporary dense nodal array deployed in the epicentral region prior to the mainshock for:(1)accurate location of the earthquake sequence and determination of the focal mechanisms;(2)obtaining the spatiotemporal distribution,b-value,and half-day occurrence frequency of the earthquake sequence.The Sentinel-1 satellite data are used to analyze the coseismic displacement.Additionally,velocity models from regional tomography and local high-resolution 2D active-and passive-source surveys across the Tanlu fault zone in the epicentral area are also used to reveal the detailed geometry of the seismogenic fault.The results indicate:(1)the M4.7 Feidong earthquake sequence is concentrated around 10.5 km in depth along a NW-dipping,subvertical fault which trends NE and is approximately 5 km in length;the focal mechanism solution also reveals that the fault hosting the mainshock is a subvertical strike-slip fault,driven by the regional compressional stress in ENE-WSW;the coseismic horizontal displacement on the surface caused by the M4.7 mainshock has a maximum value close to 1 mm;(2)the regional velocity model shows significant lateral variation in v_(S) in the source region,with the mainshock occurring in the area with higher velocity;high-resolution P-wave velocity structures obtained by full waveform inversion from active sources,and S-wave velocity structures from passive-source ambient noise tomography indicate that the mainshock occurred along the boundary between high-and low-velocity bodies,and the seismogenic fault dips NW;the deep seismic reflection profiling shows that the mainshock occurred within the Jurassic strata;(3)based on these results,we suggest the seismogenic fault for the M4.7 Feidong earthquake is either the Zhuding-Shimenshan fault,one of the major faults in the Tanlu fault zone,or a hidden fault to the east;the intersection of the NE-trending Tanlu fault zone and the WNW-trending Feizhong fault,along with significant velocity variations,likely create local stress concentrations which could have triggered the M4.7 Feidong earthquake sequence;(4)the strong aftershocks following the M4.7 Feidong mainshock did not further extend the fault rupture zone;the active period of the Zhuding-Shimenshan fault was the late Early Pleistocene to Middle Pleistocene,and the imaging results indicate that this fault does not cut through the shallow Feidong depression.In conjunction with the small coseismic rupture area,it is inferred that the probability of surface-rupturing earthquakes in the future is relatively low.展开更多
A three-dimensional local-scale P-velocity model down to 25 km depth around the main shock epicenter region was constructed using 83821 event-to-receiver seismic rays from 5856 aftershocks recorded by a newly deployed...A three-dimensional local-scale P-velocity model down to 25 km depth around the main shock epicenter region was constructed using 83821 event-to-receiver seismic rays from 5856 aftershocks recorded by a newly deployed temporary seismic network. Checkerboard tests show that our tomographic model has lateral and vertical resolution of -2 km. The high-resolution P-velocity model revealed interesting structures in the seismogenic layer: (1) The Guanxian-Anxian fault, Yingxiu-Beichuan fault and Wenchuan-Maoxian fault of the Longmen Shan fault zone are well delineated by sharp upper crustal velocity changes; (2) The Pengguan massif has generally higher velocity than its surrounding areas, and may extend down to at least -10 km from the surface; (3) A sharp lateral velocity variation beneath the Wenchuan-Maoxian fault may indicate that the Pengguan massif's western boundary and/or the Wenchuan-Maoxian fault is vertical, and the hypocenter of the Wenchuan earthquake possibly located at the conjunction point of the NW dipping Yingxiu-Beichuan and Guanxian-Anxian faults, and vertical Wenchuan-Maoxian fault; (4) Vicinity along the Yingxiu- Beichuan fault is characterized by very low velocity and low seismicity at shallow depths, possibly due to high content of porosity and fractures; (5) Two blocks of low-velocity anomaly are respectively imaged in the hanging wall and foot wall of the Guanxian-Anxian fault with a -7 km offset with -5 km vertical component.展开更多
The Qian-Gorlos earthquake, which occurred in the Songliao basin in Jilin Province in 1119 AD, was the largest earthquake to occur in NE China before the 1975 Haicheng earthquake. Based on historical records and surfa...The Qian-Gorlos earthquake, which occurred in the Songliao basin in Jilin Province in 1119 AD, was the largest earthquake to occur in NE China before the 1975 Haicheng earthquake. Based on historical records and surface geological investigations, it has been suggested previously that the earthquake epicenter was in the Longkeng area. However, other workers have considered the epicenter to be in the Halamaodu area based on the landslides and faults found in this region. No seismogenic structure has yet been found in either of these two regions.We tried to detect active faults in the urban areas of Songyuan City, where the historical earthquake was probably located. One of the aims of this work was to clarify the seismogenic structure so that the seismic risk in the city could be more accurately evaluated. The area was investigated and analyzed using information from remote sensing and topographic surveys, seismic data from petroleum exploration, shallow seismic profiles, exploratory geological trenches on fault outcrops, and borehole data. The geophysical data did not reveal any evidence of faults cutting through Cretaceous or later strata under the Longkeng scarp, which has been suggested to be structural evidence of the Qian-Gorlos earthquake. The continuous fault surfaces on the back edge of terraces in theHalamaodu area stretch for [3.5 km and were probably formed by tectonic activity. However, results from shallow seismic profiles showed that the faults did not extend downward, with the corresponding deep structure being identified as a gentle kink band. A new reverse fault was found to the west of the two suggested epicenters, which presented as a curvilinear fault extending to the west, and was formed by two groups of NE- and NW-trending faults intersecting the Gudian fault. Three-dimensional seismic and shallow seismic data from petroleum exploration revealed its distinct spatial distribution and showed that the fault may cut through Late Quaternary strata. Exploration boreholes and later geomorphological studies provided further proof of this. Based on these results and analysis,the Gudian fault was confirmed as having been an active fault since the Late Quaternary, with the possibility of earthquakes of magnitude [7 in the future. The QianGorlos earthquake was most probably the result of breakage on one or two sections of this 66-km-long fault.展开更多
On January 10, 1998, an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake has been the most significant event occurred in the northern...On January 10, 1998, an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake has been the most significant event occurred in the northern China in the recent years. Historical seismicity in the Zhangbei-Shangyi region was very low. In the epicentral area no active fault capable of generating a moderate earthquake like this event was found. The earthquake locations of the main shock and its aftershocks of the Zhangbei-Shangyi earthquake sequence given by several agencies and authors were diverse and the resulted hypocentral distribution revealed no any dominant horizontal lineation. To study the seismogenic structure of the Zhangbei-Shangyi earthquake, in this paper the main shock and its aftershocks with ML3.0 of the Zhangbei-Shangyi earthquake sequence were relocated using the master event relative relocation algorithm. The relocated results show that the epicentral location of the main shock was 41.145癗, 114.462癊, which was located 4 km to the NE of the macro-epicenter of the main shock. The relocated focal depth of the main shock was 15 km. The hypocenters of the aftershocks distributed in a nearly vertical N20E-striking plane and its vicinity. The relocated results of the Zhangbei-Shangyi earthquake sequence clearly indicated that the seismogenic structure of this event was a nearly N-S- to NNE-SSW-striking fault with right-lateral and reverse slip, and that the occurrence of this event was associated with the horizontal and ENE-oriented compressive tectonic stress, which was compatible with the tectonic stress field in the northern China.展开更多
The Tohoku megathrust earthquake, which occurred on March 11, 2011 and had an epicenter that was 70 km east of Tohoku, Japan, resulted in an estimated ten′s of billions of dollars in damage and a death toll of more t...The Tohoku megathrust earthquake, which occurred on March 11, 2011 and had an epicenter that was 70 km east of Tohoku, Japan, resulted in an estimated ten′s of billions of dollars in damage and a death toll of more than 15 thousand lives, yet few studies have documented key spatio-temporal seismogenic characteristics. Specifically, the temporal decay of aftershock activity, the number of strong aftershocks (with magnitudes greater than or equal to 7.0), the magnitude of the greatest aftershock, and area of possible aftershocks. Forecasted results from this study are based on Gutenberg-Richter’s relation, Bath’s law, Omori’s law, and Well’s relation of rupture scale utilizing the magnitude and statistical parameters of earthquakes in USA and China (Landers, Northridge, Hector Mine, San Simeon and Wenchuan earthquakes). The number of strong aftershocks, the parameters of Gutenberg-Richter’s relation, and the modified form of Omori’s law are confirmed based on the aftershock sequence data from the Mw9.0 Tohoku earthquake. Moreover, for a large earthquake, the seismogenic structure could be a fault, a fault system, or an intersection of several faults. The seismogenic structure of the earthquake suggests that the event occurred on a thrust fault near the Japan trench within the overriding plate that subsequently triggered three or more active faults producing large aftershocks.展开更多
The 1605 M7½ Earthquake is the only earthquake in the history of China that has caused large-scale land subsidence into the sea,with the total area of land subsidence exceeding 100 km2.The disaster has led to the...The 1605 M7½ Earthquake is the only earthquake in the history of China that has caused large-scale land subsidence into the sea,with the total area of land subsidence exceeding 100 km2.The disaster has led to the sinking of 72 villages.There is still no clear understanding of the source seismogenic fault of this earthquake.In this work,we conducted a detailed study of the middle segment of the Maniao-Puqian fault(MPF),which is the epicenter area,through geomorphological survey,data collection,shallow seismic exploration,cross-section drilling,and chronological dating.The results showed that the middle segment of the MPF zone is composed of three nearly parallel normal faults with a dextral strike-slip:“Macun-Luodou fault(F2-1),Haixiu-Dongyuan fault(F2-2),and ChangliuZhuxihe fault(F2-3)”.And F2-2 is composed of two secondary faults,namely F2-2′and F2-2″,with a flower-shaped structure buried under the ground.It is distributed nearly east-west,dipping to the north and has experienced at least five stages of activities since the Miocene.The vertical activity rates of F2-2′and F2-2″are~2.32 and~2.5 mm/a,since the Holocene,respectively.There were eight cycles of transgression and regression since the Miocene.The fault activity resulted in the thickening of the Holocene strata with a slight dip to the south,on the hanging wall,showing V-shaped characteristics.The MPF is likely the source seismogenic fault of the M7½ earthquake that hit Qiongshan in 1605.展开更多
On October 12th,2019,a MS5.2 earthquake occurred in Beiliu City,Guangxi Zhuang Autonomous Region,China,with a focal depth of 10 km. The epicenter is located in the junction of Guangxi and Guangdong where the moderate-...On October 12th,2019,a MS5.2 earthquake occurred in Beiliu City,Guangxi Zhuang Autonomous Region,China,with a focal depth of 10 km. The epicenter is located in the junction of Guangxi and Guangdong where the moderate-strong earthquakes are relatively active. The highest intensity of this earthquake is estimated up to Ⅵ besides the isoseismic line showed an ellipse shape with a long axis trend in the NW direction.The aftershocks are not evenly distributed. The parameters of the focal mechanism solutions are: strike 346°,dip 85°,rake 19° for the nodal planeⅠ,and strike 254°,dip 71°,rake 175° for the nodal planeⅡ. The type of the coseismic fault is strikeslip. After analyzing these results above and the active faults near the epicenter,we get that the nodal planeⅠ is interpreted as the coseismic rupture plane and the BamaBobai Fault is a seismogenic structure of MS5.2 Beiliu earthquake.展开更多
Detailed examination of historical data of earthquakes and field investigations of loess landslide caused by the earthquake and tracing of active faults in Lanzhou area indicate that the Yijitanpu town, one of six tow...Detailed examination of historical data of earthquakes and field investigations of loess landslide caused by the earthquake and tracing of active faults in Lanzhou area indicate that the Yijitanpu town, one of six towns of Jincheng city, was devastated by the 1125 Lanzhou earthquake. The citly is now located in the Vinylon Factory south of Hekou (River Mouth) in the Xigu district of Lanzhou city. We delermined that the six old towns mentioned in historical records lie in an area stretching from the south of Xigu district to Hekou in Lanzhou. This is consistent with the distribution of loess landslides caused by the earthquake, the extension of Holocene active faults, and the distribution of traces of the seismic rupture zone. A comprehensive analysis shows that the seismogenic structure for the 1125 Lanzhou M 7.0 earthquake should be the Xianshuigou fault segment at the western termination of the north-border active fault zone of the Maxianshan Mountains which are located in south of Lanzhou city with the distance of only 4 km.展开更多
The Jiaochang arcuate structure is one of the numerous arcuate structural belts in Sichuan. The present paper gives a further argument about the characteristics of that arcuate structure and the new activity of the So...The Jiaochang arcuate structure is one of the numerous arcuate structural belts in Sichuan. The present paper gives a further argument about the characteristics of that arcuate structure and the new activity of the Songpinggou fault and affirms that the Songpinggou fault is an active fault in the Holocene epoch. The Diexi M 7.5 earthquake took place in 1933 on the west wing of that arcuate structure, near the apex of the arc. Many authors have given quite different opinions about the genetic structure of that earthquake. The authors have made on the spot investigations time and again over recent years. Besides this, the authors have also further studied the shape of intensity contour lines, the distribution characteristics of ground surface seismic hazards, the left lateral dislocation of buildings along the Songpinggou fault, the NW trending ground fissures that developed on the ground surface after earthquake, and so on. On this basis, it is still considered that the seismogenic fault of the 1933 Diexi M 7.5 earthquake was the Songpinggou fault on the west wing of the Jiaochang arcuate structure.展开更多
In 1585,a MS5 3/4 earthquake occurred in the south of Chaoxian county,Anhui Province. The parameters of this earthquake were reported differently in various versions of earthquake catalogues. According to detailed tex...In 1585,a MS5 3/4 earthquake occurred in the south of Chaoxian county,Anhui Province. The parameters of this earthquake were reported differently in various versions of earthquake catalogues. According to detailed textual research on the historic records of this earthquake,the epicenter location of the earthquake was further confirmed by means of seismo-geological field investigations in the Chaohu-Tongling region along the western Yangtze River valleys. Shallow seismic prospecting and drilling methods were applied in studying the buried fault. The possibility of the existence of seismogenic faults and fault activity in the western Yangtze River area were analyzed in depth,and the causative tectonic background of the 1585 MS5 3/4 south Chaoxian earthquake was studied. The results of this study indicate that the Yanjiaqiao-Fengshahu fault,which was active in the early to mid-Pleistocene,is possibly the causative structure of this earthquake. To identifying the seismogenic structure of the 1585 south Chaoxian earthquake will help gain more knowledge about the tectonic background of moderate and small earthquake activity in Eastern China.展开更多
We have studied the characteristics of the active faults and seismicity in the vicinity of Urumqi city, the capital of Xinjiang Autonomous Region, China, and have proposed a seismogenic model for the assessment of ear...We have studied the characteristics of the active faults and seismicity in the vicinity of Urumqi city, the capital of Xinjiang Autonomous Region, China, and have proposed a seismogenic model for the assessment of earthquake hazard in this area. Our work is based on an integrated analysis of data from investigations of active faults at the surface, deep seismic reflection soundings, seismic profiles from petroleum exploration, observations of temporal seismic stations, and the precise location of small earthquakes. We have made a comparative study of typical seismogenic structures in the frontal area of the North Tianshan Mountains, where Urumqi city is situated, and have revealed the primary features of the thrust-fold- nappe structure there. We suggest that Urumqi city is comprised two zones of seismotectonics which are inter- preted as thrust-nappe structures. The first is the thrust nappe of the North Tianshan Mountains in the west, con- sisting of the lower (root) thrust fault, middle detachment, and upper fold-uplift at the front. Faults active in the Pleistocene are present in the lower and upper parts of this structure, and the detachment in the middle spreads toward the north. In the future, M7 earthquakes may occur at the root thrust fault, while the seismic risk of frontal fold-uplift at the front will not exceed M6.5. The second structure is the western flank of the arc-like Bogda nappe in the east, which is also comprised a root thrust fault, middle detachment, and upper fold-uplift at the front, of which the nappe stretches toward the north; several active faults are also developed in it. The fault active in the Holocene is called the South Fukang fault. It is not in the urban area of Urumqi city. The other three faults are located in the urban area and were active in the late Pleistocene. In these cases, this section of the nappe structure near the city has an earthquake risk of M6.5-7, An earthquake Ms6.6, 60 km east to Urumqi city occurred along the structure in 1965.展开更多
On April 20 th,2013,an earthquake of magnitude MW 6.6 occurred at Lushan of Sichuan on the southern segment of the Longmenshan fault zone,with no typical coseismic surface rupture.This work plotted an isoseismal map o...On April 20 th,2013,an earthquake of magnitude MW 6.6 occurred at Lushan of Sichuan on the southern segment of the Longmenshan fault zone,with no typical coseismic surface rupture.This work plotted an isoseismal map of the earthquake after repositioning over 400 post–earthquake macro–damage survey points from peak ground acceleration(PGA)data recorded by the Sichuan Digital Strong Earthquake Network.This map indicates that the Lushan earthquake has a damage intensity of IX on the Liedu scale,and that the meizoseismal area displays an oblate ellipsoid shape,with its longitudinal axis in the NE direction.No obvious directivity was detected.Furthermore,the repositioning results of 3323 early aftershocks,seismic reflection profiles and focal mechanism solutions suggests that the major seismogenic structure of the earthquake was the Dayi Fault,which partly defines the eastern Mengshan Mountain.This earthquake resulted from the thrusting of the Dayi Fault,and caused shortening of the southern segment of the Longmenshan in the NW–SE direction.Coseismal rupture was also produced in the deep of the Xinkaidian Fault.Based on the above seismogenic model and the presentation of coseismic surface deformation,it is speculated that there is a risk of more major earthquakes occurring in this region.展开更多
Ruichang-Yangxin earthquake is another moderate earthquake in Yangxin-Jiujiang area since 2005 Jiujiang-Ruichang M5.7 earthquake. In order to more understand the seismic activities in this area, we study the moment te...Ruichang-Yangxin earthquake is another moderate earthquake in Yangxin-Jiujiang area since 2005 Jiujiang-Ruichang M5.7 earthquake. In order to more understand the seismic activities in this area, we study the moment tensor solution and the seismogenic structure of the Ruichang-Yangxin earthquake. Precise earthquake relocation shows that the mainshock occurred on the southwestern part of the NE-trending fault and aftershocks are distributed not only along the NE-trending fault but also along its conjugated NW-trending fault. By comprehensive analysis on the earthquake distribution, characteristics of isoseismal curve, focal mechanism, and regional structure characteristics, it is inferred that this earthquake is caused by the NE-trending Tanlu fault. In addition, it has close relationship with the conjugated NW-trending fault as well. Many researches have shown that the junction area is the earthquake-prone area, and should be paid more attention to. And our study also proves this viewpoint.展开更多
文摘An M=6.0 earthquake occurred on February 23, 2001 in the western Sichuan Province, China. The macro seismic epicenter situated in the high mountain-narrow valley region between Yajiang and Kangding counties. According to field investigation in the region, the intensity of epicentral area reached VIII and the areas with intensity VIII, VII and VI are 180 km2, 1 472 km2 and 3 998 km2, respectively. The isoseismals are generally in elliptic shape with major axis trending near N-S direction. The earthquake destroyed many buildings and produced some phenomena of ground failure and mountainous disasters in the area with intensity VIII. This event may be resulted from long-term activities of the Litang fault and Yunongxi fault, two main faults in the western Sichuan. The movements between the main faults made the crust stress adjusted and concentrated, and finally the earthquake on a secondary fault in the block released a quite large energy.
文摘Using the joint inversion method with the amplitude ratio of P-wave,SV-wave and SHwaves,this paper calculates the focal mechanisms of the aftershock sequence of the Yaoan earthquake with MS6. 0. According to the spatial distribution of earthquake sequence,the author analyzes the characteristics of the stress field and seismogenic fault. The result shows that:( 1) the seismogenic fault of the Yaoan earthquake is a vertical right-lateral strike-slip fault,striking NWW-SEE. The result is reliable and consistent with the nodal planes of the Harvard CMT solution and also in accord with the predominant direction of aftershocks.( 2) The predominant direction of principal compressive stress,NWW-SEE is consistent with the regional tectonic stress,and some aftershocks are different from the main shock. The stress field of the main shock is controlled by the regional tectonic stress field,indicating the diversity and complexity in the seismic area.( 3) By comprehensively analyzing the distribution of the earthquake sequence,focal mechanism and fault structure in the seismic area,it is found that the Maweijing fault is the seismogenic fault of the Yaoan earthquake.
文摘The characteristics of seismogenic structures are an important basis for delineating the potential seismic source areas and determining the annual occurrence rate of earthquakes. The potential seismic source area does not only have the intension that “this area has the possibility for destructive earthquakes to occur in the future" but also means that earthquakes of high magnitude interval have the characteristics of similar recurrence. When determining the seismic activity parameters of a statistical unit, some active tectonic blocks in the unit may have different background earthquakes. In order to better reflect the heterogeneity in space of seismic activities, it is necessary to divide the potential seismic source areas into three orders. By analyzing the recurrence characteristics of earthquakes of high magnitude interval in the potential source area and calculating the occurrence probability of earthquakes of high magnitude interval in the potential seismic source area in the time window for prediction, the average annual occurrence rate of earthquakes can be obtained by the method of probability equivalent conversion in the time window for prediction. This would be helpful for considering the recurrence characteristics of strong earthquakes in potential source areas within the framework of seismic risk analysis of China. Besides, the insufficient frequency of characteristic earthquakes of the next high magnitude interval in the potential source area and the heterogeneity of strong earthquakes on seismogenic structures are analyzed to see their application in seismic risk analysis.
基金supported by the National Natural Science Foundation of China(Grant Nos.41574050,41674058)the Project of Basic Scientific Research Foundation of Institute of Earthquake Forecasting,China Earthquake Administration(Grant Nos.2020IEF0602,2020IEF0504)the support of Academician Yong CHEN Workstation of Yunnan Province(Grant No.2014IC007)。
文摘We constructed a more complete earthquake catalog in the 2021 Yangbi M6.4 focal area by re-scanning the continuous waveforms integrated with deep learning and template matching techniques,to explore the seismogenic structures of the Yangbi mainshock and its nucleation process.The new catalog has three times the number of earthquakes than the CENC catalog,and the magnitude completeness has dropped from 1.1 to 0.5.The distribution of earthquakes indicates a broom-shaped structure consisting of several oblique secondary faults and a strike-slip main fault which strikes to 315°with 80°dipping to NE.The earthquakes extend along the fault strike about 27 km in width and 2-13 km at depth and have noticeable variations on seismicity in the mainshock’s north and south.Compared with the north,the south has denser and higher magnitude aftershocks and also has a seismic gap probably weakened by the fluid at the depth range of about 5-6 km.The foreshocks were mainly active in the 8-kilometer-long fault zone south of the mainshock,which show a steady drop in b-values over time and a migration pattern toward the epicenter of two steep jumps,stagnation,and then acceleration which finally triggered the mainshock.While in the north,seldom foreshock occurred,and the aftershocks were delayed triggered 3 hours after the mainshock,and sparsely scattered shallow at depth and small in magnitude.To summarize,the northern part of the Yangbi seismogenic fault is thought to be relatively locked,whereas the southern part has a weakening zone and promotes pre-slip.The nucleation mechanism of the mainshock and its onset at the junction of the locked and pre-slip zones may be a combination of pre-slip and cascade triggering.
基金financially supported by the National Key Research and Development Program of China (2022YFC3005600)the Foundation of the Anhui Educational Commission (2023AH051198)+1 种基金the National Natural Science Foundation of China (42125401 and 42104063)the Joint Open Fund of Mengcheng National Geophysical Observatory (MENGO-202201)。
文摘The Tan-Lu Fault Zone is a large NNE-trending fault zone that has a substantial effect on the development of eastern China and its earthquake disaster prevention efforts. Aiming at the azimuthally anisotropic structure in the upper crust and seismogenic tectonics in the Hefei segment of this fault, we collected phase velocity dispersion data of fundamental mode Rayleigh waves from ambient noise cross-correlation functions of ~400 temporal seismographs in an area of approximately 80 × 70 km along the fault zone. The period band of the dispersion data was ~0.5–10 s. We inverted for the upper crustal three-dimensional(3-D) shear velocity model with azimuthal anisotropy from the surface to 10 km depth by using a 3-D direct azimuthal anisotropy inversion method. The inversion result shows the spatial distribution characteristics of the tectonic units in the upper crust. Additionally, the deformation of the Tan-Lu Fault Zone and its conjugated fault systems could be inferred from the anisotropy model. In particular, the faults that have remained active from the early and middle Pleistocene control the anisotropic characteristics of the upper crustal structure in this area. The direction of fast axes near the fault zone area in the upper crust is consistent with the strike of the faults, whereas for the region far away from the fault zone, the direction of fast axes is consistent with the direction of the regional principal stress caused by plate movement. Combined with the azimuthal anisotropy models in the deep crust and uppermost mantle from the surface wave and Pn wave, the different anisotropic patterns caused by the Tan-Lu Fault Zone and its conjugated fault system nearby are shown in the upper and lower crust. Furthermore,by using the double-difference method, we relocated the Lujiang earthquake series, which contained 32 earthquakes with a depth shallower than 10 km. Both the Vs model and earthquake relocation results indicate that earthquakes mostly occurred in the vicinity of structural boundaries with fractured media, with high-level development of cracks and small-scale faults jammed between more rigid areas.
基金supported by Shaanxi Province Natural Science Foundation Research Program[Grant number 2023JC-QN-0296]。
文摘On April 3,2024,an M 7.3 earthquake occurred in the offshore area of Hualien County,Taiwan,China.The seismogenic structure at the epicentral location was highly complex,and studying this earthquake is paramount for understanding regional fault activity.In this study,we employed ascending and descending orbit Sentinel-1 Synthetic Aperture Radar(SAR)data and utilized differential interferometry(InSAR)technique to obtain the co-seismic deformation field of this event.The line-of-sight deformation field revealed that the main deformation caused by this earthquake was predominantly uplift,with maximum uplift values of approximately 38.8 cm and 46.1 cm for the ascending and descending orbits,respectively.By integrating the three-dimensional GNSS coseismic deformation field,we identified the seismogenic fault located in the offshore thrust zone east of Hualien,trending towards the northwest.The fault geometry parameters,obtained through the inversion of an elastic half-space homogeneous model,indicated an optimal fault strike of 196°,a dip angle of 30.9°,and an average strike-slip of 0.4 m and dip-slip of-2.6 m.This suggests that the predominant motion along the seismogenic fault is thrusting.The distribution of post-seismic Coulomb stress changes revealed that aftershocks mainly occurred in stress-loaded regions.However,stress loading was observed along the northern segment of the Longitudinal Valley Fault,with fewer aftershocks.This highlights the importance of closely monitoring the seismic hazard associated with this fault segment.
基金Supported by the Foundation:This research project is jointly supported by Hebei Provincial Science and Technology Program(No.22375406D)The Earthquake Science and Technology Program of Hebei Province(No.DZ2023120500009,DZ2024120500001).
文摘NLLoc is a nonlinear search positioning method.In this study,we use simulated arrival time data to quantitatively evaluate the NLLoc method from three aspects:arrival time picking accuracy,station distribution,and velocity model.The results show that the NLLoc method exhibits high positioning accuracy and stability in terms of arrival time picking accuracy and station distribution;however,it is sensitive to the velocity model.The positioning accuracy is higher when the velocity model is smaller than the true velocity.We combined absolute and relative positioning methods.First,we use the NLLoc method for absolute positioning of seismic data and then the double difference positioning method for relative positioning to obtain a more accurate relocation result.Furthermore,we used the combined method to locate the earthquake sequence after collecting dense seismic array data on the Luanzhou M_(S)4.3 earthquake that occurred on April 16,2021,in Hebei Province.By fitting the fault plane with the relocated earthquake sequences,the results show that the strike and dip angles of the seismogenic fault of the Luanzhou M_(S)4.3 earthquake are 208.5°and 85.6°,respectively.This indicates a high-dip angle fault with North-North-East strike and North-West dip directions.Furthermore,we infer that the seismogenic fault of the Luanzhou M_(S)4.3 earthquake is the Lulong fault.
基金supported by the Anhui Province Science and Technology Breakthrough Plan Project(Key Project,No.202423l10050030)the National Natural Science Foundation of China(Fundamental Science Center Category B,No.4248830017)+4 种基金the Joint Funds of National Natural Science Foundation of China(No.U2139204)the National Natural Science Foundation of China Project(No.42104063)the Hefei Government Key Construction Project(No.2024BFFFD02048)the Earthquake Science and Technology Spark Program of the China Earthquake Administration(Nos.XH23020YA,XH24020B)the Anhui Mengcheng National Geophysical Observatory Joint Open Fund(No.MENGO-202307).
文摘At 20:08,on September 18,2024,an M4.7 earthquake occurred along the Tanlu fault zone in the Feidong County of Hefei,Anhui Province.This earthquake is the largest event in the modern history of Hefei,which caused substantial social impact.To reveal the seismogenic structure of the M4.7 Feidong earthquake sequence and assess seismic risks,we use data from both the permanent seismic network and a temporary dense nodal array deployed in the epicentral region prior to the mainshock for:(1)accurate location of the earthquake sequence and determination of the focal mechanisms;(2)obtaining the spatiotemporal distribution,b-value,and half-day occurrence frequency of the earthquake sequence.The Sentinel-1 satellite data are used to analyze the coseismic displacement.Additionally,velocity models from regional tomography and local high-resolution 2D active-and passive-source surveys across the Tanlu fault zone in the epicentral area are also used to reveal the detailed geometry of the seismogenic fault.The results indicate:(1)the M4.7 Feidong earthquake sequence is concentrated around 10.5 km in depth along a NW-dipping,subvertical fault which trends NE and is approximately 5 km in length;the focal mechanism solution also reveals that the fault hosting the mainshock is a subvertical strike-slip fault,driven by the regional compressional stress in ENE-WSW;the coseismic horizontal displacement on the surface caused by the M4.7 mainshock has a maximum value close to 1 mm;(2)the regional velocity model shows significant lateral variation in v_(S) in the source region,with the mainshock occurring in the area with higher velocity;high-resolution P-wave velocity structures obtained by full waveform inversion from active sources,and S-wave velocity structures from passive-source ambient noise tomography indicate that the mainshock occurred along the boundary between high-and low-velocity bodies,and the seismogenic fault dips NW;the deep seismic reflection profiling shows that the mainshock occurred within the Jurassic strata;(3)based on these results,we suggest the seismogenic fault for the M4.7 Feidong earthquake is either the Zhuding-Shimenshan fault,one of the major faults in the Tanlu fault zone,or a hidden fault to the east;the intersection of the NE-trending Tanlu fault zone and the WNW-trending Feizhong fault,along with significant velocity variations,likely create local stress concentrations which could have triggered the M4.7 Feidong earthquake sequence;(4)the strong aftershocks following the M4.7 Feidong mainshock did not further extend the fault rupture zone;the active period of the Zhuding-Shimenshan fault was the late Early Pleistocene to Middle Pleistocene,and the imaging results indicate that this fault does not cut through the shallow Feidong depression.In conjunction with the small coseismic rupture area,it is inferred that the probability of surface-rupturing earthquakes in the future is relatively low.
基金the Basic Research Foundation of the Institute of Geomechanics,CAGS(grant DZLXJK200707)Natural Science Foundation of China grant 40674058)
文摘A three-dimensional local-scale P-velocity model down to 25 km depth around the main shock epicenter region was constructed using 83821 event-to-receiver seismic rays from 5856 aftershocks recorded by a newly deployed temporary seismic network. Checkerboard tests show that our tomographic model has lateral and vertical resolution of -2 km. The high-resolution P-velocity model revealed interesting structures in the seismogenic layer: (1) The Guanxian-Anxian fault, Yingxiu-Beichuan fault and Wenchuan-Maoxian fault of the Longmen Shan fault zone are well delineated by sharp upper crustal velocity changes; (2) The Pengguan massif has generally higher velocity than its surrounding areas, and may extend down to at least -10 km from the surface; (3) A sharp lateral velocity variation beneath the Wenchuan-Maoxian fault may indicate that the Pengguan massif's western boundary and/or the Wenchuan-Maoxian fault is vertical, and the hypocenter of the Wenchuan earthquake possibly located at the conjunction point of the NW dipping Yingxiu-Beichuan and Guanxian-Anxian faults, and vertical Wenchuan-Maoxian fault; (4) Vicinity along the Yingxiu- Beichuan fault is characterized by very low velocity and low seismicity at shallow depths, possibly due to high content of porosity and fractures; (5) Two blocks of low-velocity anomaly are respectively imaged in the hanging wall and foot wall of the Guanxian-Anxian fault with a -7 km offset with -5 km vertical component.
基金supported by the National Natural Science Foundation of China under Grant No.41372216the Major Projects of the Ministry of Finance under Grant No.201108001+1 种基金the Fundamental Research Funds of the Central Universities under Grant No.20120102 and No.ZY20150303the Teachers Fund of China Earthquake Administration under Grant No.2012001
文摘The Qian-Gorlos earthquake, which occurred in the Songliao basin in Jilin Province in 1119 AD, was the largest earthquake to occur in NE China before the 1975 Haicheng earthquake. Based on historical records and surface geological investigations, it has been suggested previously that the earthquake epicenter was in the Longkeng area. However, other workers have considered the epicenter to be in the Halamaodu area based on the landslides and faults found in this region. No seismogenic structure has yet been found in either of these two regions.We tried to detect active faults in the urban areas of Songyuan City, where the historical earthquake was probably located. One of the aims of this work was to clarify the seismogenic structure so that the seismic risk in the city could be more accurately evaluated. The area was investigated and analyzed using information from remote sensing and topographic surveys, seismic data from petroleum exploration, shallow seismic profiles, exploratory geological trenches on fault outcrops, and borehole data. The geophysical data did not reveal any evidence of faults cutting through Cretaceous or later strata under the Longkeng scarp, which has been suggested to be structural evidence of the Qian-Gorlos earthquake. The continuous fault surfaces on the back edge of terraces in theHalamaodu area stretch for [3.5 km and were probably formed by tectonic activity. However, results from shallow seismic profiles showed that the faults did not extend downward, with the corresponding deep structure being identified as a gentle kink band. A new reverse fault was found to the west of the two suggested epicenters, which presented as a curvilinear fault extending to the west, and was formed by two groups of NE- and NW-trending faults intersecting the Gudian fault. Three-dimensional seismic and shallow seismic data from petroleum exploration revealed its distinct spatial distribution and showed that the fault may cut through Late Quaternary strata. Exploration boreholes and later geomorphological studies provided further proof of this. Based on these results and analysis,the Gudian fault was confirmed as having been an active fault since the Late Quaternary, with the possibility of earthquakes of magnitude [7 in the future. The QianGorlos earthquake was most probably the result of breakage on one or two sections of this 66-km-long fault.
基金The Project Mechanism and Prediction of Continental Strong Earthquakes Ministry of Science and Technology Peoples Republic of China (G19980407/95-13-02-04).
文摘On January 10, 1998, an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake has been the most significant event occurred in the northern China in the recent years. Historical seismicity in the Zhangbei-Shangyi region was very low. In the epicentral area no active fault capable of generating a moderate earthquake like this event was found. The earthquake locations of the main shock and its aftershocks of the Zhangbei-Shangyi earthquake sequence given by several agencies and authors were diverse and the resulted hypocentral distribution revealed no any dominant horizontal lineation. To study the seismogenic structure of the Zhangbei-Shangyi earthquake, in this paper the main shock and its aftershocks with ML3.0 of the Zhangbei-Shangyi earthquake sequence were relocated using the master event relative relocation algorithm. The relocated results show that the epicentral location of the main shock was 41.145癗, 114.462癊, which was located 4 km to the NE of the macro-epicenter of the main shock. The relocated focal depth of the main shock was 15 km. The hypocenters of the aftershocks distributed in a nearly vertical N20E-striking plane and its vicinity. The relocated results of the Zhangbei-Shangyi earthquake sequence clearly indicated that the seismogenic structure of this event was a nearly N-S- to NNE-SSW-striking fault with right-lateral and reverse slip, and that the occurrence of this event was associated with the horizontal and ENE-oriented compressive tectonic stress, which was compatible with the tectonic stress field in the northern China.
基金supported by the National Natural Science Foundation of China (No. 51278474)Special Research Project of Earthquake Engineering (No. 201108003)International Science and Technology Cooperation Program of China (No. 2011DFA21460)
文摘The Tohoku megathrust earthquake, which occurred on March 11, 2011 and had an epicenter that was 70 km east of Tohoku, Japan, resulted in an estimated ten′s of billions of dollars in damage and a death toll of more than 15 thousand lives, yet few studies have documented key spatio-temporal seismogenic characteristics. Specifically, the temporal decay of aftershock activity, the number of strong aftershocks (with magnitudes greater than or equal to 7.0), the magnitude of the greatest aftershock, and area of possible aftershocks. Forecasted results from this study are based on Gutenberg-Richter’s relation, Bath’s law, Omori’s law, and Well’s relation of rupture scale utilizing the magnitude and statistical parameters of earthquakes in USA and China (Landers, Northridge, Hector Mine, San Simeon and Wenchuan earthquakes). The number of strong aftershocks, the parameters of Gutenberg-Richter’s relation, and the modified form of Omori’s law are confirmed based on the aftershock sequence data from the Mw9.0 Tohoku earthquake. Moreover, for a large earthquake, the seismogenic structure could be a fault, a fault system, or an intersection of several faults. The seismogenic structure of the earthquake suggests that the event occurred on a thrust fault near the Japan trench within the overriding plate that subsequently triggered three or more active faults producing large aftershocks.
基金supported by the National Natural Science Foundation of China(No.42272222)the Basic Research Funds of Institute of Geomechanics,Chinese Academy of Geological Sciences(No.DZLXJK202211)China Geological Survey(Nos.DD20190306,DD20190546,DD20160269,DD20230249)。
文摘The 1605 M7½ Earthquake is the only earthquake in the history of China that has caused large-scale land subsidence into the sea,with the total area of land subsidence exceeding 100 km2.The disaster has led to the sinking of 72 villages.There is still no clear understanding of the source seismogenic fault of this earthquake.In this work,we conducted a detailed study of the middle segment of the Maniao-Puqian fault(MPF),which is the epicenter area,through geomorphological survey,data collection,shallow seismic exploration,cross-section drilling,and chronological dating.The results showed that the middle segment of the MPF zone is composed of three nearly parallel normal faults with a dextral strike-slip:“Macun-Luodou fault(F2-1),Haixiu-Dongyuan fault(F2-2),and ChangliuZhuxihe fault(F2-3)”.And F2-2 is composed of two secondary faults,namely F2-2′and F2-2″,with a flower-shaped structure buried under the ground.It is distributed nearly east-west,dipping to the north and has experienced at least five stages of activities since the Miocene.The vertical activity rates of F2-2′and F2-2″are~2.32 and~2.5 mm/a,since the Holocene,respectively.There were eight cycles of transgression and regression since the Miocene.The fault activity resulted in the thickening of the Holocene strata with a slight dip to the south,on the hanging wall,showing V-shaped characteristics.The MPF is likely the source seismogenic fault of the M7½ earthquake that hit Qiongshan in 1605.
基金sponsored by the National Natural Science Foundation Guangdong Union Foundation(U1901602)。
文摘On October 12th,2019,a MS5.2 earthquake occurred in Beiliu City,Guangxi Zhuang Autonomous Region,China,with a focal depth of 10 km. The epicenter is located in the junction of Guangxi and Guangdong where the moderate-strong earthquakes are relatively active. The highest intensity of this earthquake is estimated up to Ⅵ besides the isoseismic line showed an ellipse shape with a long axis trend in the NW direction.The aftershocks are not evenly distributed. The parameters of the focal mechanism solutions are: strike 346°,dip 85°,rake 19° for the nodal planeⅠ,and strike 254°,dip 71°,rake 175° for the nodal planeⅡ. The type of the coseismic fault is strikeslip. After analyzing these results above and the active faults near the epicenter,we get that the nodal planeⅠ is interpreted as the coseismic rupture plane and the BamaBobai Fault is a seismogenic structure of MS5.2 Beiliu earthquake.
文摘Detailed examination of historical data of earthquakes and field investigations of loess landslide caused by the earthquake and tracing of active faults in Lanzhou area indicate that the Yijitanpu town, one of six towns of Jincheng city, was devastated by the 1125 Lanzhou earthquake. The citly is now located in the Vinylon Factory south of Hekou (River Mouth) in the Xigu district of Lanzhou city. We delermined that the six old towns mentioned in historical records lie in an area stretching from the south of Xigu district to Hekou in Lanzhou. This is consistent with the distribution of loess landslides caused by the earthquake, the extension of Holocene active faults, and the distribution of traces of the seismic rupture zone. A comprehensive analysis shows that the seismogenic structure for the 1125 Lanzhou M 7.0 earthquake should be the Xianshuigou fault segment at the western termination of the north-border active fault zone of the Maxianshan Mountains which are located in south of Lanzhou city with the distance of only 4 km.
文摘The Jiaochang arcuate structure is one of the numerous arcuate structural belts in Sichuan. The present paper gives a further argument about the characteristics of that arcuate structure and the new activity of the Songpinggou fault and affirms that the Songpinggou fault is an active fault in the Holocene epoch. The Diexi M 7.5 earthquake took place in 1933 on the west wing of that arcuate structure, near the apex of the arc. Many authors have given quite different opinions about the genetic structure of that earthquake. The authors have made on the spot investigations time and again over recent years. Besides this, the authors have also further studied the shape of intensity contour lines, the distribution characteristics of ground surface seismic hazards, the left lateral dislocation of buildings along the Songpinggou fault, the NW trending ground fissures that developed on the ground surface after earthquake, and so on. On this basis, it is still considered that the seismogenic fault of the 1933 Diexi M 7.5 earthquake was the Songpinggou fault on the west wing of the Jiaochang arcuate structure.
基金sponsored by key earthquake science research fund programs of Anhui Province (Grant No. 200603)
文摘In 1585,a MS5 3/4 earthquake occurred in the south of Chaoxian county,Anhui Province. The parameters of this earthquake were reported differently in various versions of earthquake catalogues. According to detailed textual research on the historic records of this earthquake,the epicenter location of the earthquake was further confirmed by means of seismo-geological field investigations in the Chaohu-Tongling region along the western Yangtze River valleys. Shallow seismic prospecting and drilling methods were applied in studying the buried fault. The possibility of the existence of seismogenic faults and fault activity in the western Yangtze River area were analyzed in depth,and the causative tectonic background of the 1585 MS5 3/4 south Chaoxian earthquake was studied. The results of this study indicate that the Yanjiaqiao-Fengshahu fault,which was active in the early to mid-Pleistocene,is possibly the causative structure of this earthquake. To identifying the seismogenic structure of the 1585 south Chaoxian earthquake will help gain more knowledge about the tectonic background of moderate and small earthquake activity in Eastern China.
基金supported by Teachers Fund of China Earthquake Administration under Grant No. 20120101National Natural Science Foundation of China under Grant No. 41372216+1 种基金the State Special Project for International Cooperation on Science and Technology 2012DFR20440K02the Fundamental Research Funds for the Central Universities under Grant No. ZY20120102
文摘We have studied the characteristics of the active faults and seismicity in the vicinity of Urumqi city, the capital of Xinjiang Autonomous Region, China, and have proposed a seismogenic model for the assessment of earthquake hazard in this area. Our work is based on an integrated analysis of data from investigations of active faults at the surface, deep seismic reflection soundings, seismic profiles from petroleum exploration, observations of temporal seismic stations, and the precise location of small earthquakes. We have made a comparative study of typical seismogenic structures in the frontal area of the North Tianshan Mountains, where Urumqi city is situated, and have revealed the primary features of the thrust-fold- nappe structure there. We suggest that Urumqi city is comprised two zones of seismotectonics which are inter- preted as thrust-nappe structures. The first is the thrust nappe of the North Tianshan Mountains in the west, con- sisting of the lower (root) thrust fault, middle detachment, and upper fold-uplift at the front. Faults active in the Pleistocene are present in the lower and upper parts of this structure, and the detachment in the middle spreads toward the north. In the future, M7 earthquakes may occur at the root thrust fault, while the seismic risk of frontal fold-uplift at the front will not exceed M6.5. The second structure is the western flank of the arc-like Bogda nappe in the east, which is also comprised a root thrust fault, middle detachment, and upper fold-uplift at the front, of which the nappe stretches toward the north; several active faults are also developed in it. The fault active in the Holocene is called the South Fukang fault. It is not in the urban area of Urumqi city. The other three faults are located in the urban area and were active in the late Pleistocene. In these cases, this section of the nappe structure near the city has an earthquake risk of M6.5-7, An earthquake Ms6.6, 60 km east to Urumqi city occurred along the structure in 1965.
基金China Seismic Active Fault Exploration,Central–South Segment Project of North–South Seismic Belt,National Natural Science Foundation of China(grants No.41340005,41372114,41172162,40972083,41502116 and 41402159)the Research Project of Sichuan Education Department(grant No.15ZB0085)for their joint funding
文摘On April 20 th,2013,an earthquake of magnitude MW 6.6 occurred at Lushan of Sichuan on the southern segment of the Longmenshan fault zone,with no typical coseismic surface rupture.This work plotted an isoseismal map of the earthquake after repositioning over 400 post–earthquake macro–damage survey points from peak ground acceleration(PGA)data recorded by the Sichuan Digital Strong Earthquake Network.This map indicates that the Lushan earthquake has a damage intensity of IX on the Liedu scale,and that the meizoseismal area displays an oblate ellipsoid shape,with its longitudinal axis in the NE direction.No obvious directivity was detected.Furthermore,the repositioning results of 3323 early aftershocks,seismic reflection profiles and focal mechanism solutions suggests that the major seismogenic structure of the earthquake was the Dayi Fault,which partly defines the eastern Mengshan Mountain.This earthquake resulted from the thrusting of the Dayi Fault,and caused shortening of the southern segment of the Longmenshan in the NW–SE direction.Coseismal rupture was also produced in the deep of the Xinkaidian Fault.Based on the above seismogenic model and the presentation of coseismic surface deformation,it is speculated that there is a risk of more major earthquakes occurring in this region.
基金supported by the Director Foundation of Institute of Seismology, China Earthquake Adminstration(IS201102643)National Nature Science Foundation of China (No. 41004020)
文摘Ruichang-Yangxin earthquake is another moderate earthquake in Yangxin-Jiujiang area since 2005 Jiujiang-Ruichang M5.7 earthquake. In order to more understand the seismic activities in this area, we study the moment tensor solution and the seismogenic structure of the Ruichang-Yangxin earthquake. Precise earthquake relocation shows that the mainshock occurred on the southwestern part of the NE-trending fault and aftershocks are distributed not only along the NE-trending fault but also along its conjugated NW-trending fault. By comprehensive analysis on the earthquake distribution, characteristics of isoseismal curve, focal mechanism, and regional structure characteristics, it is inferred that this earthquake is caused by the NE-trending Tanlu fault. In addition, it has close relationship with the conjugated NW-trending fault as well. Many researches have shown that the junction area is the earthquake-prone area, and should be paid more attention to. And our study also proves this viewpoint.