Life science research aims to continuously improve the quality and standard of human life. One of the major challenges in this area is to maintain food safety and security. A number of image processing techniques have...Life science research aims to continuously improve the quality and standard of human life. One of the major challenges in this area is to maintain food safety and security. A number of image processing techniques have been used to investigate the quality of food products. In this paper, we propose a new algorithm to effectively segment connected grains so that each of them can be inspected in a later processing stage. One family of the existing segmentation methods is based on the idea of watersheding, and it has shown promising results in practice. However, due to the over-segmentation issue, this technique has experienced poor performance in various applications, such as inhomogeneous background and connected targets. To solve this problem, we present a combination of two classical techniques to handle this issue. In the first step, a mean shift filter is used to eliminate the inhomogeneous background,where entropy is used to be a converging criterion. Secondly, a color gradient algorithm is used in order to detect the most significant edges, and a marked watershed transform is applied to segment cluttered objects out of the previous processing stages. The proposed framework is capable of compromising among execution time, usability, efficiency and segmentation outcome in analyzing ring die pellets. The experimental results demonstrate that the proposed approach is effectiveness and robust.展开更多
With the continuous development of artificial intelligence and machine learning techniques,there have been effective methods supporting the work of dermatologist in the field of skin cancer detection.However,object si...With the continuous development of artificial intelligence and machine learning techniques,there have been effective methods supporting the work of dermatologist in the field of skin cancer detection.However,object significant challenges have been presented in accurately segmenting melanomas in dermoscopic images due to the objects that could interfere human observations,such as bubbles and scales.To address these challenges,we propose a dual U-Net network framework for skin melanoma segmentation.In our proposed architecture,we introduce several innovative components that aim to enhance the performance and capabilities of the traditional U-Net.First,we establish a novel framework that links two simplified U-Nets,enabling more comprehensive information exchange and feature integration throughout the network.Second,after cascading the second U-Net,we introduce a skip connection between the decoder and encoder networks,and incorporate a modified receptive field block(MRFB),which is designed to capture multi-scale spatial information.Third,to further enhance the feature representation capabilities,we add a multi-path convolution block attention module(MCBAM)to the first two layers of the first U-Net encoding,and integrate a new squeeze-and-excitation(SE)mechanism with residual connections in the second U-Net.To illustrate the performance of our proposed model,we conducted comprehensive experiments on widely recognized skin datasets.On the ISIC-2017 dataset,the IoU value of our proposed model increased from 0.6406 to 0.6819 and the Dice coefficient increased from 0.7625 to 0.8023.On the ISIC-2018 dataset,the IoU value of proposed model also improved from 0.7138 to 0.7709,while the Dice coefficient increased from 0.8285 to 0.8665.Furthermore,the generalization experiments conducted on the jaw cyst dataset from Quzhou People’s Hospital further verified the outstanding segmentation performance of the proposed model.These findings collectively affirm the potential of our approach as a valuable tool in supporting clinical decision-making in the field of skin cancer detection,as well as advancing research in medical image analysis.展开更多
A changepoint in statistical applications refers to an observational time point at which the structure pattern changes during a somewhat long-term experimentation process. In many cases, the change point time and caus...A changepoint in statistical applications refers to an observational time point at which the structure pattern changes during a somewhat long-term experimentation process. In many cases, the change point time and cause are documented and it is reasonably straightforward to statistically adjust (homogenize) the series for the effects of the changepoint. Sadly many changepoint times are undocumented and the changepoint times themselves are the main purpose of study. In this article, the changepoint analysis in two-phrase linear regression models is developed and discussed. Following Liu and Qian (2010)'s idea in the segmented linear regression models, the modified empirical likelihood ratio statistic is proposed to test if there exists a changepoint during the long-term experiment and observation. The modified empirical likelihood ratio statistic is computation-friendly and its ρ-value can be easily approximated based on the large sample properties. The procedure is applied to the Old Faithful geyser eruption data in October 1980.展开更多
Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)method...Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)methods have been introduced for automatic BAC detection and quantification with increased accuracy.Previously,classification with deep learning had reached higher efficiency,but designing the structure of DL proved to be an extremely challenging task due to overfitting models.It also is not able to capture the patterns and irregularities presented in the images.To solve the overfitting problem,an optimal feature set has been formed by Enhanced Wolf Pack Algorithm(EWPA),and their irregularities are identified by Dense-kUNet segmentation.In this paper,Dense-kUNet for segmentation and optimal feature has been introduced for classification(severe,mild,light)that integrates DenseUNet and kU-Net.Longer bound links exist among adjacent modules,allowing relatively rough data to be sent to the following component and assisting the system in finding higher qualities.The major contribution of the work is to design the best features selected by Enhanced Wolf Pack Algorithm(EWPA),and Modified Support Vector Machine(MSVM)based learning for classification.k-Dense-UNet is introduced which combines the procedure of Dense-UNet and kU-Net for image segmentation.Longer bound associations occur among nearby sections,allowing relatively granular data to be sent to the next subsystem and benefiting the system in recognizing smaller characteristics.The proposed techniques and the performance are tested using several types of analysis techniques 826 filled digitized mammography.The proposed method achieved the highest precision,recall,F-measure,and accuracy of 84.4333%,84.5333%,84.4833%,and 86.8667%when compared to other methods on the Digital Database for Screening Mammography(DDSM).展开更多
Analysis of long-term EEG signals needs that it be segmented into pseudo stationary epochs. That work is done by regarding to statistical characteristics of a signal such as amplitude and frequency. Time series measur...Analysis of long-term EEG signals needs that it be segmented into pseudo stationary epochs. That work is done by regarding to statistical characteristics of a signal such as amplitude and frequency. Time series measured in real world is frequently non-stationary and to extract important information from the measured time series it is significant to utilize a filter or smoother as a pre-processing step. In the proposed approach, the signal is initially filtered by Moving Average (MA) or Savitzky-Golay filter to attenuate its short-term variations. Then, changes of the amplitude or frequency of the signal is calculated by Modified Varri method which is an acceptable algorithm for segmenting a signal. By using synthetic and real EEG data, the proposed methods are compared with original approach (simple Modified Varri). The simulation results indicate the absolute advantage of the proposed methods.展开更多
Segmentation is the act of partitioning an image into different regions by creating boundaries between regions.k-means image segmentation is the simplest prevalent approach.However,the segmentation quality is continge...Segmentation is the act of partitioning an image into different regions by creating boundaries between regions.k-means image segmentation is the simplest prevalent approach.However,the segmentation quality is contingent on the initial parameters(the cluster centers and their number).In this paper,a convolution-based modified adaptive k-means(MAKM)approach is proposed and evaluated using images collected from different sources(MATLAB,Berkeley image database,VOC2012,BGH,MIAS,and MRI).The evaluation shows that the proposed algorithm is superior to k-means++,fuzzy c-means,histogrambased k-means,and subtractive k-means algorithms in terms of image segmentation quality(Q-value),computational cost,and RMSE.The proposed algorithm was also compared to state-of-the-art learning-based methods in terms of IoU and MIoU;it achieved a higher MIoU value.展开更多
Vascular Doppler optical coherence tomography (DOCT) images with weak boundaries are usually difficult for most algorithms to segment. We propose a modified random walk (MRW) algorithm with a novel regularization for ...Vascular Doppler optical coherence tomography (DOCT) images with weak boundaries are usually difficult for most algorithms to segment. We propose a modified random walk (MRW) algorithm with a novel regularization for the segmentation of DOCT vessel images. Based on MRW, we perform automatic boundary detection of the vascular wall from intensity images and boundary extraction of the blood flowing region from Doppler phase images. Dice, sensitivity, and specificity coefficients were adopted to verify the segmentation performance. The experimental study on DOCT images of the mouse femoral artery showed the effectiveness of our proposed method, yielding three-dimensional visualization and quantitative evaluation of the vessel.展开更多
基金supported by National Key Scientific Apparatus Development of Special Item of China(No.2012YQ15008703)Nantong Research Program of Application Foundation(No.BK2012030)Key Project of Science and Technology Commission of Shanghai Municipality(No.14JC1402200)
文摘Life science research aims to continuously improve the quality and standard of human life. One of the major challenges in this area is to maintain food safety and security. A number of image processing techniques have been used to investigate the quality of food products. In this paper, we propose a new algorithm to effectively segment connected grains so that each of them can be inspected in a later processing stage. One family of the existing segmentation methods is based on the idea of watersheding, and it has shown promising results in practice. However, due to the over-segmentation issue, this technique has experienced poor performance in various applications, such as inhomogeneous background and connected targets. To solve this problem, we present a combination of two classical techniques to handle this issue. In the first step, a mean shift filter is used to eliminate the inhomogeneous background,where entropy is used to be a converging criterion. Secondly, a color gradient algorithm is used in order to detect the most significant edges, and a marked watershed transform is applied to segment cluttered objects out of the previous processing stages. The proposed framework is capable of compromising among execution time, usability, efficiency and segmentation outcome in analyzing ring die pellets. The experimental results demonstrate that the proposed approach is effectiveness and robust.
基金funded by Zhejiang Basic Public Welfare Research Project,grant number LZY24E060001supported by Guangzhou Development Zone Science and Technology(2021GH10,2020GH10,2023GH02)+1 种基金the University of Macao(MYRG2022-00271-FST)the Science and Technology Development Fund(FDCT)of Macao(0032/2022/A).
文摘With the continuous development of artificial intelligence and machine learning techniques,there have been effective methods supporting the work of dermatologist in the field of skin cancer detection.However,object significant challenges have been presented in accurately segmenting melanomas in dermoscopic images due to the objects that could interfere human observations,such as bubbles and scales.To address these challenges,we propose a dual U-Net network framework for skin melanoma segmentation.In our proposed architecture,we introduce several innovative components that aim to enhance the performance and capabilities of the traditional U-Net.First,we establish a novel framework that links two simplified U-Nets,enabling more comprehensive information exchange and feature integration throughout the network.Second,after cascading the second U-Net,we introduce a skip connection between the decoder and encoder networks,and incorporate a modified receptive field block(MRFB),which is designed to capture multi-scale spatial information.Third,to further enhance the feature representation capabilities,we add a multi-path convolution block attention module(MCBAM)to the first two layers of the first U-Net encoding,and integrate a new squeeze-and-excitation(SE)mechanism with residual connections in the second U-Net.To illustrate the performance of our proposed model,we conducted comprehensive experiments on widely recognized skin datasets.On the ISIC-2017 dataset,the IoU value of our proposed model increased from 0.6406 to 0.6819 and the Dice coefficient increased from 0.7625 to 0.8023.On the ISIC-2018 dataset,the IoU value of proposed model also improved from 0.7138 to 0.7709,while the Dice coefficient increased from 0.8285 to 0.8665.Furthermore,the generalization experiments conducted on the jaw cyst dataset from Quzhou People’s Hospital further verified the outstanding segmentation performance of the proposed model.These findings collectively affirm the potential of our approach as a valuable tool in supporting clinical decision-making in the field of skin cancer detection,as well as advancing research in medical image analysis.
文摘A changepoint in statistical applications refers to an observational time point at which the structure pattern changes during a somewhat long-term experimentation process. In many cases, the change point time and cause are documented and it is reasonably straightforward to statistically adjust (homogenize) the series for the effects of the changepoint. Sadly many changepoint times are undocumented and the changepoint times themselves are the main purpose of study. In this article, the changepoint analysis in two-phrase linear regression models is developed and discussed. Following Liu and Qian (2010)'s idea in the segmented linear regression models, the modified empirical likelihood ratio statistic is proposed to test if there exists a changepoint during the long-term experiment and observation. The modified empirical likelihood ratio statistic is computation-friendly and its ρ-value can be easily approximated based on the large sample properties. The procedure is applied to the Old Faithful geyser eruption data in October 1980.
文摘Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)methods have been introduced for automatic BAC detection and quantification with increased accuracy.Previously,classification with deep learning had reached higher efficiency,but designing the structure of DL proved to be an extremely challenging task due to overfitting models.It also is not able to capture the patterns and irregularities presented in the images.To solve the overfitting problem,an optimal feature set has been formed by Enhanced Wolf Pack Algorithm(EWPA),and their irregularities are identified by Dense-kUNet segmentation.In this paper,Dense-kUNet for segmentation and optimal feature has been introduced for classification(severe,mild,light)that integrates DenseUNet and kU-Net.Longer bound links exist among adjacent modules,allowing relatively rough data to be sent to the following component and assisting the system in finding higher qualities.The major contribution of the work is to design the best features selected by Enhanced Wolf Pack Algorithm(EWPA),and Modified Support Vector Machine(MSVM)based learning for classification.k-Dense-UNet is introduced which combines the procedure of Dense-UNet and kU-Net for image segmentation.Longer bound associations occur among nearby sections,allowing relatively granular data to be sent to the next subsystem and benefiting the system in recognizing smaller characteristics.The proposed techniques and the performance are tested using several types of analysis techniques 826 filled digitized mammography.The proposed method achieved the highest precision,recall,F-measure,and accuracy of 84.4333%,84.5333%,84.4833%,and 86.8667%when compared to other methods on the Digital Database for Screening Mammography(DDSM).
文摘Analysis of long-term EEG signals needs that it be segmented into pseudo stationary epochs. That work is done by regarding to statistical characteristics of a signal such as amplitude and frequency. Time series measured in real world is frequently non-stationary and to extract important information from the measured time series it is significant to utilize a filter or smoother as a pre-processing step. In the proposed approach, the signal is initially filtered by Moving Average (MA) or Savitzky-Golay filter to attenuate its short-term variations. Then, changes of the amplitude or frequency of the signal is calculated by Modified Varri method which is an acceptable algorithm for segmenting a signal. By using synthetic and real EEG data, the proposed methods are compared with original approach (simple Modified Varri). The simulation results indicate the absolute advantage of the proposed methods.
基金the Ethiopian Ministry of Education(MoE)the Deutscher Akademischer Auslandsdienst(DAAD)for funding this research work(funding number 57162925).
文摘Segmentation is the act of partitioning an image into different regions by creating boundaries between regions.k-means image segmentation is the simplest prevalent approach.However,the segmentation quality is contingent on the initial parameters(the cluster centers and their number).In this paper,a convolution-based modified adaptive k-means(MAKM)approach is proposed and evaluated using images collected from different sources(MATLAB,Berkeley image database,VOC2012,BGH,MIAS,and MRI).The evaluation shows that the proposed algorithm is superior to k-means++,fuzzy c-means,histogrambased k-means,and subtractive k-means algorithms in terms of image segmentation quality(Q-value),computational cost,and RMSE.The proposed algorithm was also compared to state-of-the-art learning-based methods in terms of IoU and MIoU;it achieved a higher MIoU value.
基金supported by the National Key Research&Development Program of China(No.2017YFC0107900)the National Natural Science Foundation of China(Nos.61505006,61527827,61672099,and 81627803)+1 种基金the 111 Project(No.B18005)the Beijing Institute of Technology Science and Technology Innovation Program under Central Special Funds of China for Science and Technology Development
文摘Vascular Doppler optical coherence tomography (DOCT) images with weak boundaries are usually difficult for most algorithms to segment. We propose a modified random walk (MRW) algorithm with a novel regularization for the segmentation of DOCT vessel images. Based on MRW, we perform automatic boundary detection of the vascular wall from intensity images and boundary extraction of the blood flowing region from Doppler phase images. Dice, sensitivity, and specificity coefficients were adopted to verify the segmentation performance. The experimental study on DOCT images of the mouse femoral artery showed the effectiveness of our proposed method, yielding three-dimensional visualization and quantitative evaluation of the vessel.