期刊文献+
共找到62,542篇文章
< 1 2 250 >
每页显示 20 50 100
MG-SLAM: RGB-D SLAM Based on Semantic Segmentation for Dynamic Environment in the Internet of Vehicles 被引量:1
1
作者 Fengju Zhang Kai Zhu 《Computers, Materials & Continua》 2025年第2期2353-2372,共20页
The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology play... The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology plays a crucial role in vehicle localization and navigation. Traditional Simultaneous Localization and Mapping (SLAM) systems are designed for use in static environments, and they can result in poor performance in terms of accuracy and robustness when used in dynamic environments where objects are in constant movement. To address this issue, a new real-time visual SLAM system called MG-SLAM has been developed. Based on ORB-SLAM2, MG-SLAM incorporates a dynamic target detection process that enables the detection of both known and unknown moving objects. In this process, a separate semantic segmentation thread is required to segment dynamic target instances, and the Mask R-CNN algorithm is applied on the Graphics Processing Unit (GPU) to accelerate segmentation. To reduce computational cost, only key frames are segmented to identify known dynamic objects. Additionally, a multi-view geometry method is adopted to detect unknown moving objects. The results demonstrate that MG-SLAM achieves higher precision, with an improvement from 0.2730 m to 0.0135 m in precision. Moreover, the processing time required by MG-SLAM is significantly reduced compared to other dynamic scene SLAM algorithms, which illustrates its efficacy in locating objects in dynamic scenes. 展开更多
关键词 Visual SLAM dynamic scene semantic segmentation GPU acceleration key segmentation frame
在线阅读 下载PDF
High-Precision Brain Tumor Segmentation using a Progressive Layered U-Net(PLU-Net)with Multi-Scale Data Augmentation and Attention Mechanisms on Multimodal Magnetic Resonance Imaging 被引量:1
2
作者 Noman Ahmed Siddiqui Muhammad Tahir Qadri +1 位作者 Muhammad Ovais Akhter Zain Anwar Ali 《Instrumentation》 2025年第1期77-92,共16页
Brain tumors present significant challenges in medical diagnosis and treatment,where early detection is crucial for reducing morbidity and mortality rates.This research introduces a novel deep learning model,the Progr... Brain tumors present significant challenges in medical diagnosis and treatment,where early detection is crucial for reducing morbidity and mortality rates.This research introduces a novel deep learning model,the Progressive Layered U-Net(PLU-Net),designed to improve brain tumor segmentation accuracy from Magnetic Resonance Imaging(MRI)scans.The PLU-Net extends the standard U-Net architecture by incorporating progressive layering,attention mechanisms,and multi-scale data augmentation.The progressive layering involves a cascaded structure that refines segmentation masks across multiple stages,allowing the model to capture features at different scales and resolutions.Attention gates within the convolutional layers selectively focus on relevant features while suppressing irrelevant ones,enhancing the model's ability to delineate tumor boundaries.Additionally,multi-scale data augmentation techniques increase the diversity of training data and boost the model's generalization capabilities.Evaluated on the BraTS 2021 dataset,the PLU-Net achieved state-of-the-art performance with a dice coefficient of 0.91,specificity of 0.92,sensitivity of 0.89,Hausdorff95 of 2.5,outperforming other modified U-Net architectures in segmentation accuracy.These results underscore the effectiveness of the PLU-Net in improving brain tumor segmentation from MRI scans,supporting clinicians in early diagnosis,treatment planning,and the development of new therapies. 展开更多
关键词 brain tumor segmentation MRI machine learning BraTS deep learning model PLU-Net
原文传递
Semantic Segmentation of Lumbar Vertebrae Using Meijering U-Net(MU-Net)on Spine Magnetic Resonance Images
3
作者 Lakshmi S V V Shiloah Elizabeth Darmanayagam Sunil Retmin Raj Cyril 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期733-757,共25页
Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the s... Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the spinal cord,nerves,intervertebral discs,and vertebrae,Magnetic Resonance Imaging is thought to be the most effective method for imaging the spine.The semantic segmentation of vertebrae plays a major role in the diagnostic process of lumbar diseases.It is difficult to semantically partition the vertebrae in Magnetic Resonance Images from the surrounding variety of tissues,including muscles,ligaments,and intervertebral discs.U-Net is a powerful deep-learning architecture to handle the challenges of medical image analysis tasks and achieves high segmentation accuracy.This work proposes a modified U-Net architecture namely MU-Net,consisting of the Meijering convolutional layer that incorporates the Meijering filter to perform the semantic segmentation of lumbar vertebrae L1 to L5 and sacral vertebra S1.Pseudo-colour mask images were generated and used as ground truth for training the model.The work has been carried out on 1312 images expanded from T1-weighted mid-sagittal MRI images of 515 patients in the Lumbar Spine MRI Dataset publicly available from Mendeley Data.The proposed MU-Net model for the semantic segmentation of the lumbar vertebrae gives better performance with 98.79%of pixel accuracy(PA),98.66%of dice similarity coefficient(DSC),97.36%of Jaccard coefficient,and 92.55%mean Intersection over Union(mean IoU)metrics using the mentioned dataset. 展开更多
关键词 Computer aided diagnosis(CAD) magnetic resonance imaging(MRI) semantic segmentation lumbar vertebrae deep learning U-Net model
在线阅读 下载PDF
Stochastic Augmented-Based Dual-Teaching for Semi-Supervised Medical Image Segmentation
4
作者 Hengyang Liu Yang Yuan +2 位作者 Pengcheng Ren Chengyun Song Fen Luo 《Computers, Materials & Continua》 SCIE EI 2025年第1期543-560,共18页
Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)t... Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled information;(2)low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled data;(3)the segmentation performance in low-contrast and local regions is less than optimal.We design a Stochastic Augmentation-Based Dual-Teaching Auxiliary Training Strategy(SADT),which enhances feature diversity and learns high-quality features to overcome these problems.To be more precise,SADT trains the Student Network by using pseudo-label-based training from Teacher Network 1 and supervised learning with labeled data,which prevents the loss of rare labeled data.We introduce a bi-directional copy-pastemask with progressive high-entropy filtering to reduce data distribution disparities and mitigate confirmation bias in pseudo-supervision.For the mixed images,Deep-Shallow Spatial Contrastive Learning(DSSCL)is proposed in the feature spaces of Teacher Network 2 and the Student Network to improve the segmentation capabilities in low-contrast and local areas.In this procedure,the features retrieved by the Student Network are subjected to a random feature perturbation technique.On two openly available datasets,extensive trials show that our proposed SADT performs much better than the state-ofthe-art semi-supervised medical segmentation techniques.Using only 10%of the labeled data for training,SADT was able to acquire a Dice score of 90.10%on the ACDC(Automatic Cardiac Diagnosis Challenge)dataset. 展开更多
关键词 SEMI-SUPERVISED medical image segmentation contrastive learning stochastic augmented
在线阅读 下载PDF
Dual encoding feature filtering generalized attention UNET for retinal vessel segmentation
5
作者 ISLAM Md Tauhidul WU Da-Wen +6 位作者 TANG Qing-Qing ZHAO Kai-Yang YIN Teng LI Yan-Fei SHANG Wen-Yi LIU Jing-Yu ZHANG Hai-Xian 《四川大学学报(自然科学版)》 北大核心 2025年第1期79-95,共17页
Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited t... Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited training data,imbalance data distribution,and inadequate feature extraction persist,hindering both the segmentation performance and optimal model generalization.Addressing these critical issues,the DEFFA-Unet is proposed featuring an additional encoder to process domain-invariant pre-processed inputs,thereby improving both richer feature encoding and enhanced model generalization.A feature filtering fusion module is developed to ensure the precise feature filtering and robust hybrid feature fusion.In response to the task-specific need for higher precision where false positives are very costly,traditional skip connections are replaced with the attention-guided feature reconstructing fusion module.Additionally,innovative data augmentation and balancing methods are proposed to counter data scarcity and distribution imbalance,further boosting the robustness and generalization of the model.With a comprehensive suite of evaluation metrics,extensive validations on four benchmark datasets(DRIVE,CHASEDB1,STARE,and HRF)and an SLO dataset(IOSTAR),demonstrate the proposed method’s superiority over both baseline and state-of-the-art models.Particularly the proposed method significantly outperforms the compared methods in cross-validation model generalization. 展开更多
关键词 Vessel segmentation Data balancing Data augmentation Dual encoder Attention Mechanism Model generalization
在线阅读 下载PDF
CableSAM:an efficient automatic segmentation method for aircraft cabin cables
6
作者 LING Aihua WANG Junwen +1 位作者 LU Jiaming LIU Ruyu 《Optoelectronics Letters》 2025年第3期183-187,共5页
Cabin cables,as critical components of an aircraft's electrical system,significantly impact the operational efficiency and safety of the aircraft.The existing cable segmentation methods in civil aviation cabins ar... Cabin cables,as critical components of an aircraft's electrical system,significantly impact the operational efficiency and safety of the aircraft.The existing cable segmentation methods in civil aviation cabins are limited,especially in automation,heavily dependent on large amounts of data and resources,lacking the flexibility to adapt to different scenarios.To address these challenges,this paper introduces a novel image segmentation model,CableSAM,specifically designed for automated segmentation of cabin cables.CableSAM improves segmentation efficiency and accuracy using knowledge distillation and employs a context ensemble strategy.It accurately segments cables in various scenarios with minimal input prompts.Comparative experiments on three cable datasets demonstrate that CableSAM surpasses other advanced cable segmentation methods in performance. 展开更多
关键词 image segmentation aircraft cabin automatic segmentation automated segmentation cabin cablesas civil aviation cabins cable segmentation knowledge distillation
原文传递
Improved SE-UNet network-based semantic segmentation and extraction of hidden geological significance in geological maps
7
作者 Kai Ma Jun-jie Liu +5 位作者 Si-qi Lu Ze-hua Huang Miao Tian Jun-yuan Deng Zhong Xie Qin-jun Qiu 《China Geology》 2025年第4期643-660,共18页
Automatic segmentation and recognition of content and element information in color geological map are of great significance for researchers to analyze the distribution of mineral resources and predict disaster informa... Automatic segmentation and recognition of content and element information in color geological map are of great significance for researchers to analyze the distribution of mineral resources and predict disaster information.This article focuses on color planar raster geological map(geological maps include planar geological maps,columnar maps,and profiles).While existing deep learning approaches are often used to segment general images,their performance is limited due to complex elements,diverse regional features,and complicated backgrounds for color geological map in the domain of geoscience.To address the issue,a color geological map segmentation model is proposed that combines the Felz clustering algorithm and an improved SE-UNet deep learning network(named GeoMSeg).Firstly,a symmetrical encoder-decoder structure backbone network based on UNet is constructed,and the channel attention mechanism SENet has been incorporated to augment the network’s capacity for feature representation,enabling the model to purposefully extract map information.The SE-UNet network is employed for feature extraction from the geological map and obtain coarse segmentation results.Secondly,the Felz clustering algorithm is used for super pixel pre-segmentation of geological maps.The coarse segmentation results are refined and modified based on the super pixel pre-segmentation results to obtain the final segmentation results.This study applies GeoMSeg to the constructed dataset,and the experimental results show that the algorithm proposed in this paper has superior performance compared to other mainstream map segmentation models,with an accuracy of 91.89%and a MIoU of 71.91%. 展开更多
关键词 Geological map UNet model Image segmentation Semantic segmentation Pixel pre-segmentation Clustering algorithm Attention mechanism Deep learning Artificial intelligence Geological survey engineering
在线阅读 下载PDF
3DMAU-Net:liver segmentation network based on 3D U-Net
8
作者 ZHU Dong MA Tianyi +3 位作者 YANG Mengzhu LI Guoqiang HU Shunbo WANG Yongfang 《Optoelectronics Letters》 2025年第6期370-377,共8页
Considering the three-dimensional(3D) U-Net lacks sufficient local feature extraction for image features and lacks attention to the fusion of high-and low-level features, we propose a new model called 3DMAU-Net based ... Considering the three-dimensional(3D) U-Net lacks sufficient local feature extraction for image features and lacks attention to the fusion of high-and low-level features, we propose a new model called 3DMAU-Net based on the 3D U-Net architecture for liver region segmentation. Our model replaces the last two layers of the 3D U-Net with a sliding window-based multilayer perceptron(SMLP), enabling better extraction of local image features. We also design a high-and low-level feature fusion dilated convolution block that focuses on local features and better supplements the surrounding information of the target region. This block is embedded in the entire encoding process, ensuring that the overall network is not simply downsampling. Before each feature extraction, the input features are processed by the dilated convolution block. We validate our experiments on the liver tumor segmentation challenge 2017(Lits2017) dataset, and our model achieves a Dice coefficient of 0.95, which is an improvement of 0.015 compared to the 3D U-Net model. Furthermore, we compare our results with other segmentation methods, and our model consistently outperforms them. 展开更多
关键词 dilated convolution bl multilayer perceptron liver region segmentation feature extraction liver segmentation sliding window extraction local image features image features
原文传递
Optimizing zero-shot text-based segmentation of remote sensing imagery using SAM and Grounding DINO
9
作者 Mohanad Diab Polychronis Kolokoussis Maria Antonia Brovelli 《Artificial Intelligence in Geosciences》 2025年第1期14-24,共11页
The use of AI technologies in remote sensing(RS)tasks has been the focus of many individuals in both the professional and academic domains.Having more accessible interfaces and tools that allow people of little or no ... The use of AI technologies in remote sensing(RS)tasks has been the focus of many individuals in both the professional and academic domains.Having more accessible interfaces and tools that allow people of little or no experience to intuitively interact with RS data of multiple formats is a potential provided by this integration.However,the use of AI and AI agents to help automate RS-related tasks is still in its infancy stage,with some frameworks and interfaces built on top of well-known vision language models(VLM)such as GPT-4,segment anything model(SAM),and grounding DINO.These tools do promise and draw guidelines on the potentials and limitations of existing solutions concerning the use of said models.In this work,the state of the art AI foundation models(FM)are reviewed and used in a multi-modal manner to ingest RS imagery input and perform zero-shot object detection using natural language.The natural language input is then used to define the classes or labels the model should look for,then,both inputs are fed to the pipeline.The pipeline presented in this work makes up for the shortcomings of the general knowledge FMs by stacking pre-processing and post-processing applications on top of the FMs;these applications include tiling to produce uniform patches of the original image for faster detection,outlier rejection of redundant bounding boxes using statistical and machine learning methods.The pipeline was tested with UAV,aerial and satellite images taken over multiple areas.The accuracy for the semantic segmentation showed improvement from the original 64%to approximately 80%-99%by utilizing the pipeline and techniques proposed in this work.GitHub Repository:MohanadDiab/LangRS. 展开更多
关键词 Foundation models Multi-modal models Vision language models Semantic segmentation Segment anything model Earth observation Remote sensing
在线阅读 下载PDF
EACNet:Ensemble adversarial co-training neural network for handling missing modalities in MRI images for brain tumor segmentation
10
作者 RAMADHAN Amran Juma CHEN Jing PENG Junlan 《Journal of Measurement Science and Instrumentation》 2025年第1期11-25,共15页
Brain tumor segmentation is critical in clinical diagnosis and treatment planning.Existing methods for brain tumor segmentation with missing modalities often struggle when dealing with multiple missing modalities,a co... Brain tumor segmentation is critical in clinical diagnosis and treatment planning.Existing methods for brain tumor segmentation with missing modalities often struggle when dealing with multiple missing modalities,a common scenario in real-world clinical settings.These methods primarily focus on handling a single missing modality at a time,making them insufficiently robust for the additional complexity encountered with incomplete data containing various missing modality combinations.Additionally,most existing methods rely on single models,which may limit their performance and increase the risk of overfitting the training data.This work proposes a novel method called the ensemble adversarial co-training neural network(EACNet)for accurate brain tumor segmentation from multi-modal magnetic resonance imaging(MRI)scans with multiple missing modalities.The proposed method consists of three key modules:the ensemble of pre-trained models,which captures diverse feature representations from the MRI data by employing an ensemble of pre-trained models;adversarial learning,which leverages a competitive training approach involving two models;a generator model,which creates realistic missing data,while sub-networks acting as discriminators learn to distinguish real data from the generated“fake”data.Co-training framework utilizes the information extracted by the multimodal path(trained on complete scans)to guide the learning process in the path handling missing modalities.The model potentially compensates for missing information through co-training interactions by exploiting the relationships between available modalities and the tumor segmentation task.EACNet was evaluated on the BraTS2018 and BraTS2020 challenge datasets and achieved state-of-the-art and competitive performance respectively.Notably,the segmentation results for the whole tumor(WT)dice similarity coefficient(DSC)reached 89.27%,surpassing the performance of existing methods.The analysis suggests that the ensemble approach offers potential benefits,and the adversarial co-training contributes to the increased robustness and accuracy of EACNet for brain tumor segmentation of MRI scans with missing modalities.The experimental results show that EACNet has promising results for the task of brain tumor segmentation of MRI scans with missing modalities and is a better candidate for real-world clinical applications. 展开更多
关键词 deep learning magnetic resonance imaging(MRI) medical image analysis semantic segmentation segmentation accuracy image synthesis
在线阅读 下载PDF
U-Net-Based Medical Image Segmentation:A Comprehensive Analysis and Performance Review
11
作者 Aliyu Abdulfatah Zhang Sheng Yirga Eyasu Tenawerk 《Journal of Electronic Research and Application》 2025年第1期202-208,共7页
Medical image segmentation has become a cornerstone for many healthcare applications,allowing for the automated extraction of critical information from images such as Computed Tomography(CT)scans,Magnetic Resonance Im... Medical image segmentation has become a cornerstone for many healthcare applications,allowing for the automated extraction of critical information from images such as Computed Tomography(CT)scans,Magnetic Resonance Imaging(MRIs),and X-rays.The introduction of U-Net in 2015 has significantly advanced segmentation capabilities,especially for small datasets commonly found in medical imaging.Since then,various modifications to the original U-Net architecture have been proposed to enhance segmentation accuracy and tackle challenges like class imbalance,data scarcity,and multi-modal image processing.This paper provides a detailed review and comparison of several U-Net-based architectures,focusing on their effectiveness in medical image segmentation tasks.We evaluate performance metrics such as Dice Similarity Coefficient(DSC)and Intersection over Union(IoU)across different U-Net variants including HmsU-Net,CrossU-Net,mResU-Net,and others.Our results indicate that architectural enhancements such as transformers,attention mechanisms,and residual connections improve segmentation performance across diverse medical imaging applications,including tumor detection,organ segmentation,and lesion identification.The study also identifies current challenges in the field,including data variability,limited dataset sizes,and issues with class imbalance.Based on these findings,the paper suggests potential future directions for improving the robustness and clinical applicability of U-Net-based models in medical image segmentation. 展开更多
关键词 U-Net architecture Medical image segmentation DSC IOU Transformer-based segmentation
在线阅读 下载PDF
CW-HRNet:Constrained Deformable Sampling and Wavelet-Guided Enhancement for Lightweight Crack Segmentation
12
作者 Dewang Ma 《Journal of Electronic Research and Application》 2025年第5期269-280,共12页
This paper presents CW-HRNet,a high-resolution,lightweight crack segmentation network designed to address challenges in complex scenes with slender,deformable,and blurred crack structures.The model incorporates two ke... This paper presents CW-HRNet,a high-resolution,lightweight crack segmentation network designed to address challenges in complex scenes with slender,deformable,and blurred crack structures.The model incorporates two key modules:Constrained Deformable Convolution(CDC),which stabilizes geometric alignment by applying a tanh limiter and learnable scaling factor to the predicted offsets,and the Wavelet Frequency Enhancement Module(WFEM),which decomposes features using Haar wavelets to preserve low-frequency structures while enhancing high-frequency boundaries and textures.Evaluations on the CrackSeg9k benchmark demonstrate CW-HRNet’s superior performance,achieving 82.39%mIoU with only 7.49M parameters and 10.34 GFLOPs,outperforming HrSegNet-B48 by 1.83% in segmentation accuracy with minimal complexity overhead.The model also shows strong cross-dataset generalization,achieving 60.01%mIoU and 66.22%F1 on Asphalt3k without fine-tuning.These results highlight CW-HRNet’s favorable accuracyefficiency trade-off for real-world crack segmentation tasks. 展开更多
关键词 Crack segmentation Lightweight semantic segmentation Deformable convolution Wavelet transform Road infrastructure
在线阅读 下载PDF
Global-Local Hybrid Modulation Network for Retinal Vessel and Coronary Angiograph Segmentation
13
作者 Pengfei Cai Biyuan Li +2 位作者 Jinying Ma Xiao Tian Jun Yan 《Journal of Bionic Engineering》 2025年第4期2050-2074,共25页
The segmentation of retinal vessels and coronary angiographs is essential for diagnosing conditions such as glaucoma,diabetes,hypertension,and coronary artery disease.However,retinal vessels and coronary angiographs a... The segmentation of retinal vessels and coronary angiographs is essential for diagnosing conditions such as glaucoma,diabetes,hypertension,and coronary artery disease.However,retinal vessels and coronary angiographs are characterized by low contrast and complex structures,posing challenges for vessel segmentation.Moreover,CNN-based approaches are limited in capturing long-range pixel relationships due to their focus on local feature extraction,while ViT-based approaches struggle to capture fine local details,impacting tasks like vessel segmentation that require precise boundary detection.To address these issues,in this paper,we propose a Global–Local Hybrid Modulation Network(GLHM-Net),a dual-encoder architecture that combines the strengths of CNNs and ViTs for vessel segmentation.First,the Hybrid Non-Local Transformer Block(HNLTB)is proposed to efficiently consolidate long-range spatial dependencies into a compact feature representation,providing a global perspective while significantly reducing computational overhead.Second,the Collaborative Attention Fusion Block(CAFB)is proposed to more effectively integrate local and global vessel features at the same hierarchical level during the encoding phase.Finally,the proposed Feature Cross-Modulation Block(FCMB)better complements the local and global features in the decoding stage,effectively enhancing feature learning and minimizing information loss.The experiments conducted on the DRIVE,CHASEDB1,DCA1,and XCAD datasets,achieving AUC values of 0.9811,0.9864,0.9915,and 0.9919,F1 scores of 0.8288,0.8202,0.8040,and 0.8150,and IOU values of 0.7076,0.6952,0.6723,and 0.6878,respectively,demonstrate the strong performance of our proposed network for vessel segmentation. 展开更多
关键词 Non-local transformer Feature fusion Collaborative attention Retinal vessel segmentation Coronary angiograph segmentation
在线阅读 下载PDF
Segmentation of CAD models using hybrid representation
14
作者 Claude UWIMANA Shengdi ZHOU +4 位作者 Limei YANG Zhuqing LI Norbelt MUTAGISHA Edouard NIYONGABO Bin ZHOU 《虚拟现实与智能硬件(中英文)》 2025年第2期188-202,共15页
In this paper,we introduce an innovative method for computer-aided design(CAD)segmentation by concatenating meshes and CAD models.Many previous CAD segmentation methods have achieved impressive performance using singl... In this paper,we introduce an innovative method for computer-aided design(CAD)segmentation by concatenating meshes and CAD models.Many previous CAD segmentation methods have achieved impressive performance using single representations,such as meshes,CAD,and point clouds.However,existing methods cannot effectively combine different three-dimensional model types for the direct conversion,alignment,and integrity maintenance of geometric and topological information.Hence,we propose an integration approach that combines the geometric accuracy of CAD data with the flexibility of mesh representations,as well as introduce a unique hybrid representation that combines CAD and mesh models to enhance segmentation accuracy.To combine these two model types,our hybrid system utilizes advanced-neural-network techniques to convert CAD models into mesh models.For complex CAD models,model segmentation is crucial for model retrieval and reuse.In partial retrieval,it aims to segment a complex CAD model into several simple components.The first component of our hybrid system involves advanced mesh-labeling algorithms that harness the digitization of CAD properties to mesh models.The second component integrates labelled face features for CAD segmentation by leveraging the abundant multisemantic information embedded in CAD models.This combination of mesh and CAD not only refines the accuracy of boundary delineation but also provides a comprehensive understanding of the underlying object semantics.This study uses the Fusion 360 Gallery dataset.Experimental results indicate that our hybrid method can segment these models with higher accuracy than other methods that use single representations. 展开更多
关键词 B-RepNet hybrid segmentation CAD models classification MeshCNN MeshCAD-Net
在线阅读 下载PDF
Methods for the Segmentation of Reticular Structures Using 3D LiDAR Data:A Comparative Evaluation
15
作者 Francisco J.Soler Mora Adrián PeidróVidal +2 位作者 Marc Fabregat-Jaén Luis PayáCastelló Óscar Reinoso García 《Computer Modeling in Engineering & Sciences》 2025年第6期3167-3195,共29页
Reticular structures are the basis of major infrastructure projects,including bridges,electrical pylons and airports.However,inspecting and maintaining these structures is both expensive and hazardous,traditionally re... Reticular structures are the basis of major infrastructure projects,including bridges,electrical pylons and airports.However,inspecting and maintaining these structures is both expensive and hazardous,traditionally requiring human involvement.While some research has been conducted in this field of study,most efforts focus on faults identification through images or the design of robotic platforms,often neglecting the autonomous navigation of robots through the structure.This study addresses this limitation by proposing methods to detect navigable surfaces in truss structures,thereby enhancing the autonomous capabilities of climbing robots to navigate through these environments.The paper proposes multiple approaches for the binary segmentation between navigable surfaces and background from 3D point clouds captured from metallic trusses.Approaches can be classified into two paradigms:analytical algorithms and deep learning methods.Within the analytical approach,an ad hoc algorithm is developed for segmenting the structures,leveraging different techniques to evaluate the eigendecomposition of planar patches within the point cloud.In parallel,widely used and advanced deep learning models,including PointNet,PointNet++,MinkUNet34C,and PointTransformerV3,are trained and evaluated for the same task.A comparative analysis of these paradigms reveals some key insights.The analytical algorithm demonstrates easier parameter adjustment and comparable performance to that of the deep learning models,despite the latter’s higher computational demands.Nevertheless,the deep learning models stand out in segmentation accuracy,with PointTransformerV3 achieving impressive results,such as a Mean Intersection Over Union(mIoU)of approximately 97%.This study highlights the potential of analytical and deep learning approaches to improve the autonomous navigation of climbing robots in complex truss structures.The findings underscore the trade-offs between computational efficiency and segmentation performance,offering valuable insights for future research and practical applications in autonomous infrastructure maintenance and inspection. 展开更多
关键词 INSPECTION STRUCTURES point clouds segmentation deep learning climbing robots
暂未订购
Structural segmentation of a mountain front fault evolved as an oblique thrust system:the North Tehran Fault case study
16
作者 Mohsen EHTESHAMI-MOINABADI Ali YASSAGHI 《Journal of Mountain Science》 2025年第7期2391-2422,共32页
Mountain front faults form the boundary between mountains and adjacent plains.These faults can propagate toward the plains and escalate the risk of seismic hazard for near cities.The North Tehran Fault(NTF)is a mounta... Mountain front faults form the boundary between mountains and adjacent plains.These faults can propagate toward the plains and escalate the risk of seismic hazard for near cities.The North Tehran Fault(NTF)is a mountain front fault bordering the Central Alborz with Tehran and Karaj plains.Structural and morphotectonic data from interpreted aerial photographs,satellite images,airborne geomagnetic data as well as field surveying have been used for detailed segmentation and evolution of the North Tehran Fault.This resulted in identification of the fault segments as the Niknamdeh,Darband,Darakeh-Garmdarreh,and Karaj from east to west.Active kinematics of these segments includes both thrusting and left-lateral components;but the dominant component is different among the segments.The Niknamdeh segment is connected to the Mosha Fault with a hard linkage,while its connection with the Darband segment is a widespread deformation zone.The connection zone between the Darband and Darakeh-Garmdarreh segments has the highest density of minor faults along the North Tehran Fault.The boundary of the Darakeh-Garmdarreh and Karaj segments is controlled by the F-3 transverse fault that has offset the NTF for~3 km right-laterally.The NTF has inverted from normal to dextral oblique fault in Miocene.The fault kinematics has changed from dextral to sinistral in Pliocene-Quaternary.Further regional oblique convergence resulted in minor fault reactivation such as relay ramp breaching faults,propagation of several footwall branches and hangingwall bypasses geometrical change of alluvial fans,and transfer of deformation front southwardly to the Tehran and Karaj plains.The findings of this paper are also applicable to other active oblique converging mountain fronts,inverted mountain front faults and the transition of deformation from these structures to the foreland basin. 展开更多
关键词 Mountain front Fault segmentation FORELAND Oblique inversion North Tehran Fault Central Alborz
原文传递
A medical image segmentation model based on SAM with an integrated local multi-scale feature encoder
17
作者 DI Jing ZHU Yunlong LIANG Chan 《Journal of Measurement Science and Instrumentation》 2025年第3期359-370,共12页
Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding ... Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding phase.This paper presents a medical image segmentation model based on SAM with a local multi-scale feature encoder(LMSFE-SAM)to address the issues above.Firstly,based on the SAM,a local multi-scale feature encoder is introduced to improve the representation of features within local receptive field,thereby supplying the Vision Transformer(ViT)branch in SAM with enriched local multi-scale contextual information.At the same time,a multiaxial Hadamard product module(MHPM)is incorporated into the local multi-scale feature encoder in a lightweight manner to reduce the quadratic complexity and noise interference.Subsequently,a cross-branch balancing adapter is designed to balance the local and global information between the local multi-scale feature encoder and the ViT encoder in SAM.Finally,to obtain smaller input image size and to mitigate overlapping in patch embeddings,the size of the input image is reduced from 1024×1024 pixels to 256×256 pixels,and a multidimensional information adaptation component is developed,which includes feature adapters,position adapters,and channel-spatial adapters.This component effectively integrates the information from small-sized medical images into SAM,enhancing its suitability for clinical deployment.The proposed model demonstrates an average enhancement ranging from 0.0387 to 0.3191 across six objective evaluation metrics on BUSI,DDTI,and TN3K datasets compared to eight other representative image segmentation models.This significantly enhances the performance of the SAM on medical images,providing clinicians with a powerful tool in clinical diagnosis. 展开更多
关键词 segment anything model(SAM) medical image segmentation ENCODER decoder multiaxial Hadamard product module(MHPM) cross-branch balancing adapter
在线阅读 下载PDF
UltraSegNet:A Hybrid Deep Learning Framework for Enhanced Breast Cancer Segmentation and Classification on Ultrasound Images
18
作者 Suhaila Abuowaida Hamza Abu Owida +3 位作者 Deema Mohammed Alsekait Nawaf Alshdaifat Diaa Salama Abd Elminaam Mohammad Alshinwan 《Computers, Materials & Continua》 2025年第5期3303-3333,共31页
Segmenting a breast ultrasound image is still challenging due to the presence of speckle noise,dependency on the operator,and the variation of image quality.This paper presents the UltraSegNet architecture that addres... Segmenting a breast ultrasound image is still challenging due to the presence of speckle noise,dependency on the operator,and the variation of image quality.This paper presents the UltraSegNet architecture that addresses these challenges through three key technical innovations:This work adds three things:(1)a changed ResNet-50 backbone with sequential 3×3 convolutions to keep fine anatomical details that are needed for finding lesion boundaries;(2)a computationally efficient regional attention mechanism that works on high-resolution features without using a transformer’s extra memory;and(3)an adaptive feature fusion strategy that changes local and global featuresbasedonhowthe image isbeing used.Extensive evaluation on two distinct datasets demonstrates UltraSegNet’s superior performance:On the BUSI dataset,it obtains a precision of 0.915,a recall of 0.908,and an F1 score of 0.911.In the UDAIT dataset,it achieves robust performance across the board,with a precision of 0.901 and recall of 0.894.Importantly,these improvements are achieved at clinically feasible computation times,taking 235 ms per image on standard GPU hardware.Notably,UltraSegNet does amazingly well on difficult small lesions(less than 10 mm),achieving a detection accuracy of 0.891.This is a huge improvement over traditional methods that have a hard time with small-scale features,as standard models can only achieve 0.63–0.71 accuracy.This improvement in small lesion detection is particularly crucial for early-stage breast cancer identification.Results from this work demonstrate that UltraSegNet can be practically deployable in clinical workflows to improve breast cancer screening accuracy. 展开更多
关键词 Breast cancer ultrasound image segmentation CLASSIFICATION deep learning
在线阅读 下载PDF
MLRT-UNet:An Efficient Multi-Level Relation Transformer Based U-Net for Thyroid Nodule Segmentation
19
作者 Kaku Haribabu Prasath R Praveen Joe IR 《Computer Modeling in Engineering & Sciences》 2025年第4期413-448,共36页
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and treatment.However,achieving precise segmentation remains a challenge due to vari... Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and treatment.However,achieving precise segmentation remains a challenge due to various factors,including scattering noise,low contrast,and limited resolution in ultrasound images.Although existing segmentation models have made progress,they still suffer from several limitations,such as high error rates,low generalizability,overfitting,limited feature learning capability,etc.To address these challenges,this paper proposes a Multi-level Relation Transformer-based U-Net(MLRT-UNet)to improve thyroid nodule segmentation.The MLRTUNet leverages a novel Relation Transformer,which processes images at multiple scales,overcoming the limitations of traditional encoding methods.This transformer integrates both local and global features effectively through selfattention and cross-attention units,capturing intricate relationships within the data.The approach also introduces a Co-operative Transformer Fusion(CTF)module to combine multi-scale features from different encoding layers,enhancing the model’s ability to capture complex patterns in the data.Furthermore,the Relation Transformer block enhances long-distance dependencies during the decoding process,improving segmentation accuracy.Experimental results showthat the MLRT-UNet achieves high segmentation accuracy,reaching 98.2% on the Digital Database Thyroid Image(DDT)dataset,97.8% on the Thyroid Nodule 3493(TG3K)dataset,and 98.2% on the Thyroid Nodule3K(TN3K)dataset.These findings demonstrate that the proposed method significantly enhances the accuracy of thyroid nodule segmentation,addressing the limitations of existing models. 展开更多
关键词 Thyroid nodules endocrine system multi-level relation transformer U-Net self-attention external attention co-operative transformer fusion thyroid nodules segmentation
在线阅读 下载PDF
Retinal Vessel Segmentation based on Improved PCNN and Gray Wolf Optimization Algorithm
20
作者 Xingfu Ou Miao Zhang Wenfeng Chen 《Journal of Electronic Research and Application》 2025年第3期318-331,共14页
Since the problems of branch loss and fracture in retinal blood vessel segmentation algorithms,an image segmentation method is proposed based on improved pulse coupled neural network(PCNN)and gray wolf optimization al... Since the problems of branch loss and fracture in retinal blood vessel segmentation algorithms,an image segmentation method is proposed based on improved pulse coupled neural network(PCNN)and gray wolf optimization algorithm(GWO).Simplifying the neuron input domain and neuron connection domain of the PCNN network,increasing the gradient information factor in the internal activity items,reducing the model parameters,enhancing the pulse issuing ability,and the optimal parameters of the network are automatically obtained based on multiple feature evaluation criteria and the GWO algorithm.The test in the public data set drive shows that the sensitivity,accuracy,precision,and specificity of the algorithm are 0.799549,0.962789,0.889163,and 0.986552,respectively.The accuracy and specificity are better than the classical segmentation algorithm.It solved the influence of low illumination,optic disc highlight,and foveal shadow on vascular segmentation,and showed excellent performance of vessel connectivity and terminal sensitivity. 展开更多
关键词 Retinal blood vessel Image segmentation PCNN GWO Parameter adaptation Multi-feature evaluation criteria
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部