期刊文献+
共找到63,783篇文章
< 1 2 250 >
每页显示 20 50 100
基于VOSviewer与CiteSpace的仿制药研究现状及趋势 被引量:2
1
作者 刘少华 吴春兴 +3 位作者 孙法瑞 舒成仁 王雨来 邵碧波 《药物评价研究》 北大核心 2025年第3期746-756,共11页
目的基于文献计量学总结国内外仿制药领域的研究现状及趋势,为进一步研究提供参考。方法通过检索收集中国学术期刊全文数据库(CNKI)、Web of Science数据库中收录的相关文献,借助CiteSpace6.3R2、VOSview1.6.20、文献计量学在线分析平... 目的基于文献计量学总结国内外仿制药领域的研究现状及趋势,为进一步研究提供参考。方法通过检索收集中国学术期刊全文数据库(CNKI)、Web of Science数据库中收录的相关文献,借助CiteSpace6.3R2、VOSview1.6.20、文献计量学在线分析平台等探讨本领域的作者机构合作、国家合作概况,并分析关键词共现、聚类、突现等,并对分析结果可视化展示。结果共纳入2564篇文献,其中中文文献641篇,英文文献1923篇。刊文趋势表明,国内外仿制药领域研究的发展趋势基本相同。目前本领域研究已有国际化趋势,但我国的国际合作中心性为0。关键词分析显示,国内外仿制药领域研究内容在保持一致的前提下各有侧重,其研究内容与热点可相互补充借鉴。结论系统分析了2000—2024年间仿制药领域的相关文献,总结了目前全球仿制药领域的研究现状及趋势,并进一步指出国内外研究的异同,可为本领域的进一步研究提供指导。 展开更多
关键词 仿制药 文献计量学 vos viewer CITESPACE 一致性评价 生物等效性
原文传递
MG-SLAM: RGB-D SLAM Based on Semantic Segmentation for Dynamic Environment in the Internet of Vehicles 被引量:1
2
作者 Fengju Zhang Kai Zhu 《Computers, Materials & Continua》 2025年第2期2353-2372,共20页
The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology play... The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology plays a crucial role in vehicle localization and navigation. Traditional Simultaneous Localization and Mapping (SLAM) systems are designed for use in static environments, and they can result in poor performance in terms of accuracy and robustness when used in dynamic environments where objects are in constant movement. To address this issue, a new real-time visual SLAM system called MG-SLAM has been developed. Based on ORB-SLAM2, MG-SLAM incorporates a dynamic target detection process that enables the detection of both known and unknown moving objects. In this process, a separate semantic segmentation thread is required to segment dynamic target instances, and the Mask R-CNN algorithm is applied on the Graphics Processing Unit (GPU) to accelerate segmentation. To reduce computational cost, only key frames are segmented to identify known dynamic objects. Additionally, a multi-view geometry method is adopted to detect unknown moving objects. The results demonstrate that MG-SLAM achieves higher precision, with an improvement from 0.2730 m to 0.0135 m in precision. Moreover, the processing time required by MG-SLAM is significantly reduced compared to other dynamic scene SLAM algorithms, which illustrates its efficacy in locating objects in dynamic scenes. 展开更多
关键词 Visual SLAM dynamic scene semantic segmentation GPU acceleration key segmentation frame
在线阅读 下载PDF
High-Precision Brain Tumor Segmentation using a Progressive Layered U-Net(PLU-Net)with Multi-Scale Data Augmentation and Attention Mechanisms on Multimodal Magnetic Resonance Imaging 被引量:1
3
作者 Noman Ahmed Siddiqui Muhammad Tahir Qadri +1 位作者 Muhammad Ovais Akhter Zain Anwar Ali 《Instrumentation》 2025年第1期77-92,共16页
Brain tumors present significant challenges in medical diagnosis and treatment,where early detection is crucial for reducing morbidity and mortality rates.This research introduces a novel deep learning model,the Progr... Brain tumors present significant challenges in medical diagnosis and treatment,where early detection is crucial for reducing morbidity and mortality rates.This research introduces a novel deep learning model,the Progressive Layered U-Net(PLU-Net),designed to improve brain tumor segmentation accuracy from Magnetic Resonance Imaging(MRI)scans.The PLU-Net extends the standard U-Net architecture by incorporating progressive layering,attention mechanisms,and multi-scale data augmentation.The progressive layering involves a cascaded structure that refines segmentation masks across multiple stages,allowing the model to capture features at different scales and resolutions.Attention gates within the convolutional layers selectively focus on relevant features while suppressing irrelevant ones,enhancing the model's ability to delineate tumor boundaries.Additionally,multi-scale data augmentation techniques increase the diversity of training data and boost the model's generalization capabilities.Evaluated on the BraTS 2021 dataset,the PLU-Net achieved state-of-the-art performance with a dice coefficient of 0.91,specificity of 0.92,sensitivity of 0.89,Hausdorff95 of 2.5,outperforming other modified U-Net architectures in segmentation accuracy.These results underscore the effectiveness of the PLU-Net in improving brain tumor segmentation from MRI scans,supporting clinicians in early diagnosis,treatment planning,and the development of new therapies. 展开更多
关键词 brain tumor segmentation MRI machine learning BraTS deep learning model PLU-Net
原文传递
Stochastic Augmented-Based Dual-Teaching for Semi-Supervised Medical Image Segmentation
4
作者 Hengyang Liu Yang Yuan +2 位作者 Pengcheng Ren Chengyun Song Fen Luo 《Computers, Materials & Continua》 SCIE EI 2025年第1期543-560,共18页
Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)t... Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled information;(2)low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled data;(3)the segmentation performance in low-contrast and local regions is less than optimal.We design a Stochastic Augmentation-Based Dual-Teaching Auxiliary Training Strategy(SADT),which enhances feature diversity and learns high-quality features to overcome these problems.To be more precise,SADT trains the Student Network by using pseudo-label-based training from Teacher Network 1 and supervised learning with labeled data,which prevents the loss of rare labeled data.We introduce a bi-directional copy-pastemask with progressive high-entropy filtering to reduce data distribution disparities and mitigate confirmation bias in pseudo-supervision.For the mixed images,Deep-Shallow Spatial Contrastive Learning(DSSCL)is proposed in the feature spaces of Teacher Network 2 and the Student Network to improve the segmentation capabilities in low-contrast and local areas.In this procedure,the features retrieved by the Student Network are subjected to a random feature perturbation technique.On two openly available datasets,extensive trials show that our proposed SADT performs much better than the state-ofthe-art semi-supervised medical segmentation techniques.Using only 10%of the labeled data for training,SADT was able to acquire a Dice score of 90.10%on the ACDC(Automatic Cardiac Diagnosis Challenge)dataset. 展开更多
关键词 SEMI-SUPERVISED medical image segmentation contrastive learning stochastic augmented
在线阅读 下载PDF
基于VOS viewer的地热研究国内外文献可视化分析
5
作者 王苏桐 丁朋朋 +2 位作者 何怡香 郭政 王明珠 《能源与环保》 2025年第1期107-113,共7页
地热作为绿色低碳的可再生能源,在能源领域具有重要意义。为了探究当前国内外学者在地热领域的研究方向和热点,明确地热研究的发展前景,对2000—2023年中国知网(CNKI)和Web of Science(WoS)数据库所收录的地热领域高质量文献进行检索,... 地热作为绿色低碳的可再生能源,在能源领域具有重要意义。为了探究当前国内外学者在地热领域的研究方向和热点,明确地热研究的发展前景,对2000—2023年中国知网(CNKI)和Web of Science(WoS)数据库所收录的地热领域高质量文献进行检索,并利用VOS viewer进行可视化分析,掌握数据库年发文量、国家和机构、期刊发文量、高被引文献及文献所涉及的关键词。研究结果表明,在2000—2023年间,地热研究方向中英文文献的发文量总体均呈上升趋势;在发文机构方面,中国地质大学、中国科学院等中国科研机构已跃升为发文的重要基石,主要发表在《水文地质工程地质》《Geothermics》《太阳能学报》《Geothermics》的文献最多,为1213篇;地热领域研究主要集中于地热资源勘探与开发。研究可为科研人员全面了解2000年至今的地热研究现状与未来发展趋势提供参考。 展开更多
关键词 地热 vos viewer 可视化分析 CNKI Web of Science 研究热点
在线阅读 下载PDF
利用电子清纱器和村田VOS报警功能控制疵点纱
6
作者 陈洪奎 臧文会 封玉蓉 《纺织器材》 2025年第5期37-39,49,共4页
为有效控制并减少疵点纱,从电清门限的设置、电子清纱器的应用、村田VOS报警功能使用3方面详述疵点纱的控制方法,结合实际案例对应用效果进行分析。指出:控制并减少疵点纱,强化疵点纱管理,对纺纱企业至关重要;合理设置电清门限,用好电... 为有效控制并减少疵点纱,从电清门限的设置、电子清纱器的应用、村田VOS报警功能使用3方面详述疵点纱的控制方法,结合实际案例对应用效果进行分析。指出:控制并减少疵点纱,强化疵点纱管理,对纺纱企业至关重要;合理设置电清门限,用好电子清纱器及村田VOS报警功能,准确识别疵点纱的类别、分析疵点纱的成因并采取相应解决措施,可减少吨纱疵点纱。 展开更多
关键词 电子清纱器 vos报警 疵点纱 电清门限 疵点分级 机械波
在线阅读 下载PDF
基于VOS viewer文献计量学、化学成分和肺病相关药理作用的蒙药扫日劳-4研究概况
7
作者 张秀艳 董馨 +4 位作者 李雪岩 张秀慧 王慧 乌静 吉木斯 《中国民族医药杂志》 2025年第7期59-63,共5页
蒙药扫日劳-4为蒙医常用治肺病制剂,其临床疗效确切。本文通过VOS viewer文献计量学方法将近年来关于扫日劳-4全部文献检索,从整体上对其研究现状进行可视化分析,并对其整方及单药材所含化学成分特有性、化学成分可测性、肺病相关的药... 蒙药扫日劳-4为蒙医常用治肺病制剂,其临床疗效确切。本文通过VOS viewer文献计量学方法将近年来关于扫日劳-4全部文献检索,从整体上对其研究现状进行可视化分析,并对其整方及单药材所含化学成分特有性、化学成分可测性、肺病相关的药理作用研究进行归纳总结,旨在为其完善后续研究提供参考。 展开更多
关键词 扫日劳-4 vos viewer 化学成分 药理作用
暂未订购
Semantic Segmentation of Lumbar Vertebrae Using Meijering U-Net(MU-Net)on Spine Magnetic Resonance Images
8
作者 Lakshmi S V V Shiloah Elizabeth Darmanayagam Sunil Retmin Raj Cyril 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期733-757,共25页
Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the s... Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the spinal cord,nerves,intervertebral discs,and vertebrae,Magnetic Resonance Imaging is thought to be the most effective method for imaging the spine.The semantic segmentation of vertebrae plays a major role in the diagnostic process of lumbar diseases.It is difficult to semantically partition the vertebrae in Magnetic Resonance Images from the surrounding variety of tissues,including muscles,ligaments,and intervertebral discs.U-Net is a powerful deep-learning architecture to handle the challenges of medical image analysis tasks and achieves high segmentation accuracy.This work proposes a modified U-Net architecture namely MU-Net,consisting of the Meijering convolutional layer that incorporates the Meijering filter to perform the semantic segmentation of lumbar vertebrae L1 to L5 and sacral vertebra S1.Pseudo-colour mask images were generated and used as ground truth for training the model.The work has been carried out on 1312 images expanded from T1-weighted mid-sagittal MRI images of 515 patients in the Lumbar Spine MRI Dataset publicly available from Mendeley Data.The proposed MU-Net model for the semantic segmentation of the lumbar vertebrae gives better performance with 98.79%of pixel accuracy(PA),98.66%of dice similarity coefficient(DSC),97.36%of Jaccard coefficient,and 92.55%mean Intersection over Union(mean IoU)metrics using the mentioned dataset. 展开更多
关键词 Computer aided diagnosis(CAD) magnetic resonance imaging(MRI) semantic segmentation lumbar vertebrae deep learning U-Net model
在线阅读 下载PDF
Dual encoding feature filtering generalized attention UNET for retinal vessel segmentation
9
作者 ISLAM Md Tauhidul WU Da-Wen +6 位作者 TANG Qing-Qing ZHAO Kai-Yang YIN Teng LI Yan-Fei SHANG Wen-Yi LIU Jing-Yu ZHANG Hai-Xian 《四川大学学报(自然科学版)》 北大核心 2025年第1期79-95,共17页
Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited t... Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited training data,imbalance data distribution,and inadequate feature extraction persist,hindering both the segmentation performance and optimal model generalization.Addressing these critical issues,the DEFFA-Unet is proposed featuring an additional encoder to process domain-invariant pre-processed inputs,thereby improving both richer feature encoding and enhanced model generalization.A feature filtering fusion module is developed to ensure the precise feature filtering and robust hybrid feature fusion.In response to the task-specific need for higher precision where false positives are very costly,traditional skip connections are replaced with the attention-guided feature reconstructing fusion module.Additionally,innovative data augmentation and balancing methods are proposed to counter data scarcity and distribution imbalance,further boosting the robustness and generalization of the model.With a comprehensive suite of evaluation metrics,extensive validations on four benchmark datasets(DRIVE,CHASEDB1,STARE,and HRF)and an SLO dataset(IOSTAR),demonstrate the proposed method’s superiority over both baseline and state-of-the-art models.Particularly the proposed method significantly outperforms the compared methods in cross-validation model generalization. 展开更多
关键词 Vessel segmentation Data balancing Data augmentation Dual encoder Attention Mechanism Model generalization
在线阅读 下载PDF
CableSAM:an efficient automatic segmentation method for aircraft cabin cables
10
作者 LING Aihua WANG Junwen +1 位作者 LU Jiaming LIU Ruyu 《Optoelectronics Letters》 2025年第3期183-187,共5页
Cabin cables,as critical components of an aircraft's electrical system,significantly impact the operational efficiency and safety of the aircraft.The existing cable segmentation methods in civil aviation cabins ar... Cabin cables,as critical components of an aircraft's electrical system,significantly impact the operational efficiency and safety of the aircraft.The existing cable segmentation methods in civil aviation cabins are limited,especially in automation,heavily dependent on large amounts of data and resources,lacking the flexibility to adapt to different scenarios.To address these challenges,this paper introduces a novel image segmentation model,CableSAM,specifically designed for automated segmentation of cabin cables.CableSAM improves segmentation efficiency and accuracy using knowledge distillation and employs a context ensemble strategy.It accurately segments cables in various scenarios with minimal input prompts.Comparative experiments on three cable datasets demonstrate that CableSAM surpasses other advanced cable segmentation methods in performance. 展开更多
关键词 image segmentation aircraft cabin automatic segmentation automated segmentation cabin cablesas civil aviation cabins cable segmentation knowledge distillation
原文传递
Optimized algorithm for image semantic segmentation compression algorithm in video surveillance scenarios
11
作者 ZHANG Yangmei ZHANG Xishan +1 位作者 ZHANG Shuo LI Jintao 《High Technology Letters》 2025年第2期194-203,共10页
In recent years,video coding has been widely applied in the field of video image processing to remove redundant information and improve data transmission efficiency.However,during the video coding process,irrelevant o... In recent years,video coding has been widely applied in the field of video image processing to remove redundant information and improve data transmission efficiency.However,during the video coding process,irrelevant objects such as background elements are often encoded due to environmental disturbances,resulting in the wastage of computational resources.Existing research on video coding efficiency optimization primarily focuses on optimizing encoding units during intra-frame or inter frame prediction after the generation of coding units,neglecting the optimization of video images before coding unit generation.To address this challenge,This work proposes an image semantic segmentation compression algorithm based on macroblock encoding,called image semantic segmentation compression algorithm based on macroblock encoding(ISSC-ME),which consists of three modules.(1)The semantic label generation module generates interesting object labels using a grid-based approach to reduce redundant coding of consecutive frames.(2)The image segmentation network module generates a semantic segmentation image using U-Net.(3)The macroblock coding module,is a block segmentation-based video encoding and decoding algorithm used to compress images and improve video transmission efficiency.Experimental results show that the proposed image semantic segmentation optimization algorithm can reduce the computational costs,and improve the overall accuracy by 1.00%and the mean intersection over union(IoU)by 1.20%.In addition,the proposed compression algorithm utilizes macroblock fusion,resulting in the image compression rate achieving 80.64%.It has been proven that the proposed algorithm greatly reduces data storage and transmission,and enables fast image compression processing at the millisecond level. 展开更多
关键词 macroblock encoding semantic segmentation segmentation compression
在线阅读 下载PDF
U-Net-Based Medical Image Segmentation:A Comprehensive Analysis and Performance Review
12
作者 Aliyu Abdulfatah Zhang Sheng Yirga Eyasu Tenawerk 《Journal of Electronic Research and Application》 2025年第1期202-208,共7页
Medical image segmentation has become a cornerstone for many healthcare applications,allowing for the automated extraction of critical information from images such as Computed Tomography(CT)scans,Magnetic Resonance Im... Medical image segmentation has become a cornerstone for many healthcare applications,allowing for the automated extraction of critical information from images such as Computed Tomography(CT)scans,Magnetic Resonance Imaging(MRIs),and X-rays.The introduction of U-Net in 2015 has significantly advanced segmentation capabilities,especially for small datasets commonly found in medical imaging.Since then,various modifications to the original U-Net architecture have been proposed to enhance segmentation accuracy and tackle challenges like class imbalance,data scarcity,and multi-modal image processing.This paper provides a detailed review and comparison of several U-Net-based architectures,focusing on their effectiveness in medical image segmentation tasks.We evaluate performance metrics such as Dice Similarity Coefficient(DSC)and Intersection over Union(IoU)across different U-Net variants including HmsU-Net,CrossU-Net,mResU-Net,and others.Our results indicate that architectural enhancements such as transformers,attention mechanisms,and residual connections improve segmentation performance across diverse medical imaging applications,including tumor detection,organ segmentation,and lesion identification.The study also identifies current challenges in the field,including data variability,limited dataset sizes,and issues with class imbalance.Based on these findings,the paper suggests potential future directions for improving the robustness and clinical applicability of U-Net-based models in medical image segmentation. 展开更多
关键词 U-Net architecture Medical image segmentation DSC IOU Transformer-based segmentation
在线阅读 下载PDF
Pre-trained SAM as data augmentation for image segmentation
13
作者 Junjun Wu Yunbo Rao +1 位作者 Shaoning Zeng Bob Zhang 《CAAI Transactions on Intelligence Technology》 2025年第1期268-282,共15页
Data augmentation plays an important role in training deep neural model by expanding the size and diversity of the dataset.Initially,data augmentation mainly involved some simple transformations of images.Later,in ord... Data augmentation plays an important role in training deep neural model by expanding the size and diversity of the dataset.Initially,data augmentation mainly involved some simple transformations of images.Later,in order to increase the diversity and complexity of data,more advanced methods appeared and evolved to sophisticated generative models.However,these methods required a mass of computation of training or searching.In this paper,a novel training-free method that utilises the Pre-Trained Segment Anything Model(SAM)model as a data augmentation tool(PTSAM-DA)is proposed to generate the augmented annotations for images.Without the need for training,it obtains prompt boxes from the original annotations and then feeds the boxes to the pre-trained SAM to generate diverse and improved annotations.In this way,annotations are augmented more ingenious than simple manipulations without incurring huge computation for training a data augmentation model.Multiple comparative experiments on three datasets are conducted,including an in-house dataset,ADE20K and COCO2017.On this in-house dataset,namely Agricultural Plot Segmentation Dataset,maximum improvements of 3.77%and 8.92%are gained in two mainstream metrics,mIoU and mAcc,respectively.Consequently,large vision models like SAM are proven to be promising not only in image segmentation but also in data augmentation. 展开更多
关键词 data augmentation image segmentation large model segment anything model
在线阅读 下载PDF
CW-HRNet:Constrained Deformable Sampling and Wavelet-Guided Enhancement for Lightweight Crack Segmentation
14
作者 Dewang Ma 《Journal of Electronic Research and Application》 2025年第5期269-280,共12页
This paper presents CW-HRNet,a high-resolution,lightweight crack segmentation network designed to address challenges in complex scenes with slender,deformable,and blurred crack structures.The model incorporates two ke... This paper presents CW-HRNet,a high-resolution,lightweight crack segmentation network designed to address challenges in complex scenes with slender,deformable,and blurred crack structures.The model incorporates two key modules:Constrained Deformable Convolution(CDC),which stabilizes geometric alignment by applying a tanh limiter and learnable scaling factor to the predicted offsets,and the Wavelet Frequency Enhancement Module(WFEM),which decomposes features using Haar wavelets to preserve low-frequency structures while enhancing high-frequency boundaries and textures.Evaluations on the CrackSeg9k benchmark demonstrate CW-HRNet’s superior performance,achieving 82.39%mIoU with only 7.49M parameters and 10.34 GFLOPs,outperforming HrSegNet-B48 by 1.83% in segmentation accuracy with minimal complexity overhead.The model also shows strong cross-dataset generalization,achieving 60.01%mIoU and 66.22%F1 on Asphalt3k without fine-tuning.These results highlight CW-HRNet’s favorable accuracyefficiency trade-off for real-world crack segmentation tasks. 展开更多
关键词 Crack segmentation Lightweight semantic segmentation Deformable convolution Wavelet transform Road infrastructure
在线阅读 下载PDF
Global-Local Hybrid Modulation Network for Retinal Vessel and Coronary Angiograph Segmentation
15
作者 Pengfei Cai Biyuan Li +2 位作者 Jinying Ma Xiao Tian Jun Yan 《Journal of Bionic Engineering》 2025年第4期2050-2074,共25页
The segmentation of retinal vessels and coronary angiographs is essential for diagnosing conditions such as glaucoma,diabetes,hypertension,and coronary artery disease.However,retinal vessels and coronary angiographs a... The segmentation of retinal vessels and coronary angiographs is essential for diagnosing conditions such as glaucoma,diabetes,hypertension,and coronary artery disease.However,retinal vessels and coronary angiographs are characterized by low contrast and complex structures,posing challenges for vessel segmentation.Moreover,CNN-based approaches are limited in capturing long-range pixel relationships due to their focus on local feature extraction,while ViT-based approaches struggle to capture fine local details,impacting tasks like vessel segmentation that require precise boundary detection.To address these issues,in this paper,we propose a Global–Local Hybrid Modulation Network(GLHM-Net),a dual-encoder architecture that combines the strengths of CNNs and ViTs for vessel segmentation.First,the Hybrid Non-Local Transformer Block(HNLTB)is proposed to efficiently consolidate long-range spatial dependencies into a compact feature representation,providing a global perspective while significantly reducing computational overhead.Second,the Collaborative Attention Fusion Block(CAFB)is proposed to more effectively integrate local and global vessel features at the same hierarchical level during the encoding phase.Finally,the proposed Feature Cross-Modulation Block(FCMB)better complements the local and global features in the decoding stage,effectively enhancing feature learning and minimizing information loss.The experiments conducted on the DRIVE,CHASEDB1,DCA1,and XCAD datasets,achieving AUC values of 0.9811,0.9864,0.9915,and 0.9919,F1 scores of 0.8288,0.8202,0.8040,and 0.8150,and IOU values of 0.7076,0.6952,0.6723,and 0.6878,respectively,demonstrate the strong performance of our proposed network for vessel segmentation. 展开更多
关键词 Non-local transformer Feature fusion Collaborative attention Retinal vessel segmentation Coronary angiograph segmentation
在线阅读 下载PDF
CAMSNet:Few-Shot Semantic Segmentation via Class Activation Map and Self-Cross Attention Block
16
作者 Jingjing Yan Xuyang Zhuang +2 位作者 Xuezhuan Zhao Xiaoyan Shao Jiaqi Han 《Computers, Materials & Continua》 2025年第3期5363-5386,共24页
The key to the success of few-shot semantic segmentation(FSS)depends on the efficient use of limited annotated support set to accurately segment novel classes in the query set.Due to the few samples in the support set... The key to the success of few-shot semantic segmentation(FSS)depends on the efficient use of limited annotated support set to accurately segment novel classes in the query set.Due to the few samples in the support set,FSS faces challenges such as intra-class differences,background(BG)mismatches between query and support sets,and ambiguous segmentation between the foreground(FG)and BG in the query set.To address these issues,The paper propose a multi-module network called CAMSNet,which includes four modules:the General Information Module(GIM),the Class Activation Map Aggregation(CAMA)module,the Self-Cross Attention(SCA)Block,and the Feature Fusion Module(FFM).In CAMSNet,The GIM employs an improved triplet loss,which concatenates word embedding vectors and support prototypes as anchors,and uses local support features of FG and BG as positive and negative samples to help solve the problem of intra-class differences.Then for the first time,the Class Activation Map(CAM)from the Weakly Supervised Semantic Segmentation(WSSS)is applied to FSS within the CAMA module.This method replaces the traditional use of cosine similarity to locate query information.Subsequently,the SCA Block processes the support and query features aggregated by the CAMA module,significantly enhancing the understanding of input information,leading to more accurate predictions and effectively addressing BG mismatch and ambiguous FG-BG segmentation.Finally,The FFM combines general class information with the enhanced query information to achieve accurate segmentation of the query image.Extensive Experiments on PASCAL and COCO demonstrate that-5i-20ithe CAMSNet yields superior performance and set a state-of-the-art. 展开更多
关键词 Few-shot semantic segmentation semantic segmentation meta learning
在线阅读 下载PDF
A 3D semantic segmentation network for accurate neuronal soma segmentation
17
作者 Li Ma Qi Zhong +2 位作者 Yezi Wang Xiaoquan Yang Qian Du 《Journal of Innovative Optical Health Sciences》 2025年第1期67-83,共17页
Neuronal soma segmentation plays a crucial role in neuroscience applications.However,the fine structure,such as boundaries,small-volume neuronal somata and fibers,are commonly present in cell images,which pose a chall... Neuronal soma segmentation plays a crucial role in neuroscience applications.However,the fine structure,such as boundaries,small-volume neuronal somata and fibers,are commonly present in cell images,which pose a challenge for accurate segmentation.In this paper,we propose a 3D semantic segmentation network for neuronal soma segmentation to address this issue.Using an encoding-decoding structure,we introduce a Multi-Scale feature extraction and Adaptive Weighting fusion module(MSAW)after each encoding block.The MSAW module can not only emphasize the fine structures via an upsampling strategy,but also provide pixel-wise weights to measure the importance of the multi-scale features.Additionally,a dynamic convolution instead of normal convolution is employed to better adapt the network to input data with different distributions.The proposed MSAW-based semantic segmentation network(MSAW-Net)was evaluated on three neuronal soma images from mouse brain and one neuronal soma image from macaque brain,demonstrating the efficiency of the proposed method.It achieved an F1 score of 91.8%on Fezf2-2A-CreER dataset,97.1%on LSL-H2B-GFP dataset,82.8%on Thy1-EGFP-Mline dataset,and 86.9%on macaque dataset,achieving improvements over the 3D U-Net model by 3.1%,3.3%,3.9%,and 2.3%,respectively. 展开更多
关键词 Neuronal soma segmentation semantic segmentation network multi-scale feature extraction adaptive weighting fusion
原文传递
Optimizing zero-shot text-based segmentation of remote sensing imagery using SAM and Grounding DINO
18
作者 Mohanad Diab Polychronis Kolokoussis Maria Antonia Brovelli 《Artificial Intelligence in Geosciences》 2025年第1期14-24,共11页
The use of AI technologies in remote sensing(RS)tasks has been the focus of many individuals in both the professional and academic domains.Having more accessible interfaces and tools that allow people of little or no ... The use of AI technologies in remote sensing(RS)tasks has been the focus of many individuals in both the professional and academic domains.Having more accessible interfaces and tools that allow people of little or no experience to intuitively interact with RS data of multiple formats is a potential provided by this integration.However,the use of AI and AI agents to help automate RS-related tasks is still in its infancy stage,with some frameworks and interfaces built on top of well-known vision language models(VLM)such as GPT-4,segment anything model(SAM),and grounding DINO.These tools do promise and draw guidelines on the potentials and limitations of existing solutions concerning the use of said models.In this work,the state of the art AI foundation models(FM)are reviewed and used in a multi-modal manner to ingest RS imagery input and perform zero-shot object detection using natural language.The natural language input is then used to define the classes or labels the model should look for,then,both inputs are fed to the pipeline.The pipeline presented in this work makes up for the shortcomings of the general knowledge FMs by stacking pre-processing and post-processing applications on top of the FMs;these applications include tiling to produce uniform patches of the original image for faster detection,outlier rejection of redundant bounding boxes using statistical and machine learning methods.The pipeline was tested with UAV,aerial and satellite images taken over multiple areas.The accuracy for the semantic segmentation showed improvement from the original 64%to approximately 80%-99%by utilizing the pipeline and techniques proposed in this work.GitHub Repository:MohanadDiab/LangRS. 展开更多
关键词 Foundation models Multi-modal models Vision language models Semantic segmentation Segment anything model Earth observation Remote sensing
在线阅读 下载PDF
EACNet:Ensemble adversarial co-training neural network for handling missing modalities in MRI images for brain tumor segmentation
19
作者 RAMADHAN Amran Juma CHEN Jing PENG Junlan 《Journal of Measurement Science and Instrumentation》 2025年第1期11-25,共15页
Brain tumor segmentation is critical in clinical diagnosis and treatment planning.Existing methods for brain tumor segmentation with missing modalities often struggle when dealing with multiple missing modalities,a co... Brain tumor segmentation is critical in clinical diagnosis and treatment planning.Existing methods for brain tumor segmentation with missing modalities often struggle when dealing with multiple missing modalities,a common scenario in real-world clinical settings.These methods primarily focus on handling a single missing modality at a time,making them insufficiently robust for the additional complexity encountered with incomplete data containing various missing modality combinations.Additionally,most existing methods rely on single models,which may limit their performance and increase the risk of overfitting the training data.This work proposes a novel method called the ensemble adversarial co-training neural network(EACNet)for accurate brain tumor segmentation from multi-modal magnetic resonance imaging(MRI)scans with multiple missing modalities.The proposed method consists of three key modules:the ensemble of pre-trained models,which captures diverse feature representations from the MRI data by employing an ensemble of pre-trained models;adversarial learning,which leverages a competitive training approach involving two models;a generator model,which creates realistic missing data,while sub-networks acting as discriminators learn to distinguish real data from the generated“fake”data.Co-training framework utilizes the information extracted by the multimodal path(trained on complete scans)to guide the learning process in the path handling missing modalities.The model potentially compensates for missing information through co-training interactions by exploiting the relationships between available modalities and the tumor segmentation task.EACNet was evaluated on the BraTS2018 and BraTS2020 challenge datasets and achieved state-of-the-art and competitive performance respectively.Notably,the segmentation results for the whole tumor(WT)dice similarity coefficient(DSC)reached 89.27%,surpassing the performance of existing methods.The analysis suggests that the ensemble approach offers potential benefits,and the adversarial co-training contributes to the increased robustness and accuracy of EACNet for brain tumor segmentation of MRI scans with missing modalities.The experimental results show that EACNet has promising results for the task of brain tumor segmentation of MRI scans with missing modalities and is a better candidate for real-world clinical applications. 展开更多
关键词 deep learning magnetic resonance imaging(MRI) medical image analysis semantic segmentation segmentation accuracy image synthesis
在线阅读 下载PDF
Improved SE-UNet network-based semantic segmentation and extraction of hidden geological significance in geological maps
20
作者 Kai Ma Jun-jie Liu +5 位作者 Si-qi Lu Ze-hua Huang Miao Tian Jun-yuan Deng Zhong Xie Qin-jun Qiu 《China Geology》 2025年第4期643-660,共18页
Automatic segmentation and recognition of content and element information in color geological map are of great significance for researchers to analyze the distribution of mineral resources and predict disaster informa... Automatic segmentation and recognition of content and element information in color geological map are of great significance for researchers to analyze the distribution of mineral resources and predict disaster information.This article focuses on color planar raster geological map(geological maps include planar geological maps,columnar maps,and profiles).While existing deep learning approaches are often used to segment general images,their performance is limited due to complex elements,diverse regional features,and complicated backgrounds for color geological map in the domain of geoscience.To address the issue,a color geological map segmentation model is proposed that combines the Felz clustering algorithm and an improved SE-UNet deep learning network(named GeoMSeg).Firstly,a symmetrical encoder-decoder structure backbone network based on UNet is constructed,and the channel attention mechanism SENet has been incorporated to augment the network’s capacity for feature representation,enabling the model to purposefully extract map information.The SE-UNet network is employed for feature extraction from the geological map and obtain coarse segmentation results.Secondly,the Felz clustering algorithm is used for super pixel pre-segmentation of geological maps.The coarse segmentation results are refined and modified based on the super pixel pre-segmentation results to obtain the final segmentation results.This study applies GeoMSeg to the constructed dataset,and the experimental results show that the algorithm proposed in this paper has superior performance compared to other mainstream map segmentation models,with an accuracy of 91.89%and a MIoU of 71.91%. 展开更多
关键词 Geological map UNet model Image segmentation Semantic segmentation Pixel pre-segmentation Clustering algorithm Attention mechanism Deep learning Artificial intelligence Geological survey engineering
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部