Aiming at the defects of the traditional fire detection methods,which are caused by false positives and false negatives in large space buildings,a fire identification detection method based on video images is proposed...Aiming at the defects of the traditional fire detection methods,which are caused by false positives and false negatives in large space buildings,a fire identification detection method based on video images is proposed.The algorithm first uses the hybrid Gaussian background modeling method and the RGB color model to perform fire prejudgment on the video image,which can eliminate most non-fire interferences.Secondly,the traditional regional growth algorithm is improved and the fire image segmentation effect is effectively improved.Then,based on the segmented image,the dynamic and static features of the fire flame are further analyzed and extracted in the area of the suspected fire flame.Finally,the dynamic features of the extracted fire flame images were fused and classified by improved fruit fly optimization support vector machine,and the recognition results were obtained.The video-based fire detection method proposed in this paper greatly improves the accuracy of fire detection and is suitable for fire detection and identification in large space scenarios.展开更多
基金This works were supported by National Natural Science Foundation of China(Grant No.51874300)the National Natural Science Foundation of China and Shanxi Provincial People’s Government Jointly Funded Project of China for Coal Base and Low Carbon(Grant No.U1510115)+1 种基金the Qing Lan Project,the China Postdoctoral Science Foundation(No.2013T60574)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YJKYYQ20170074).
文摘Aiming at the defects of the traditional fire detection methods,which are caused by false positives and false negatives in large space buildings,a fire identification detection method based on video images is proposed.The algorithm first uses the hybrid Gaussian background modeling method and the RGB color model to perform fire prejudgment on the video image,which can eliminate most non-fire interferences.Secondly,the traditional regional growth algorithm is improved and the fire image segmentation effect is effectively improved.Then,based on the segmented image,the dynamic and static features of the fire flame are further analyzed and extracted in the area of the suspected fire flame.Finally,the dynamic features of the extracted fire flame images were fused and classified by improved fruit fly optimization support vector machine,and the recognition results were obtained.The video-based fire detection method proposed in this paper greatly improves the accuracy of fire detection and is suitable for fire detection and identification in large space scenarios.