Hongxing reservoir was constructed on the floodplain of Hulan River in Heilongjiang. The geological problem of the reservoir is the seepage of the dam base and its related seepage stability. The leakage of the reservo...Hongxing reservoir was constructed on the floodplain of Hulan River in Heilongjiang. The geological problem of the reservoir is the seepage of the dam base and its related seepage stability. The leakage of the reservoir is caused by the water head differences between the upstream and downstream of the dam. Severe seepage could decrease the engineering benefits of the reservoir. Moreover,infiltration function of water will influence the safety of the dam. Through the analysis on the granule constitute and the formation of the dam base,the types of the seepage failure apt to happen were defined and the anti-infiltration and the permissible depression ratio were determined. Using the numerical simulation software GMS,the two-dimension numerical modeling has been carried out to analyze the seepage field of the reservoir. Through the two conditions modeling with concrete impervious wall and no concrete impervious wall,the largest flow rate,single-wide seepage discharge and the max infiltration gradient of the dam base were calculated. According to the permeable depression ratio of the dam base,the seepage stability of Hongxing reservoir dam base was analyzed.展开更多
Anti-seepage scheme is the most critical problem in the design and construction of earth-rock dam project. It plays a decisive role in whether the whole reservoir dam can effectively retain water. The quality of its s...Anti-seepage scheme is the most critical problem in the design and construction of earth-rock dam project. It plays a decisive role in whether the whole reservoir dam can effectively retain water. The quality of its system will directly affect the success or failure of the whole project. Aiming at the problems such as low flood control standard of a reservoir's homogeneous dam, large-area swamping of downstream dam slope, local water and sand leakage of the dam body, according to the results of core drilling sampling and safety appraisal analysis, combined with the dam's disease risk status and dam type structure, the risk removal and reinforcement scheme combining 0.7m increase in dam crest thickness with backfilling clay of drift-grab casing wells is optimized.展开更多
Water-preservation mining is one of the most important parts of the ‘Green Mining' technology system,which can realize the effective regulation of groundwater resources by controlling strata movement,changing pas...Water-preservation mining is one of the most important parts of the ‘Green Mining' technology system,which can realize the effective regulation of groundwater resources by controlling strata movement,changing passive prevention and governance of water disasters to active conservation and utilization of groundwater resources and thus obtaining coal and water simultaneously in mining.The concept of water-resistant key strata further enriches the content of the key stratum theory and provides a theoretical basis for water-preservation mining.In order to realize the idea of water-resistant key strata as a guideline in the design of water-preservation mining and engineering applications,the conditions for discrimination in the process of water-resistant key strata,we have presented a mechanical model,as well as its corresponding computer program,based on a large number of theoretical analyses and field measurements,as well as on a comprehensive consideration of the position,structural stability and seepage stability of key strata.Practical engineering applications indicate that this discrimination method and its corresponding computer program on water-resistant key strata are accurate and reliable and can satisfy the actual design needs of water-preservation mining and thus have instructional importance for water-preservation mining in mining areas lacking water.展开更多
Loess tunnels are widely used in transportation engineering and are irreplaceable parts of transportation infrastructure. In this paper, a dynamic finite element method is used to analyze the coupled effects of a trai...Loess tunnels are widely used in transportation engineering and are irreplaceable parts of transportation infrastructure. In this paper, a dynamic finite element method is used to analyze the coupled effects of a train vibration load and rainfall seepage. By calculating the variation in the safety factor of a loess tunnel because of the effects of various factors, such as different rainfall intensities and soil thicknesses, the dynamic stability of the loess tunnel is studied under the condition of a near-field pulse-like earthquake. The results show that the security and stability of the tunnel decrease gradually with decreasing burial depth. In addition, the plastic strain of the tunnel is mainly distributed on both sides of the vault and the feet, and the maximum value of the critical strain occurs on both sides of the arch feet. Because of the effects of the train vibration load and rainfall seepage, the safety factor of the loess tunnel structure decreases to a certain degree. Moreover, the range and maximum value of the plastic strain increase to various degrees.展开更多
文摘Hongxing reservoir was constructed on the floodplain of Hulan River in Heilongjiang. The geological problem of the reservoir is the seepage of the dam base and its related seepage stability. The leakage of the reservoir is caused by the water head differences between the upstream and downstream of the dam. Severe seepage could decrease the engineering benefits of the reservoir. Moreover,infiltration function of water will influence the safety of the dam. Through the analysis on the granule constitute and the formation of the dam base,the types of the seepage failure apt to happen were defined and the anti-infiltration and the permissible depression ratio were determined. Using the numerical simulation software GMS,the two-dimension numerical modeling has been carried out to analyze the seepage field of the reservoir. Through the two conditions modeling with concrete impervious wall and no concrete impervious wall,the largest flow rate,single-wide seepage discharge and the max infiltration gradient of the dam base were calculated. According to the permeable depression ratio of the dam base,the seepage stability of Hongxing reservoir dam base was analyzed.
文摘Anti-seepage scheme is the most critical problem in the design and construction of earth-rock dam project. It plays a decisive role in whether the whole reservoir dam can effectively retain water. The quality of its system will directly affect the success or failure of the whole project. Aiming at the problems such as low flood control standard of a reservoir's homogeneous dam, large-area swamping of downstream dam slope, local water and sand leakage of the dam body, according to the results of core drilling sampling and safety appraisal analysis, combined with the dam's disease risk status and dam type structure, the risk removal and reinforcement scheme combining 0.7m increase in dam crest thickness with backfilling clay of drift-grab casing wells is optimized.
基金supported by the National Natural Science Foundation of China (No.50874103)the National Basic Research Program of China (Nos.2006CB202210 and 2007CB209408)+1 种基金the Natural Science Foundation of Jiangsu Province (No.KB2008135)the Qinglan Project of Jiangsu Province
文摘Water-preservation mining is one of the most important parts of the ‘Green Mining' technology system,which can realize the effective regulation of groundwater resources by controlling strata movement,changing passive prevention and governance of water disasters to active conservation and utilization of groundwater resources and thus obtaining coal and water simultaneously in mining.The concept of water-resistant key strata further enriches the content of the key stratum theory and provides a theoretical basis for water-preservation mining.In order to realize the idea of water-resistant key strata as a guideline in the design of water-preservation mining and engineering applications,the conditions for discrimination in the process of water-resistant key strata,we have presented a mechanical model,as well as its corresponding computer program,based on a large number of theoretical analyses and field measurements,as well as on a comprehensive consideration of the position,structural stability and seepage stability of key strata.Practical engineering applications indicate that this discrimination method and its corresponding computer program on water-resistant key strata are accurate and reliable and can satisfy the actual design needs of water-preservation mining and thus have instructional importance for water-preservation mining in mining areas lacking water.
基金supported in part by the National Natural Science Foundation of China(Grant No.51478212)the Education Ministry Doctoral Tutor Foundation of China(Grant No.20136201110003)
文摘Loess tunnels are widely used in transportation engineering and are irreplaceable parts of transportation infrastructure. In this paper, a dynamic finite element method is used to analyze the coupled effects of a train vibration load and rainfall seepage. By calculating the variation in the safety factor of a loess tunnel because of the effects of various factors, such as different rainfall intensities and soil thicknesses, the dynamic stability of the loess tunnel is studied under the condition of a near-field pulse-like earthquake. The results show that the security and stability of the tunnel decrease gradually with decreasing burial depth. In addition, the plastic strain of the tunnel is mainly distributed on both sides of the vault and the feet, and the maximum value of the critical strain occurs on both sides of the arch feet. Because of the effects of the train vibration load and rainfall seepage, the safety factor of the loess tunnel structure decreases to a certain degree. Moreover, the range and maximum value of the plastic strain increase to various degrees.