期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Removal of particulate matter and dissolved organic matter from sedimentation sludge water during pre-sedimentation process:Performances and mechanisms
1
作者 Shule Duan Huiyu Dong +5 位作者 Caifang Jiang Hong Liang Ling Jiang Qian Xu Xiaoyu Cheng Zhimin Qiang 《Journal of Environmental Sciences》 2025年第2期409-419,共11页
Sedimentation sludge water(SSW),a prominent constituent of wastewater from drinking water treatment plants,has received limited attention in terms of its treatment and utilization likely due to the perceived difficult... Sedimentation sludge water(SSW),a prominent constituent of wastewater from drinking water treatment plants,has received limited attention in terms of its treatment and utilization likely due to the perceived difficulties associated with managing SSW sludge.This study comprehensively evaluated the water quality of SSW by comparing it to a well-documented wastewater(filter backwash water(FBW)).Furthermore,it investigated the pollutant variations in the SSW during pre-sedimentation process,probed the underlying reaction mechanism,and explored the feasibility of employing a pilot-scale coagulation-sedimentation process for SSW treatment.The levels of most water quality parameters were generally comparable between SSW and FBW.During the pre-sedimentation of SSW,significant removal of turbidity,bacterial counts,and dissolved organic matter(DOM)was observed.The characterization of DOM components,molecular weight distributions,and optical properties revealed that the macromolecular proteinaceous biopolymers and humic acids were preferentially removed.The characterization of particulates indicated that high surface energy,zeta potential,and bridging/adsorption/sedimentation/coagulation capacities in aluminum residuals of SSW,underscoring its potential as a coagulant and promoting the generation and sedimentation of inorganic-organic complexes.The coagulation-sedimentation process could effectively remove pollutants from low-turbidity SSW([turbidity]0<15 NTU).These findings provide valuable insights into the water quality dynamics of SSW during the pre-sedimentation process,facilitating the development of SSW quality management and enhancing its reuse rate. 展开更多
关键词 sedimentation sludge water Filter backwash water REUSE Health risk COAGULATION-sedimentATION
原文传递
Impact of Untreated Sedimentation Tank Sludge Water Recycle on Water Quality During Treatment of Low Turbidity Water 被引量:2
2
作者 Ronggang Xu Yongpeng Xu +3 位作者 Fuyi Cui Li He Dong Wang Qingfeng Su 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第4期79-86,共8页
The overall purpose of this research is to examine the impact of untreated sedimentation tank sludge water( USTSW) recycle on water quality during treatment of low turbidity water in coagulation—sedimentation process... The overall purpose of this research is to examine the impact of untreated sedimentation tank sludge water( USTSW) recycle on water quality during treatment of low turbidity water in coagulation—sedimentation processes. 950 m L of raw water and different concentrations of 50 m L USTSW are injected into six 1 000 m L beakers without coagulant.The results indicate that USTSW characterized as accumulated suspended solids and organic matter has active ingredients,which possess the equivalent function of coagulant. The optimal blended water turbidity is in the range of 10-20 NTU,within which USTSW recycle achieves the highest save coagulant rate. The mechanism of strengthening coagulation effect when USTSW recycle mainly depends on the chemical effect and physical effect. What is more,through scanning electron microscopy( SEM),it is found that the floc structures with USTSW recycle are more compact than those without USTSW recycle. Besides,the water quality parameters of color,NH3-N,CODMn,UV254,total aluminum,total manganese when USTSW recycle is better than the raw water without recycle,indicating that USTSW recycle can improve water quality with strengthening coagulation effect. 展开更多
关键词 untreated sedimentation tank sludge water recycle low turbidity optimal blended water turbidity water quality
在线阅读 下载PDF
Preparation and Bloating Mechanism of Porous Ultra-lightweight Ceramsite by Dehydrated Sewage Sludge and Yellow River Sediments 被引量:8
3
作者 岳东亭 岳钦艳 +6 位作者 GAO Baoyu HE Hongtao YU Hui SUN Shenglei LI Qian WANG Yan ZHAO Yu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第6期1129-1135,共7页
To solve the disposal problems of solid wastes, dehydrated sewage sludge and Yellow River sediments were tested as components for production of ultra-lightweight ceramsite. The effects of Yellow River sediments additi... To solve the disposal problems of solid wastes, dehydrated sewage sludge and Yellow River sediments were tested as components for production of ultra-lightweight ceramsite. The effects of Yellow River sediments addition on the characteristics of ceramsite were investigated. Ceramsite with different Yellow River sediments additions was characterized using thermal analysis, X-ray diffraction, morphological structures analyses, pore size distributions and porosity analyses. Chemical components, especially ratios of Si O2 + Al2O3/Flux, were used to explain the glassy shell formation, physical properties and pores distribution of ultralightweight ceramsite; physical forces for instance expansion force and frictional resistance which combined with Si O2 + Al2O3/Flux ratios were used to explain the bloating mechanism. Results showed that the maximum addition of Yellow River sediments for making ultra-lightweight ceramsite was 35%. Macropores(between 0.226 μm and 0.554 μm) of ultra-lightweight ceramsite were dominant in the pore structures of ultra-lightweight ceramsite and its porosity was up to 67.7%. Physical force of expansion force was constant with the variation of Yellow River sediments content and physical force of frictional resistance was decreased with the increase of Yellow River sediments addition. The relationship between expansion and frictional resistance could determine the expansion rate of ceramsite. Larger pores inside the ceramsite bodies could be obtained as Yellow River sediments additions ranged from 10% to 30%. Ceramsite with higher Yellow River sediments additions of 40%(Si O2 + Al2O3/Flux ratios 4.25) became denser and have lower porosity. Crystal components analysis proved that the sintering process made some components of raw materials transfer into other crystals having better thermostability. 展开更多
关键词 yellow river sediments dehydrated sewage sludge ultra-lightweight ceramsite bloating mechanism
原文传递
Effects of sludge dredging on the prevention and control of algae-caused black bloom in Taihu Lake,China 被引量:32
4
作者 Wei He Jingge Shang +1 位作者 Xin Lu Chengxin Fan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第3期430-440,共11页
Algae-caused black bloom (also known as black water agglomerate) has recently become a critical problem in some Chinese lakes.It has been suggested that the occurrence of algae-caused black bloom was caused by the c... Algae-caused black bloom (also known as black water agglomerate) has recently become a critical problem in some Chinese lakes.It has been suggested that the occurrence of algae-caused black bloom was caused by the cooperation of nutrient-rich sediment with dead algae,and sludge dredging was adopted to control black bloom in some lakes of China.In this article,based on the simulation of black bloom using a Y-shape apparatus for modeling natural conditions,both un-dredged and dredged sites in three areas of Taihu Lake,China were studied to estimate the effects of dredging on the prevention and control of black bloom.During the experiment,drained algae were added to all six sites as an additional organic load;subsequently,the dissolved oxygen decreased rapidly,dropping to 0 mg/L at the sediment-water interface.Black bloom did not occur in the dredged sites of Moon Bay and Nan Quan,whereas all three un-dredged sites at Fudu Port,Moon Bay and Nan Quan experienced black bloom.Black bloom also occurred at the dredged site of Fudu Port one day later than at the other sites,and the odor and color were lighter than at the other locations.The color and odor of the black water mainly result from the presence of sulfides such as metal sulfides and hydrogen sulfide,among other chemicals,under reductive conditions.The color and odor of the water,together with the high concentrations of nutrients,were mainly caused by the decomposition of the algae and the presence of nutrient-rich sediment.Overall,the removal of the nutrient-rich sediment by dredging can prevent the occurrence and control the degree of algae-caused black bloom in Taihu Lake. 展开更多
关键词 Taihu Lake algae-caused black bloom sediment sludge dredging
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部