期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Security-Reliability Tradeoff Analysis for Jamming Aided Decode-and-Forward Relay Networks
1
作者 Zou Ronggui Zou Yulong +1 位作者 Zhu Jia Li Bin 《China Communications》 SCIE CSCD 2024年第5期218-228,共11页
In this paper,we explore a cooperative decode-and-forward(DF)relay network comprised of a source,a relay,and a destination in the presence of an eavesdropper.To improve physical-layer security of the relay system,we p... In this paper,we explore a cooperative decode-and-forward(DF)relay network comprised of a source,a relay,and a destination in the presence of an eavesdropper.To improve physical-layer security of the relay system,we propose a jamming aided decodeand-forward relay(JDFR)scheme combining the use of artificial noise and DF relaying which requires two stages to transmit a packet.Specifically,in stage one,the source sends confidential message to the relay while the destination acts as a friendly jammer and transmits artificial noise to confound the eavesdropper.In stage two,the relay forwards its re-encoded message to the destination while the source emits artificial noise to confuse the eavesdropper.In addition,we analyze the security-reliability tradeoff(SRT)performance of the proposed JDFR scheme,where security and reliability are evaluated by deriving intercept probability(IP)and outage probability(OP),respectively.For the purpose of comparison,SRT of the traditional decode-and-forward relay(TDFR)scheme is also analyzed.Numerical results show that the SRT performance of the proposed JDFR scheme is better than that of the TDFR scheme.Also,it is shown that for the JDFR scheme,a better SRT performance can be obtained by the optimal power allocation(OPA)between the friendly jammer and user. 展开更多
关键词 decode-and-forward relay friendly jammer physical layer security power allocation security-reliability tradeoff
在线阅读 下载PDF
Security-Reliability Analysis and Optimization for Cognitive Two-Way Relay Network with Energy Harvesting
2
作者 Luo Yi Zhou Lihua +3 位作者 Dong Jian Sun Yang Xu Jiahui Xi Kaixin 《China Communications》 SCIE CSCD 2024年第11期163-179,共17页
This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)node... This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)nodes harvest energy from radio frequency signals of a multi-antenna power beacon.Two SN sources exchange their messages via a SN decode-and-forward relay in the presence of a multiantenna eavesdropper by using a four-phase time division broadcast protocol,and the hardware impairments of SN nodes and eavesdropper are modeled.To alleviate eavesdropping attacks,the artificial noise is applied by SN nodes.The physical layer security performance of SN is analyzed and evaluated by the exact closed-form expressions of outage probability(OP),intercept probability(IP),and OP+IP over quasistatic Rayleigh fading channel.Additionally,due to the complexity of OP+IP expression,a self-adaptive chaotic quantum particle swarm optimization-based resource allocation algorithm is proposed to jointly optimize energy harvesting ratio and power allocation factor,which can achieve security-reliability tradeoff for SN.Extensive simulations demonstrate the correctness of theoretical analysis and the effectiveness of the proposed optimization algorithm. 展开更多
关键词 artificial noise energy harvesting cognitive two-way relay network hardware impairments physical layer security security-reliability tradeoff self-adaptive quantum particle swarm optimization
在线阅读 下载PDF
Joint jammer and user scheduling scheme for wireless physical-layer security
3
作者 丁晓进 宋铁成 +1 位作者 邹玉龙 陈晓曙 《Journal of Southeast University(English Edition)》 EI CAS 2016年第3期261-266,共6页
In order to improve the performance of the security-reliability tradeoff (SRT), a joint jammer and user scheduling (JJUS) scheme is proposed. First, a user with the maximal instantaneous channel capacity is select... In order to improve the performance of the security-reliability tradeoff (SRT), a joint jammer and user scheduling (JJUS) scheme is proposed. First, a user with the maximal instantaneous channel capacity is selected to transmit its signal to the base station ( BS) in the transmission time slot. Then, when the user transmits its signal to BS, the jammer is invoked for transmitting artificial noise in order to perturb the eavesdropper’s reception. Simulation results show that increasing the number of users can enhance the SRT performance of the proposed JJUS scheme. In addition, the SRT performance of the proposed JJUS scheme is better than that of the traditional round-robin scheduling and pure user scheduling schemes. The proposed JJUS scheme can guarantee the secure transmission even in low main-to-eavesdropper ratio( MER) regions. 展开更多
关键词 security-reliability tradeoff (SRT) multi-user scheduling artificial noise physical-layer security
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部