Given the grave local and international network security landscape,a national strategic level analysis indicates that the modernization and advancement within the Industry 4.0 era are closely correlated with overall c...Given the grave local and international network security landscape,a national strategic level analysis indicates that the modernization and advancement within the Industry 4.0 era are closely correlated with overall competitive strength.Consequently,China proposed a strategy for the integration of industrialization and informatization,optimizing and adjusting its industrial structure to swiftly achieve transformation and upgrading in the Industry 4.0 era,thereby enhancing the sophistication of intelligent industrial control systems.The distributed control system in a nuclear power plant functions as an industrial control system,overseeing the operational status of the physical process.Its ability to ensure safe and reliable operation is directly linked to nuclear safety and the cybersecurity of the facility.The management of network security in distributed control systems(DCS)is crucial for achieving this objective.Due to the varying network settings and parameters of the DCS implemented in each nuclear power plant,the network security status of the system sometimes diverges from expectations.During system operation,it will undoubtedly encounter network security issues.Consequently,nuclear power plants utilize the technical criteria outlined in GB/T 22239 to formulate a network security management program aimed at enhancing the operational security of DCS within these facilities.This study utilizes existing network security regulations and standards as a reference to analyze the network security control standards based on the nuclear power plant’s control system.It delineates the fundamental requirements for network security management,facilitating integration with the entire life cycle of the research,development,and application of the nuclear power plant’s distributed control system,thereby establishing a network security management methodology that satisfies the control requirements of the nuclear power plant.Initially,it presents DCS and network security management,outlines current domestic and international network security legislation and standards,and specifies the standards pertinent to the administration of DCS in nuclear power plants.Secondly,the design of network security management for DCS is executed in conjunction with the specific context of nuclear power plants.This encompasses the deployment of network security apparatus,validation of the network security management strategy,and optimization adjustments.Consequently,recommendations beneficial to the network security management of nuclear power plants are compiled,aimed at establishing a management system and incorporating the concept of full life cycle management,which is predicated on system requirements,system design,and both software and hardware considerations.Conversely,it presents the notion of comprehensive life cycle management and suggests network security management strategies encompassing system requirements,system architecture,detailed hardware and software design and implementation,procurement,internal system integration,system validation and acceptance testing,system installation,operational maintenance,system modifications,and decommissioning.We will consistently enhance the performance and functionality of DCS in nuclear power plants,establish a safe and secure operational environment,and thereby facilitate the implementation of DCS in nuclear facilities while ensuring robust network security in the future.展开更多
The 5G-R network is on the verge of entering the construction stage.Given that the dedicated network for railways is closely linked to train operation safety,there are extremely high requirements for network security....The 5G-R network is on the verge of entering the construction stage.Given that the dedicated network for railways is closely linked to train operation safety,there are extremely high requirements for network security.As a result,there is an urgent need to conduct research on 5G-R network security.To comprehensively enhance the end-to-end security protection of the 5G-R network,this study summarized the security requirements of the GSM-R network,analyzed the security risks and requirements faced by the 5G-R network,and proposed an overall 5G-R network security architecture.The security technical schemes were detailed from various aspects:5G-R infrastructure security,terminal access security,networking security,operation and maintenance security,data security,and network boundary security.Additionally,the study proposed leveraging the 5G-R security situation awareness system to achieve a comprehensive upgrade from basic security technologies to endogenous security capabilities within the 5G-R system.展开更多
A robust ecological security network(ESN)is essential for ensuring regional ecological security,improving fragile ecological conditions,and promoting sustainable development.Climate change and land use/cover change(LU...A robust ecological security network(ESN)is essential for ensuring regional ecological security,improving fragile ecological conditions,and promoting sustainable development.Climate change and land use/cover change(LUCC)influence the structure and connectivity of the ESN by impacting ecosystem services(ESs).Previous studies primarily focused on the overall effects of LUCC on ESN changes,but they largely overlooked the effects of detailed LUCC transitions.In this study,we evaluated changes in the structure and connectivity of the ESN in the Songnen Plain(SNP),Northeast China,over the past 30 yr(1990s-2020s)using circuit theory and graph theory.We further explored the effects of climate change,LUCC,and detailed LUCC transformations on ESN changes through factorial control experiments.Results revealed a 24.86%decrease in ecological sources and a 27.06%decrease in ecological corridors,accompanied by a decline in ESN connectivity from the 1990s to the 2010s.Conversely,from the 2010s to the 2020s,ecological sources increased by 14.71%and ecological corridors increased by 25.71%due to ecological projects such as returning farmland to wetlands,resulting in an overall increase in ESN connectivity.The changes in ESN structure were primarily attributed to LUCC effects,followed by climate change effects and their interactions.In contrast,the changes in connectivity were significantly affected by climate change,followed by interactive effects and LUCC.Through detailed examination of LUCC transformation effects,we further found that the changes in ESN structure were primarily attributed to wetland loss,followed by deforestation and urban expansion.Meanwhile,the changes in ESN connectivity were mainly due to the effects of wetland loss,urban expansion and deforestation.Notably,the adverse effects of wetland loss partly offset climate change benefits on ESN.Our study offers valuable insights for developing future land management policies and implementing ecological projects,aimed at maintaining a stable ESN and ensuring sustainable human development.展开更多
To ensure the safe operation of industrial digital twins network and avoid the harm to the system caused by hacker invasion,a series of discussions on network security issues are carried out based on game theory.From ...To ensure the safe operation of industrial digital twins network and avoid the harm to the system caused by hacker invasion,a series of discussions on network security issues are carried out based on game theory.From the perspective of the life cycle of network vulnerabilities,mining and repairing vulnerabilities are analyzed by applying evolutionary game theory.The evolution process of knowledge sharing among white hats under various conditions is simulated,and a game model of the vulnerability patch cooperative development strategy among manufacturers is constructed.On this basis,the differential evolution is introduced into the update mechanism of the Wolf Colony Algorithm(WCA)to produce better replacement individuals with greater probability from the perspective of both attack and defense.Through the simulation experiment,it is found that the convergence speed of the probability(X)of white Hat 1 choosing the knowledge sharing policy is related to the probability(x0)of white Hat 2 choosing the knowledge sharing policy initially,and the probability(y0)of white hat 2 choosing the knowledge sharing policy initially.When y0?0.9,X converges rapidly in a relatively short time.When y0 is constant and x0 is small,the probability curve of the“cooperative development”strategy converges to 0.It is concluded that the higher the trust among the white hat members in the temporary team,the stronger their willingness to share knowledge,which is conducive to the mining of loopholes in the system.The greater the probability of a hacker attacking the vulnerability before it is fully disclosed,the lower the willingness of manufacturers to choose the"cooperative development"of vulnerability patches.Applying the improved wolf colonyco-evolution algorithm can obtain the equilibrium solution of the"attack and defense game model",and allocate the security protection resources according to the importance of nodes.This study can provide an effective solution to protect the network security for digital twins in the industry.展开更多
The proliferation of Internet of Things(IoT)technology has exponentially increased the number of devices interconnected over networks,thereby escalating the potential vectors for cybersecurity threats.In response,this...The proliferation of Internet of Things(IoT)technology has exponentially increased the number of devices interconnected over networks,thereby escalating the potential vectors for cybersecurity threats.In response,this study rigorously applies and evaluates deep learning models—namely Convolutional Neural Networks(CNN),Autoencoders,and Long Short-Term Memory(LSTM)networks—to engineer an advanced Intrusion Detection System(IDS)specifically designed for IoT environments.Utilizing the comprehensive UNSW-NB15 dataset,which encompasses 49 distinct features representing varied network traffic characteristics,our methodology focused on meticulous data preprocessing including cleaning,normalization,and strategic feature selection to enhance model performance.A robust comparative analysis highlights the CNN model’s outstanding performance,achieving an accuracy of 99.89%,precision of 99.90%,recall of 99.88%,and an F1 score of 99.89%in binary classification tasks,outperforming other evaluated models significantly.These results not only confirm the superior detection capabilities of CNNs in distinguishing between benign and malicious network activities but also illustrate the model’s effectiveness in multiclass classification tasks,addressing various attack vectors prevalent in IoT setups.The empirical findings from this research demonstrate deep learning’s transformative potential in fortifying network security infrastructures against sophisticated cyber threats,providing a scalable,high-performance solution that enhances security measures across increasingly complex IoT ecosystems.This study’s outcomes are critical for security practitioners and researchers focusing on the next generation of cyber defense mechanisms,offering a data-driven foundation for future advancements in IoT security strategies.展开更多
In an era where digital technology is paramount, higher education institutions like the University of Zambia (UNZA) are employing advanced computer networks to enhance their operational capacity and offer cutting-edge...In an era where digital technology is paramount, higher education institutions like the University of Zambia (UNZA) are employing advanced computer networks to enhance their operational capacity and offer cutting-edge services to their academic fraternity. Spanning across the Great East Road campus, UNZA has established one of the most extensive computer networks in Zambia, serving a burgeoning community of over 20,000 active users through a Metropolitan Area Network (MAN). However, as the digital landscape continues to evolve, it is besieged with burgeoning challenges that threaten the very fabric of network integrity—cyber security threats and the imperatives of maintaining high Quality of Service (QoS). In an effort to mitigate these threats and ensure network efficiency, the development of a mobile application to monitor temperatures in the server room was imperative. According to L. Wei, X. Zeng, and T. Shen, the use of wireless sensory networks to monitor the temperature of train switchgear contact points represents a cost-effective solution. The system is based on wireless communication technology and is detailed in their paper, “A wireless solution for train switchgear contact temperature monitoring and alarming system based on wireless communication technology”, published in the International Journal of Communications, Network and System Sciences, vol. 8, no. 4, pp. 79-87, 2015 [1]. Therefore, in this study, a mobile application technology was explored for monitoring of temperatures in the server room in order to aid Cisco device performance. Additionally, this paper also explores the hardening of Cisco device security and QoS which are the cornerstones of this study.展开更多
In the era of the digital economy,the informatization degree of various industries is getting deeper and deeper,and network information security has also come into people’s eyes.Colleges and universities are in the p...In the era of the digital economy,the informatization degree of various industries is getting deeper and deeper,and network information security has also come into people’s eyes.Colleges and universities are in the position of training applied talents,because of the needs of teaching and education,as well as the requirements of teaching reform,the information construction of colleges and universities has been gradually improved,but the problem of network information security is also worth causing people to ponder.The low security of the network environment will cause college network information security leaks,and even hackers will attack the official website of the university and leak the personal information of teachers and students.To solve such problems,this paper studies the protection of college network information security against the background of the digital economy era.This paper first analyzes the significance of network information security protection,then points out the current and moral problems,and finally puts forward specific countermeasures,hoping to create a safe learning environment for teachers and students for reference.展开更多
The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging at...The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems.展开更多
As quantum computing continues to advance,traditional cryptographic methods are increasingly challenged,particularly when it comes to securing critical systems like Supervisory Control andData Acquisition(SCADA)system...As quantum computing continues to advance,traditional cryptographic methods are increasingly challenged,particularly when it comes to securing critical systems like Supervisory Control andData Acquisition(SCADA)systems.These systems are essential for monitoring and controlling industrial operations,making their security paramount.A key threat arises from Shor’s algorithm,a powerful quantum computing tool that can compromise current hash functions,leading to significant concerns about data integrity and confidentiality.To tackle these issues,this article introduces a novel Quantum-Resistant Hash Algorithm(QRHA)known as the Modular Hash Learning Algorithm(MHLA).This algorithm is meticulously crafted to withstand potential quantum attacks by incorporating advanced mathematical and algorithmic techniques,enhancing its overall security framework.Our research delves into the effectiveness ofMHLA in defending against both traditional and quantum-based threats,with a particular emphasis on its resilience to Shor’s algorithm.The findings from our study demonstrate that MHLA significantly enhances the security of SCADA systems in the context of quantum technology.By ensuring that sensitive data remains protected and confidential,MHLA not only fortifies individual systems but also contributes to the broader efforts of safeguarding industrial and infrastructure control systems against future quantumthreats.Our evaluation demonstrates that MHLA improves security by 38%against quantumattack simulations compared to traditional hash functionswhilemaintaining a computational efficiency ofO(m⋅n⋅k+v+n).The algorithm achieved a 98%success rate in detecting data tampering during integrity testing.These findings underline MHLA’s effectiveness in enhancing SCADA system security amidst evolving quantum technologies.This research represents a crucial step toward developing more secure cryptographic systems that can adapt to the rapidly changing technological landscape,ultimately ensuring the reliability and integrity of critical infrastructure in an era where quantum computing poses a growing risk.展开更多
In order to manage all kinds of network security devices and software systems efficiently, and make them collaborate with each other, the model for an open network security management platform is presented. The feasib...In order to manage all kinds of network security devices and software systems efficiently, and make them collaborate with each other, the model for an open network security management platform is presented. The feasibility and key implementing technology of the model are expatiated. A prototype system is implemented to validate it.展开更多
Network Security Situation Awareness System YHSAS acquires,understands and displays the security factors which cause changes of network situation,and predicts the future development trend of these security factors.YHS...Network Security Situation Awareness System YHSAS acquires,understands and displays the security factors which cause changes of network situation,and predicts the future development trend of these security factors.YHSAS is developed for national backbone network,large network operators,large enterprises and other large-scale network.This paper describes its architecture and key technologies:Network Security Oriented Total Factor Information Collection and High-Dimensional Vector Space Analysis,Knowledge Representation and Management of Super Large-Scale Network Security,Multi-Level,Multi-Granularity and Multi-Dimensional Network Security Index Construction Method,Multi-Mode and Multi-Granularity Network Security Situation Prediction Technology,and so on.The performance tests show that YHSAS has high real-time performance and accuracy in security situation analysis and trend prediction.The system meets the demands of analysis and prediction for large-scale network security situation.展开更多
With the rapid development of global information and the increasing dependence on network for people, network security problems are becoming more and more serious. By analyzing the existing security assessment methods...With the rapid development of global information and the increasing dependence on network for people, network security problems are becoming more and more serious. By analyzing the existing security assessment methods, we propose a network security situation evaluation system based on modified D-S evidence theory is proposed. Firstly, we give a modified D-S evidence theory to improve the reliability and rationality of the fusion result and apply the theory to correlation analysis. Secondly, the attack successful support is accurately calculated by matching internal factors with external threats. Multi-module evaluation is established to comprehensively evaluate the situation of network security. Finally we use an example of actual network datasets to validate the network security situation evaluation system. The simulation result shows that the system can not only reduce the rate of false positives and false alarms, but also effectively help analysts comprehensively to understand the situation of network security.展开更多
Network security situation is a hot research topic in the field of network security. Whole situation awareness includes the current situation evaluation and the future situation prediction. However, the now-existing r...Network security situation is a hot research topic in the field of network security. Whole situation awareness includes the current situation evaluation and the future situation prediction. However, the now-existing research focuses on the current situation evaluation, and seldom discusses the future prediction. Based on the historical research, an improved grey Verhulst model is put forward to predict the future situation. Aiming at the shortages in the prediction based on traditional Verhulst model, the adaptive grey parameters and equal- dimensions grey filling methods are proposed to improve the precision. The simulation results prove that the scheme is efficient and applicable.展开更多
In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to p...In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to protect the security of whole system.In the proposed security defense system,the security is protected by the intelligent immunity through three functions,identification function,learning function,and regulation function,respectively.Meanwhile,a three process-based intelligent algorithm is proposed for the intelligent immunity system.Numerical simulations are given to prove the effeteness of the proposed approach.展开更多
In this paper,we investigate and analyze the network security risks faced by 5G private industrial networks.Based on current network security architecture and 3GPP requirements and considering the actual application o...In this paper,we investigate and analyze the network security risks faced by 5G private industrial networks.Based on current network security architecture and 3GPP requirements and considering the actual application of 5G private industrial networks,a comparative analysis is used to plan and design a private network security construction scheme.The network security construction model,network organization,and key processes of 5G private industrial networks at the current stage are investigated.In addition,the key direction for the next stage of construction is discussed.展开更多
Since the frequency of network security incidents is nonlinear,traditional prediction methods such as ARMA,Gray systems are difficult to deal with the problem.When the size of sample is small,methods based on artifici...Since the frequency of network security incidents is nonlinear,traditional prediction methods such as ARMA,Gray systems are difficult to deal with the problem.When the size of sample is small,methods based on artificial neural network may not reach a high degree of preciseness.Least Squares Support Vector Machines (LSSVM) is a kind of machine learning methods based on the statistics learning theory,it can be applied to solve small sample and non-linear problems very well.This paper applied LSSVM to predict the occur frequency of network security incidents.To improve the accuracy,it used an improved genetic algorithm to optimize the parameters of LSSVM.Verified by real data sets,the improved genetic algorithm (IGA) converges faster than the simple genetic algorithm (SGA),and has a higher efficiency in the optimization procedure.Specially,the optimized LSSVM model worked very well on the prediction of frequency of network security incidents.展开更多
As the number of Virtual Machines(VMs) consolidated on single physical server increases with the rapid advance of server hardware,virtual network turns complex and frangible.Modern Network Security Engines(NSE) are in...As the number of Virtual Machines(VMs) consolidated on single physical server increases with the rapid advance of server hardware,virtual network turns complex and frangible.Modern Network Security Engines(NSE) are introduced to eradicate the intrusions occurring in the virtual network.In this paper,we point out the inadequacy of the present live migration implementation,which hinders itself from providing transparent VM relocation between hypervisors equipped with Network Security Engines(NSE-H).This occurs because the current implementation ignores VM-related Security Context(SC) required by NSEs embedded in NSE-H.We present the CoM,a comprehensive live migration framework,for NSE-H-based virtualization computing environment.We built a prototype system on Xen hypervisors to evaluate our framework,and conduct experiments under various realistic application environments.The results demonstrate that our solution successfully fixes the inadequacy of the present live migration implementation,and the performance overhead is negligible.展开更多
The risk situation assessment and forecast technique of network security is a basic method of active defense techniques. In order to assess the risk of network security two methods were used to define the index of ris...The risk situation assessment and forecast technique of network security is a basic method of active defense techniques. In order to assess the risk of network security two methods were used to define the index of risk and forecast index in time series, they were analytical hierarchy process (AHP) and support vector regression (SVR). The module framework applied the methods above was also discussed. Experiment results showed the forecast values were so close to actual values and so it proved the approach is correct.展开更多
The security incidents ion networks are sudden and uncertain, it is very hard to precisely predict the network security situation by traditional methods. In order to improve the prediction accuracy of the network secu...The security incidents ion networks are sudden and uncertain, it is very hard to precisely predict the network security situation by traditional methods. In order to improve the prediction accuracy of the network security situation, we build a network security situation prediction model based on Wavelet Neural Network (WNN) with optimized parameters by the Improved Niche Genetic Algorithm (INGA). The proposed model adopts WNN which has strong nonlinear ability and fault-tolerance performance. Also, the parameters for WNN are optimized through the adaptive genetic algorithm (GA) so that WNN searches more effectively. Considering the problem that the adaptive GA converges slowly and easily turns to the premature problem, we introduce a novel niche technology with a dynamic fuzzy clustering and elimination mechanism to solve the premature convergence of the GA. Our final simulation results show that the proposed INGA-WNN prediction model is more reliable and effective, and it achieves faster convergence-speed and higher prediction accuracy than the Genetic Algorithm-Wavelet Neural Network (GA-WNN). Genetic Algorithm-Back Propagation Neural Network (GA-BPNN) and WNN.展开更多
With the rapid development of wireless networks,the Ad Hoc networks are widely used in many fields,but the current network security solutions for the Ad Hoc network are not competitive enough.So the critical technolog...With the rapid development of wireless networks,the Ad Hoc networks are widely used in many fields,but the current network security solutions for the Ad Hoc network are not competitive enough.So the critical technology of Ad Hoc network applications shall be how to implement the security scheme.Here the discussions are focused on the specific solution against the security threats which the Ad Hoc networks will face,the methodology of a management model which uses trusted computing technology to solve Ad Hoc network security problems,and the analysis and verification for the security of this model.展开更多
文摘Given the grave local and international network security landscape,a national strategic level analysis indicates that the modernization and advancement within the Industry 4.0 era are closely correlated with overall competitive strength.Consequently,China proposed a strategy for the integration of industrialization and informatization,optimizing and adjusting its industrial structure to swiftly achieve transformation and upgrading in the Industry 4.0 era,thereby enhancing the sophistication of intelligent industrial control systems.The distributed control system in a nuclear power plant functions as an industrial control system,overseeing the operational status of the physical process.Its ability to ensure safe and reliable operation is directly linked to nuclear safety and the cybersecurity of the facility.The management of network security in distributed control systems(DCS)is crucial for achieving this objective.Due to the varying network settings and parameters of the DCS implemented in each nuclear power plant,the network security status of the system sometimes diverges from expectations.During system operation,it will undoubtedly encounter network security issues.Consequently,nuclear power plants utilize the technical criteria outlined in GB/T 22239 to formulate a network security management program aimed at enhancing the operational security of DCS within these facilities.This study utilizes existing network security regulations and standards as a reference to analyze the network security control standards based on the nuclear power plant’s control system.It delineates the fundamental requirements for network security management,facilitating integration with the entire life cycle of the research,development,and application of the nuclear power plant’s distributed control system,thereby establishing a network security management methodology that satisfies the control requirements of the nuclear power plant.Initially,it presents DCS and network security management,outlines current domestic and international network security legislation and standards,and specifies the standards pertinent to the administration of DCS in nuclear power plants.Secondly,the design of network security management for DCS is executed in conjunction with the specific context of nuclear power plants.This encompasses the deployment of network security apparatus,validation of the network security management strategy,and optimization adjustments.Consequently,recommendations beneficial to the network security management of nuclear power plants are compiled,aimed at establishing a management system and incorporating the concept of full life cycle management,which is predicated on system requirements,system design,and both software and hardware considerations.Conversely,it presents the notion of comprehensive life cycle management and suggests network security management strategies encompassing system requirements,system architecture,detailed hardware and software design and implementation,procurement,internal system integration,system validation and acceptance testing,system installation,operational maintenance,system modifications,and decommissioning.We will consistently enhance the performance and functionality of DCS in nuclear power plants,establish a safe and secure operational environment,and thereby facilitate the implementation of DCS in nuclear facilities while ensuring robust network security in the future.
文摘The 5G-R network is on the verge of entering the construction stage.Given that the dedicated network for railways is closely linked to train operation safety,there are extremely high requirements for network security.As a result,there is an urgent need to conduct research on 5G-R network security.To comprehensively enhance the end-to-end security protection of the 5G-R network,this study summarized the security requirements of the GSM-R network,analyzed the security risks and requirements faced by the 5G-R network,and proposed an overall 5G-R network security architecture.The security technical schemes were detailed from various aspects:5G-R infrastructure security,terminal access security,networking security,operation and maintenance security,data security,and network boundary security.Additionally,the study proposed leveraging the 5G-R security situation awareness system to achieve a comprehensive upgrade from basic security technologies to endogenous security capabilities within the 5G-R system.
基金Under the auspices of National Key Research and Development Program of China(No.2022YFF1300904)the National Natural Science Foundation of China(No.42271119,42371075,42471127)+1 种基金Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2023238)Jilin Province Science and Technology Development Plan Project(No.20230203001SF)。
文摘A robust ecological security network(ESN)is essential for ensuring regional ecological security,improving fragile ecological conditions,and promoting sustainable development.Climate change and land use/cover change(LUCC)influence the structure and connectivity of the ESN by impacting ecosystem services(ESs).Previous studies primarily focused on the overall effects of LUCC on ESN changes,but they largely overlooked the effects of detailed LUCC transitions.In this study,we evaluated changes in the structure and connectivity of the ESN in the Songnen Plain(SNP),Northeast China,over the past 30 yr(1990s-2020s)using circuit theory and graph theory.We further explored the effects of climate change,LUCC,and detailed LUCC transformations on ESN changes through factorial control experiments.Results revealed a 24.86%decrease in ecological sources and a 27.06%decrease in ecological corridors,accompanied by a decline in ESN connectivity from the 1990s to the 2010s.Conversely,from the 2010s to the 2020s,ecological sources increased by 14.71%and ecological corridors increased by 25.71%due to ecological projects such as returning farmland to wetlands,resulting in an overall increase in ESN connectivity.The changes in ESN structure were primarily attributed to LUCC effects,followed by climate change effects and their interactions.In contrast,the changes in connectivity were significantly affected by climate change,followed by interactive effects and LUCC.Through detailed examination of LUCC transformation effects,we further found that the changes in ESN structure were primarily attributed to wetland loss,followed by deforestation and urban expansion.Meanwhile,the changes in ESN connectivity were mainly due to the effects of wetland loss,urban expansion and deforestation.Notably,the adverse effects of wetland loss partly offset climate change benefits on ESN.Our study offers valuable insights for developing future land management policies and implementing ecological projects,aimed at maintaining a stable ESN and ensuring sustainable human development.
文摘To ensure the safe operation of industrial digital twins network and avoid the harm to the system caused by hacker invasion,a series of discussions on network security issues are carried out based on game theory.From the perspective of the life cycle of network vulnerabilities,mining and repairing vulnerabilities are analyzed by applying evolutionary game theory.The evolution process of knowledge sharing among white hats under various conditions is simulated,and a game model of the vulnerability patch cooperative development strategy among manufacturers is constructed.On this basis,the differential evolution is introduced into the update mechanism of the Wolf Colony Algorithm(WCA)to produce better replacement individuals with greater probability from the perspective of both attack and defense.Through the simulation experiment,it is found that the convergence speed of the probability(X)of white Hat 1 choosing the knowledge sharing policy is related to the probability(x0)of white Hat 2 choosing the knowledge sharing policy initially,and the probability(y0)of white hat 2 choosing the knowledge sharing policy initially.When y0?0.9,X converges rapidly in a relatively short time.When y0 is constant and x0 is small,the probability curve of the“cooperative development”strategy converges to 0.It is concluded that the higher the trust among the white hat members in the temporary team,the stronger their willingness to share knowledge,which is conducive to the mining of loopholes in the system.The greater the probability of a hacker attacking the vulnerability before it is fully disclosed,the lower the willingness of manufacturers to choose the"cooperative development"of vulnerability patches.Applying the improved wolf colonyco-evolution algorithm can obtain the equilibrium solution of the"attack and defense game model",and allocate the security protection resources according to the importance of nodes.This study can provide an effective solution to protect the network security for digital twins in the industry.
文摘The proliferation of Internet of Things(IoT)technology has exponentially increased the number of devices interconnected over networks,thereby escalating the potential vectors for cybersecurity threats.In response,this study rigorously applies and evaluates deep learning models—namely Convolutional Neural Networks(CNN),Autoencoders,and Long Short-Term Memory(LSTM)networks—to engineer an advanced Intrusion Detection System(IDS)specifically designed for IoT environments.Utilizing the comprehensive UNSW-NB15 dataset,which encompasses 49 distinct features representing varied network traffic characteristics,our methodology focused on meticulous data preprocessing including cleaning,normalization,and strategic feature selection to enhance model performance.A robust comparative analysis highlights the CNN model’s outstanding performance,achieving an accuracy of 99.89%,precision of 99.90%,recall of 99.88%,and an F1 score of 99.89%in binary classification tasks,outperforming other evaluated models significantly.These results not only confirm the superior detection capabilities of CNNs in distinguishing between benign and malicious network activities but also illustrate the model’s effectiveness in multiclass classification tasks,addressing various attack vectors prevalent in IoT setups.The empirical findings from this research demonstrate deep learning’s transformative potential in fortifying network security infrastructures against sophisticated cyber threats,providing a scalable,high-performance solution that enhances security measures across increasingly complex IoT ecosystems.This study’s outcomes are critical for security practitioners and researchers focusing on the next generation of cyber defense mechanisms,offering a data-driven foundation for future advancements in IoT security strategies.
文摘In an era where digital technology is paramount, higher education institutions like the University of Zambia (UNZA) are employing advanced computer networks to enhance their operational capacity and offer cutting-edge services to their academic fraternity. Spanning across the Great East Road campus, UNZA has established one of the most extensive computer networks in Zambia, serving a burgeoning community of over 20,000 active users through a Metropolitan Area Network (MAN). However, as the digital landscape continues to evolve, it is besieged with burgeoning challenges that threaten the very fabric of network integrity—cyber security threats and the imperatives of maintaining high Quality of Service (QoS). In an effort to mitigate these threats and ensure network efficiency, the development of a mobile application to monitor temperatures in the server room was imperative. According to L. Wei, X. Zeng, and T. Shen, the use of wireless sensory networks to monitor the temperature of train switchgear contact points represents a cost-effective solution. The system is based on wireless communication technology and is detailed in their paper, “A wireless solution for train switchgear contact temperature monitoring and alarming system based on wireless communication technology”, published in the International Journal of Communications, Network and System Sciences, vol. 8, no. 4, pp. 79-87, 2015 [1]. Therefore, in this study, a mobile application technology was explored for monitoring of temperatures in the server room in order to aid Cisco device performance. Additionally, this paper also explores the hardening of Cisco device security and QoS which are the cornerstones of this study.
文摘In the era of the digital economy,the informatization degree of various industries is getting deeper and deeper,and network information security has also come into people’s eyes.Colleges and universities are in the position of training applied talents,because of the needs of teaching and education,as well as the requirements of teaching reform,the information construction of colleges and universities has been gradually improved,but the problem of network information security is also worth causing people to ponder.The low security of the network environment will cause college network information security leaks,and even hackers will attack the official website of the university and leak the personal information of teachers and students.To solve such problems,this paper studies the protection of college network information security against the background of the digital economy era.This paper first analyzes the significance of network information security protection,then points out the current and moral problems,and finally puts forward specific countermeasures,hoping to create a safe learning environment for teachers and students for reference.
基金Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2025R319)Riyadh,Saudi Arabia and Prince Sultan University for covering the article processing charges(APC)associated with this publication.Special acknowledgement to Automated Systems&Soft Computing Lab(ASSCL),Prince Sultan University,Riyadh,Saudi Arabia.
文摘The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R343),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabiathe Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabia for funding this research work through the project number NBU-FFR-2025-1092-10.
文摘As quantum computing continues to advance,traditional cryptographic methods are increasingly challenged,particularly when it comes to securing critical systems like Supervisory Control andData Acquisition(SCADA)systems.These systems are essential for monitoring and controlling industrial operations,making their security paramount.A key threat arises from Shor’s algorithm,a powerful quantum computing tool that can compromise current hash functions,leading to significant concerns about data integrity and confidentiality.To tackle these issues,this article introduces a novel Quantum-Resistant Hash Algorithm(QRHA)known as the Modular Hash Learning Algorithm(MHLA).This algorithm is meticulously crafted to withstand potential quantum attacks by incorporating advanced mathematical and algorithmic techniques,enhancing its overall security framework.Our research delves into the effectiveness ofMHLA in defending against both traditional and quantum-based threats,with a particular emphasis on its resilience to Shor’s algorithm.The findings from our study demonstrate that MHLA significantly enhances the security of SCADA systems in the context of quantum technology.By ensuring that sensitive data remains protected and confidential,MHLA not only fortifies individual systems but also contributes to the broader efforts of safeguarding industrial and infrastructure control systems against future quantumthreats.Our evaluation demonstrates that MHLA improves security by 38%against quantumattack simulations compared to traditional hash functionswhilemaintaining a computational efficiency ofO(m⋅n⋅k+v+n).The algorithm achieved a 98%success rate in detecting data tampering during integrity testing.These findings underline MHLA’s effectiveness in enhancing SCADA system security amidst evolving quantum technologies.This research represents a crucial step toward developing more secure cryptographic systems that can adapt to the rapidly changing technological landscape,ultimately ensuring the reliability and integrity of critical infrastructure in an era where quantum computing poses a growing risk.
文摘In order to manage all kinds of network security devices and software systems efficiently, and make them collaborate with each other, the model for an open network security management platform is presented. The feasibility and key implementing technology of the model are expatiated. A prototype system is implemented to validate it.
基金This work is funded by the National Natural Science Foundation of China under Grant U1636215the National key research and development plan under Grant Nos.2018YFB0803504,2016YFB0800303.
文摘Network Security Situation Awareness System YHSAS acquires,understands and displays the security factors which cause changes of network situation,and predicts the future development trend of these security factors.YHSAS is developed for national backbone network,large network operators,large enterprises and other large-scale network.This paper describes its architecture and key technologies:Network Security Oriented Total Factor Information Collection and High-Dimensional Vector Space Analysis,Knowledge Representation and Management of Super Large-Scale Network Security,Multi-Level,Multi-Granularity and Multi-Dimensional Network Security Index Construction Method,Multi-Mode and Multi-Granularity Network Security Situation Prediction Technology,and so on.The performance tests show that YHSAS has high real-time performance and accuracy in security situation analysis and trend prediction.The system meets the demands of analysis and prediction for large-scale network security situation.
基金Supported by the Foundation of Tianjin for Science and Technology Innovation(10FDZDGX00400,11ZCKFGX00900)Key Project of Educational Reform Foundation of Tianjin Municipal Education Commission(C03-0809)
文摘With the rapid development of global information and the increasing dependence on network for people, network security problems are becoming more and more serious. By analyzing the existing security assessment methods, we propose a network security situation evaluation system based on modified D-S evidence theory is proposed. Firstly, we give a modified D-S evidence theory to improve the reliability and rationality of the fusion result and apply the theory to correlation analysis. Secondly, the attack successful support is accurately calculated by matching internal factors with external threats. Multi-module evaluation is established to comprehensively evaluate the situation of network security. Finally we use an example of actual network datasets to validate the network security situation evaluation system. The simulation result shows that the system can not only reduce the rate of false positives and false alarms, but also effectively help analysts comprehensively to understand the situation of network security.
基金the National Natural Science Foundation of China(No.60605019)
文摘Network security situation is a hot research topic in the field of network security. Whole situation awareness includes the current situation evaluation and the future situation prediction. However, the now-existing research focuses on the current situation evaluation, and seldom discusses the future prediction. Based on the historical research, an improved grey Verhulst model is put forward to predict the future situation. Aiming at the shortages in the prediction based on traditional Verhulst model, the adaptive grey parameters and equal- dimensions grey filling methods are proposed to improve the precision. The simulation results prove that the scheme is efficient and applicable.
基金This work was supported by National Natural Science Foundation of China(No.61971026)the Fundamental Research Funds for the Central Universities(No.FRF-TP-18-008A3).
文摘In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to protect the security of whole system.In the proposed security defense system,the security is protected by the intelligent immunity through three functions,identification function,learning function,and regulation function,respectively.Meanwhile,a three process-based intelligent algorithm is proposed for the intelligent immunity system.Numerical simulations are given to prove the effeteness of the proposed approach.
文摘In this paper,we investigate and analyze the network security risks faced by 5G private industrial networks.Based on current network security architecture and 3GPP requirements and considering the actual application of 5G private industrial networks,a comparative analysis is used to plan and design a private network security construction scheme.The network security construction model,network organization,and key processes of 5G private industrial networks at the current stage are investigated.In addition,the key direction for the next stage of construction is discussed.
基金supported in part by the National High Technology Research and Development Program of China ("863" Program) (No.2007AA010502)
文摘Since the frequency of network security incidents is nonlinear,traditional prediction methods such as ARMA,Gray systems are difficult to deal with the problem.When the size of sample is small,methods based on artificial neural network may not reach a high degree of preciseness.Least Squares Support Vector Machines (LSSVM) is a kind of machine learning methods based on the statistics learning theory,it can be applied to solve small sample and non-linear problems very well.This paper applied LSSVM to predict the occur frequency of network security incidents.To improve the accuracy,it used an improved genetic algorithm to optimize the parameters of LSSVM.Verified by real data sets,the improved genetic algorithm (IGA) converges faster than the simple genetic algorithm (SGA),and has a higher efficiency in the optimization procedure.Specially,the optimized LSSVM model worked very well on the prediction of frequency of network security incidents.
基金supported by State Key Laboratory of Software Development Environment under Grant No. SKLSDE-2009ZX-02China Aviation Science Fund under Grant No.20081951National High Technical Research and Development Program of China (863 Program) under Grant No.2007AA01Z183
文摘As the number of Virtual Machines(VMs) consolidated on single physical server increases with the rapid advance of server hardware,virtual network turns complex and frangible.Modern Network Security Engines(NSE) are introduced to eradicate the intrusions occurring in the virtual network.In this paper,we point out the inadequacy of the present live migration implementation,which hinders itself from providing transparent VM relocation between hypervisors equipped with Network Security Engines(NSE-H).This occurs because the current implementation ignores VM-related Security Context(SC) required by NSEs embedded in NSE-H.We present the CoM,a comprehensive live migration framework,for NSE-H-based virtualization computing environment.We built a prototype system on Xen hypervisors to evaluate our framework,and conduct experiments under various realistic application environments.The results demonstrate that our solution successfully fixes the inadequacy of the present live migration implementation,and the performance overhead is negligible.
基金Supported bythe Basic Research of Commission ofScience , Technology and Industry for National Defense (03058720)
文摘The risk situation assessment and forecast technique of network security is a basic method of active defense techniques. In order to assess the risk of network security two methods were used to define the index of risk and forecast index in time series, they were analytical hierarchy process (AHP) and support vector regression (SVR). The module framework applied the methods above was also discussed. Experiment results showed the forecast values were so close to actual values and so it proved the approach is correct.
基金This work was partially supported by the National Natural Science Foundation of China (Nos. 61271260 and 61301122) and the Natural Science Foundation of Chongqing Science and Technology Commission (No. cstc2015jcyjA40050, cstc2014jcyjA40052), Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1400405). Research Fund for Young Scholars of Chongqing University of Posts and Telecommunications (A2013-30), the Science Research Starting Foundation of Chongqing University of Posts and Telecommunications (A2013-23).
文摘The security incidents ion networks are sudden and uncertain, it is very hard to precisely predict the network security situation by traditional methods. In order to improve the prediction accuracy of the network security situation, we build a network security situation prediction model based on Wavelet Neural Network (WNN) with optimized parameters by the Improved Niche Genetic Algorithm (INGA). The proposed model adopts WNN which has strong nonlinear ability and fault-tolerance performance. Also, the parameters for WNN are optimized through the adaptive genetic algorithm (GA) so that WNN searches more effectively. Considering the problem that the adaptive GA converges slowly and easily turns to the premature problem, we introduce a novel niche technology with a dynamic fuzzy clustering and elimination mechanism to solve the premature convergence of the GA. Our final simulation results show that the proposed INGA-WNN prediction model is more reliable and effective, and it achieves faster convergence-speed and higher prediction accuracy than the Genetic Algorithm-Wavelet Neural Network (GA-WNN). Genetic Algorithm-Back Propagation Neural Network (GA-BPNN) and WNN.
基金National Natural Science Foundation of China under Grant No. 60970115,National Natural Science Funds Projects of China under Grant No. 91018008
文摘With the rapid development of wireless networks,the Ad Hoc networks are widely used in many fields,but the current network security solutions for the Ad Hoc network are not competitive enough.So the critical technology of Ad Hoc network applications shall be how to implement the security scheme.Here the discussions are focused on the specific solution against the security threats which the Ad Hoc networks will face,the methodology of a management model which uses trusted computing technology to solve Ad Hoc network security problems,and the analysis and verification for the security of this model.