We present a controlled secure quantum dialogue protocol using a non-maximally (pure) entangled Greenberger-Horne-Zeibinger (GHZ) states at first, and then discuss the requirements for a real quantum dialogue. We ...We present a controlled secure quantum dialogue protocol using a non-maximally (pure) entangled Greenberger-Horne-Zeibinger (GHZ) states at first, and then discuss the requirements for a real quantum dialogue. We show that the authorized two users can exchange their secret messages after purifying the non-maximally entangled GHZ states quantum channel unconditionally securely and simultaneously under the control of a third party.展开更多
Based on the deterministic secure quantum communication, we present a novel quantum dialogue protocol with- out information leakage over the collective noise channel. The logical qubits and four-qubit decoherence-free...Based on the deterministic secure quantum communication, we present a novel quantum dialogue protocol with- out information leakage over the collective noise channel. The logical qubits and four-qubit decoherence-free states are introduced for resisting against collective-dephasing noise, collective-rotation noise and all kinds of unitary collective noise, respectively. Compared with the existing similar protocols, the analyses on security and information-theoretical emciency show that the proposed protocol is more secure and emeient.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 10575017
文摘We present a controlled secure quantum dialogue protocol using a non-maximally (pure) entangled Greenberger-Horne-Zeibinger (GHZ) states at first, and then discuss the requirements for a real quantum dialogue. We show that the authorized two users can exchange their secret messages after purifying the non-maximally entangled GHZ states quantum channel unconditionally securely and simultaneously under the control of a third party.
基金Supported by the Foundation and Frontier Research Program of Chongqing Science and Technology Commission of China under Grant No cstc2016jcyjA0571
文摘Based on the deterministic secure quantum communication, we present a novel quantum dialogue protocol with- out information leakage over the collective noise channel. The logical qubits and four-qubit decoherence-free states are introduced for resisting against collective-dephasing noise, collective-rotation noise and all kinds of unitary collective noise, respectively. Compared with the existing similar protocols, the analyses on security and information-theoretical emciency show that the proposed protocol is more secure and emeient.