期刊文献+
共找到147,394篇文章
< 1 2 250 >
每页显示 20 50 100
An Integrated Approach to Condition-Based Maintenance Decision-Making of Planetary Gearboxes: Combining Temporal Convolutional Network Auto Encoders with Wiener Process
1
作者 Bo Zhu Enzhi Dong +3 位作者 Zhonghua Cheng Xianbiao Zhan Kexin Jiang Rongcai Wang 《Computers, Materials & Continua》 2026年第1期661-686,共26页
With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance s... With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes. 展开更多
关键词 Temporal convolutional network autoencoder full lifecycle degradation experiment nonlinear Wiener process condition-based maintenance decision-making fault monitoring
在线阅读 下载PDF
Intrusion Detection and Security Attacks Mitigation in Smart Cities with Integration of Human-Computer Interaction
2
作者 Abeer Alnuaim 《Computers, Materials & Continua》 2026年第1期711-743,共33页
The rapid digitalization of urban infrastructure has made smart cities increasingly vulnerable to sophisticated cyber threats.In the evolving landscape of cybersecurity,the efficacy of Intrusion Detection Systems(IDS)... The rapid digitalization of urban infrastructure has made smart cities increasingly vulnerable to sophisticated cyber threats.In the evolving landscape of cybersecurity,the efficacy of Intrusion Detection Systems(IDS)is increasingly measured by technical performance,operational usability,and adaptability.This study introduces and rigorously evaluates a Human-Computer Interaction(HCI)-Integrated IDS with the utilization of Convolutional Neural Network(CNN),CNN-Long Short Term Memory(LSTM),and Random Forest(RF)against both a Baseline Machine Learning(ML)and a Traditional IDS model,through an extensive experimental framework encompassing many performance metrics,including detection latency,accuracy,alert prioritization,classification errors,system throughput,usability,ROC-AUC,precision-recall,confusion matrix analysis,and statistical accuracy measures.Our findings consistently demonstrate the superiority of the HCI-Integrated approach utilizing three major datasets(CICIDS 2017,KDD Cup 1999,and UNSW-NB15).Experimental results indicate that the HCI-Integrated model outperforms its counterparts,achieving an AUC-ROC of 0.99,a precision of 0.93,and a recall of 0.96,while maintaining the lowest false positive rate(0.03)and the fastest detection time(~1.5 s).These findings validate the efficacy of incorporating HCI to enhance anomaly detection capabilities,improve responsiveness,and reduce alert fatigue in critical smart city applications.It achieves markedly lower detection times,higher accuracy across all threat categories,reduced false positive and false negative rates,and enhanced system throughput under concurrent load conditions.The HCIIntegrated IDS excels in alert contextualization and prioritization,offering more actionable insights while minimizing analyst fatigue.Usability feedback underscores increased analyst confidence and operational clarity,reinforcing the importance of user-centered design.These results collectively position the HCI-Integrated IDS as a highly effective,scalable,and human-aligned solution for modern threat detection environments. 展开更多
关键词 Anomaly detection smart cities Internet of Things(IoT) HCI CNN LSTM random forest intelligent secure solutions
在线阅读 下载PDF
Hesitant Fuzzy-Sets Based Decision-Making Model for Security Risk Assessment 被引量:3
3
作者 Ahmed S.Alfakeeh Abdulmohsen Almalawi +6 位作者 Fawaz Jaber Alsolami Yoosef B.Abushark Asif Irshad Khan Adel Aboud S.Bahaddad Alka Agrawal Rajeev Kumar Raees Ahmad Khan 《Computers, Materials & Continua》 SCIE EI 2022年第2期2297-2317,共21页
Security is an important component in the process of developing healthcare web applications.We need to ensure security maintenance;therefore the analysis of healthcare web application’s security risk is of utmost imp... Security is an important component in the process of developing healthcare web applications.We need to ensure security maintenance;therefore the analysis of healthcare web application’s security risk is of utmost importance.Properties must be considered to minimise the security risk.Additionally,security risk management activities are revised,prepared,implemented,tracked,and regularly set up efficiently to design the security of healthcare web applications.Managing the security risk of a healthcare web application must be considered as the key component.Security is,in specific,seen as an add-on during the development process of healthcare web applications,but not as the key problem.Researchers must ensure that security is taken into account right from the earlier developmental stages of the healthcare web application.In this row,the authors of this study have used the hesitant fuzzy-based AHP-TOPSIS technique to estimate the risks of various healthcare web applications for improving security-durability.This approach would help to design and incorporate security features in healthcare web applications that would be able to battle threats on their own,and not depend solely on the external security of healthcare web applications.Furthermore,in terms of healthcare web application’s security-durability,the security risk variable is measured,and vice versa.Hence,the findings of our study will also be useful in improving the durability of several web applications in healthcare. 展开更多
关键词 Web applications security risk security durability hesitantbased decision-making approach
在线阅读 下载PDF
AN EXPERT SYSTEM ASSISTING DECISION-MAKING OF STEADY-STATE SECURITY CONTROL
4
作者 唐国庆 许洪元 华学东 《Journal of Southeast University(English Edition)》 EI CAS 1991年第2期76-82,共7页
An expert system of steady-state security control for assisting dispatchers indecision-making is proposed.It is a mixture of logical inference,empirical rules and nu-merical algorithms,and aimed only at real power sub... An expert system of steady-state security control for assisting dispatchers indecision-making is proposed.It is a mixture of logical inference,empirical rules and nu-merical algorithms,and aimed only at real power subproblem.The classification of pro-duction rules and structure,and the realization and improvement of this system are dis-cussed in detail.The expert system was demonstrated and evaluated on Micro-Vax Ⅱ forIEEE-30 bus sample system and a practical JS-95 bus system. 展开更多
关键词 POWER systcm computation/cxpert system security control
在线阅读 下载PDF
Enhancing Cybersecurity Competency in the Kingdom of Saudi Arabia:A Fuzzy Decision-Making Approach
5
作者 Wajdi Alhakami 《Computers, Materials & Continua》 SCIE EI 2024年第5期3211-3237,共27页
The Kingdom of Saudi Arabia(KSA)has achieved significant milestones in cybersecurity.KSA has maintained solid regulatorymechanisms to prevent,trace,and punish offenders to protect the interests of both individual user... The Kingdom of Saudi Arabia(KSA)has achieved significant milestones in cybersecurity.KSA has maintained solid regulatorymechanisms to prevent,trace,and punish offenders to protect the interests of both individual users and organizations from the online threats of data poaching and pilferage.The widespread usage of Information Technology(IT)and IT Enable Services(ITES)reinforces securitymeasures.The constantly evolving cyber threats are a topic that is generating a lot of discussion.In this league,the present article enlists a broad perspective on how cybercrime is developing in KSA at present and also takes a look at some of the most significant attacks that have taken place in the region.The existing legislative framework and measures in the KSA are geared toward deterring criminal activity online.Different competency models have been devised to address the necessary cybercrime competencies in this context.The research specialists in this domain can benefit more by developing a master competency level for achieving optimum security.To address this research query,the present assessment uses the Fuzzy Decision-Making Trial and Evaluation Laboratory(Fuzzy-DMTAEL),Fuzzy Analytic Hierarchy Process(F.AHP),and Fuzzy TOPSIS methodology to achieve segment-wise competency development in cyber security policy.The similarities and differences between the three methods are also discussed.This cybersecurity analysis determined that the National Cyber Security Centre got the highest priority.The study concludes by perusing the challenges that still need to be examined and resolved in effectuating more credible and efficacious online security mechanisms to offer amoreempowered ITES-driven economy for SaudiArabia.Moreover,cybersecurity specialists and policymakers need to collate their efforts to protect the country’s digital assets in the era of overt and covert cyber warfare. 展开更多
关键词 Cyber security fuzzy DMTAEL security policy cyber crime MCDM
在线阅读 下载PDF
Improvements to Female Autonomy and Household Decision-Making Power from an Intervention Targeting Improved Food Security: A Gender-Based Analysis of the Rajasthan Nutrition Project
6
作者 Lindsay M. Belvedere Siena F. Davis +1 位作者 Bobbi L. Gray Benjamin T. Crookston 《Health》 2021年第2期188-203,共16页
In India, women and children continue to experience food insecurity. The purpose of this study is to evaluate whether the Rajasthan Nutrition Project (RNP) led to changes in 1) dietary habits and nutrition, and 2) ind... In India, women and children continue to experience food insecurity. The purpose of this study is to evaluate whether the Rajasthan Nutrition Project (RNP) led to changes in 1) dietary habits and nutrition, and 2) indicators of gender equality, female autonomy, and empowerment. This study surveyed women belonging to self-help groups who were pregnant or who had young children. Over the course of the intervention, significant improvements were seen in the following indicators: breastfeeding within one hour of birth, exclusively breastfeeding for the first six months, food insecurity of children and mothers, household decision-making, communication, mobility, and domestic violence. These findings suggest that the RNP is a promising intervention for improving nutrition and female autonomy in Rajasthan, India. Additional research is needed to determine if the RNP would be equally as effective in other regions of India, or in populations outside of India. 展开更多
关键词 India RAJASTHAN Female Autonomy Food security Maternal and Child Health
在线阅读 下载PDF
Evaluating Security of Big Data Through Fuzzy Based Decision-Making Technique
7
作者 Fawaz Alassery Ahmed Alzahrani +3 位作者 Asif Irshad Khan Kanika Sharma Masood Ahmad Raees Ahmad Khan 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期859-872,共14页
In recent years,it has been observed that the disclosure of information increases the risk of terrorism.Without restricting the accessibility of information,providing security is difficult.So,there is a demand for tim... In recent years,it has been observed that the disclosure of information increases the risk of terrorism.Without restricting the accessibility of information,providing security is difficult.So,there is a demand for time tofill the gap between security and accessibility of information.In fact,security tools should be usable for improving the security as well as the accessibility of information.Though security and accessibility are not directly influenced,some of their factors are indirectly influenced by each other.Attributes play an important role in bridging the gap between security and accessibility.In this paper,we identify the key attributes of accessibility and security that impact directly and indirectly on each other,such as confidentiality,integrity,availability,and severity.The significance of every attribute on the basis of obtained weight is important for its effect on security during the big data security life cycle process.To calculate the proposed work,researchers utilised the Fuzzy Analytic Hierarchy Process(Fuzzy AHP).Thefindings show that the Fuzzy AHP is a very accurate mechanism for determining the best security solution in a real-time healthcare context.The study also looks at the rapidly evolving security technologies in healthcare that could help improve healthcare services and the future prospects in this area. 展开更多
关键词 Information security big data big data security life cycle fuzzy AHP
在线阅读 下载PDF
前后端分离环境下Spring Security权限系统构建与实现
8
作者 何立富 《电脑编程技巧与维护》 2025年第10期3-7,共5页
通过引入JWT认证机制,解决了前后端分离架构下Spring Security在跨域、兼容性及分布式部署中的认证和授权难题,构建了一套动态权限管理系统,实现了用户身份的精准识别与验证。在系统架构设计层面,通过自定义登录接口、缓存技术、拦截器... 通过引入JWT认证机制,解决了前后端分离架构下Spring Security在跨域、兼容性及分布式部署中的认证和授权难题,构建了一套动态权限管理系统,实现了用户身份的精准识别与验证。在系统架构设计层面,通过自定义登录接口、缓存技术、拦截器及自定义表达式逻辑权限控制等规划,有效提升了系统的性能、安全性与灵活性。基于角色的访问控制权限(RBAC)的功能设计,借助可视化配置界面进一步增强了系统的易操作性。经测试验证,该系统具备高度的稳定性与有效性,能够精准地控制访问权限,为相关应用系统的权限管理提供了切实可靠的解决方案。 展开更多
关键词 Spring security工具 前后端分离架构 动态化权限管理 JWT标准 基于角色的访问控制权限
在线阅读 下载PDF
Voices that matter:The impact of patient-reported outcome measures on clinical decision-making 被引量:1
9
作者 Naveen Jeyaraman Madhan Jeyaraman +2 位作者 Swaminathan Ramasubramanian Sangeetha Balaji Sathish Muthu 《World Journal of Methodology》 2025年第2期54-61,共8页
The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a pati... The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a patient's health status directly from their perspective,encompassing various domains such as symptom severity,functional status,and overall quality of life.By integrating PROMs into routine clinical practice and research,healthcare providers can achieve a more nuanced understanding of patient experiences and tailor treatments accordingly.The deployment of PROMs supports dynamic patient-provider interactions,fostering better patient engagement and adherence to tre-atment plans.Moreover,PROMs are pivotal in clinical settings for monitoring disease progression and treatment efficacy,particularly in chronic and mental health conditions.However,challenges in implementing PROMs include data collection and management,integration into existing health systems,and acceptance by patients and providers.Overcoming these barriers necessitates technological advancements,policy development,and continuous education to enhance the acceptability and effectiveness of PROMs.The paper concludes with recommendations for future research and policy-making aimed at optimizing the use and impact of PROMs across healthcare settings. 展开更多
关键词 Patient-reported outcome measures Clinical decision-making Patient-centered care Healthcare technology Data management Policy development
暂未订购
Rule-Guidance Reinforcement Learning for Lane Change Decision-making:A Risk Assessment Approach 被引量:1
10
作者 Lu Xiong Zhuoren Li +2 位作者 Danyang Zhong Puhang Xu Chen Tang 《Chinese Journal of Mechanical Engineering》 2025年第2期344-359,共16页
To solve problems of poor security guarantee and insufficient training efficiency in the conventional reinforcement learning methods for decision-making,this study proposes a hybrid framework to combine deep reinforce... To solve problems of poor security guarantee and insufficient training efficiency in the conventional reinforcement learning methods for decision-making,this study proposes a hybrid framework to combine deep reinforcement learning with rule-based decision-making methods.A risk assessment model for lane-change maneuvers considering uncertain predictions of surrounding vehicles is established as a safety filter to improve learning efficiency while correcting dangerous actions for safety enhancement.On this basis,a Risk-fused DDQN is constructed utilizing the model-based risk assessment and supervision mechanism.The proposed reinforcement learning algorithm sets up a separate experience buffer for dangerous trials and punishes such actions,which is shown to improve the sampling efficiency and training outcomes.Compared with conventional DDQN methods,the proposed algorithm improves the convergence value of cumulated reward by 7.6%and 2.2%in the two constructed scenarios in the simulation study and reduces the number of training episodes by 52.2%and 66.8%respectively.The success rate of lane change is improved by 57.3%while the time headway is increased at least by 16.5%in real vehicle tests,which confirms the higher training efficiency,scenario adaptability,and security of the proposed Risk-fused DDQN. 展开更多
关键词 Autonomous driving Reinforcement learning decision-making Risk assessment Safety filter
在线阅读 下载PDF
The Looming Threat Blackout of the National Grid and Critical Infrastructure (A National Security Crisis) 被引量:1
11
作者 Bahman Zohuri 《Journal of Energy and Power Engineering》 2025年第1期31-35,共5页
The national grid and other life-sustaining critical infrastructures face an unprecedented threat from prolonged blackouts,which could last over a year and pose a severe risk to national security.Whether caused by phy... The national grid and other life-sustaining critical infrastructures face an unprecedented threat from prolonged blackouts,which could last over a year and pose a severe risk to national security.Whether caused by physical attacks,EMP(electromagnetic pulse)events,or cyberattacks,such disruptions could cripple essential services like water supply,healthcare,communication,and transportation.Research indicates that an attack on just nine key substations could result in a coast-to-coast blackout lasting up to 18 months,leading to economic collapse,civil unrest,and a breakdown of public order.This paper explores the key vulnerabilities of the grid,the potential impacts of prolonged blackouts,and the role of AI(artificial intelligence)and ML(machine learning)in mitigating these threats.AI-driven cybersecurity measures,predictive maintenance,automated threat response,and EMP resilience strategies are discussed as essential solutions to bolster grid security.Policy recommendations emphasize the need for hardened infrastructure,enhanced cybersecurity,redundant power systems,and AI-based grid management to ensure national resilience.Without proactive measures,the nation remains exposed to a catastrophic power grid failure that could have dire consequences for society and the economy. 展开更多
关键词 National grid blackout critical infrastructure security EMP cyberattack resilience AI-powered grid protection ML in energy security power grid vulnerabilities physical attacks on infrastructure predictive maintenance for power grids energy crisis and national security
在线阅读 下载PDF
A Lightweight IoT Data Security Sharing Scheme Based on Attribute-Based Encryption and Blockchain 被引量:1
12
作者 Hongliang Tian Meiruo Li 《Computers, Materials & Continua》 2025年第6期5539-5559,共21页
The accelerated advancement of the Internet of Things(IoT)has generated substantial data,including sensitive and private information.Consequently,it is imperative to guarantee the security of data sharing.While facili... The accelerated advancement of the Internet of Things(IoT)has generated substantial data,including sensitive and private information.Consequently,it is imperative to guarantee the security of data sharing.While facilitating fine-grained access control,Ciphertext Policy Attribute-Based Encryption(CP-ABE)can effectively ensure the confidentiality of shared data.Nevertheless,the conventional centralized CP-ABE scheme is plagued by the issues of keymisuse,key escrow,and large computation,which will result in security risks.This paper suggests a lightweight IoT data security sharing scheme that integrates blockchain technology and CP-ABE to address the abovementioned issues.The integrity and traceability of shared data are guaranteed by the use of blockchain technology to store and verify access transactions.The encryption and decryption operations of the CP-ABE algorithm have been implemented using elliptic curve scalarmultiplication to accommodate lightweight IoT devices,as opposed to themore arithmetic bilinear pairing found in the traditional CP-ABE algorithm.Additionally,a portion of the computation is delegated to the edge nodes to alleviate the computational burden on users.A distributed key management method is proposed to address the issues of key escrow andmisuse.Thismethod employs the edge blockchain to facilitate the storage and distribution of attribute private keys.Meanwhile,data security sharing is enhanced by combining off-chain and on-chain ciphertext storage.The security and performance analysis indicates that the proposed scheme is more efficient and secure. 展开更多
关键词 Edge blockchain CP-ABE data security sharing IOT
在线阅读 下载PDF
A Synergistic Multi-Attribute Decision-Making Method for Educational Institutions Evaluation Using Similarity Measures of Possibility Pythagorean Fuzzy Hypersoft Sets
13
作者 Khuram Ali Khan Saba Mubeen Ishfaq +1 位作者 Atiqe Ur Rahman Salwa El-Morsy 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期501-530,共30页
Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pP... Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison. 展开更多
关键词 Hypersoft set Pythagorean fuzzy hypersoft set computational complexity multi-attribute decision-making optimization similarity measures uncertainty
在线阅读 下载PDF
On large language models safety,security,and privacy:A survey 被引量:1
14
作者 Ran Zhang Hong-Wei Li +2 位作者 Xin-Yuan Qian Wen-Bo Jiang Han-Xiao Chen 《Journal of Electronic Science and Technology》 2025年第1期1-21,共21页
The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.De... The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.Despite their transformative impact in fields such as machine translation and intelligent dialogue systems,LLMs face significant challenges.These challenges include safety,security,and privacy concerns that undermine their trustworthiness and effectiveness,such as hallucinations,backdoor attacks,and privacy leakage.Previous works often conflated safety issues with security concerns.In contrast,our study provides clearer and more reasonable definitions for safety,security,and privacy within the context of LLMs.Building on these definitions,we provide a comprehensive overview of the vulnerabilities and defense mechanisms related to safety,security,and privacy in LLMs.Additionally,we explore the unique research challenges posed by LLMs and suggest potential avenues for future research,aiming to enhance the robustness and reliability of LLMs in the face of emerging threats. 展开更多
关键词 Large language models Privacy issues Safety issues security issues
在线阅读 下载PDF
Medical Diagnosis Based on Multi-Attribute Group Decision-Making Using Extension Fuzzy Sets,Aggregation Operators and Basic Uncertainty Information Granule
15
作者 Anastasios Dounis Ioannis Palaiothodoros Anna Panagiotou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期759-811,共53页
Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to... Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data. 展开更多
关键词 Medical diagnosis multi-attribute group decision-making(MAGDM) q-ROFS IVq-ROFS BUI aggregation operators similarity measures inverse score function
在线阅读 下载PDF
When Software Security Meets Large Language Models:A Survey 被引量:1
16
作者 Xiaogang Zhu Wei Zhou +3 位作者 Qing-Long Han Wanlun Ma Sheng Wen Yang Xiang 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期317-334,共18页
Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, ... Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, software testing and analysis are two of the critical methods, which significantly benefit from the advancements in deep learning technologies. Due to the successful use of deep learning in software security, recently,researchers have explored the potential of using large language models(LLMs) in this area. In this paper, we systematically review the results focusing on LLMs in software security. We analyze the topics of fuzzing, unit test, program repair, bug reproduction, data-driven bug detection, and bug triage. We deconstruct these techniques into several stages and analyze how LLMs can be used in the stages. We also discuss the future directions of using LLMs in software security, including the future directions for the existing use of LLMs and extensions from conventional deep learning research. 展开更多
关键词 Large language models(LLMs) software analysis software security software testing
在线阅读 下载PDF
A Robust Security Detection Strategy for Next Generation IoT Networks
17
作者 Hafida Assmi Azidine Guezzaz +4 位作者 Said Benkirane Mourade Azrour Said Jabbour Nisreen Innab Abdulatif Alabdulatif 《Computers, Materials & Continua》 SCIE EI 2025年第1期443-466,共24页
Internet of Things(IoT)refers to the infrastructures that connect smart devices to the Internet,operating autonomously.This connectivitymakes it possible to harvest vast quantities of data,creating new opportunities f... Internet of Things(IoT)refers to the infrastructures that connect smart devices to the Internet,operating autonomously.This connectivitymakes it possible to harvest vast quantities of data,creating new opportunities for the emergence of unprecedented knowledge.To ensure IoT securit,various approaches have been implemented,such as authentication,encoding,as well as devices to guarantee data integrity and availability.Among these approaches,Intrusion Detection Systems(IDS)is an actual security solution,whose performance can be enhanced by integrating various algorithms,including Machine Learning(ML)and Deep Learning(DL),enabling proactive and accurate detection of threats.This study proposes to optimize the performance of network IDS using an ensemble learning method based on a voting classification algorithm.By combining the strengths of three powerful algorithms,Random Forest(RF),K-Nearest Neighbors(KNN),and Support Vector Machine(SVM)to detect both normal behavior and different categories of attack.Our analysis focuses primarily on the NSL-KDD dataset,while also integrating the recent Edge-IIoT dataset,tailored to industrial IoT environments.Experimental results show significant enhancements on the Edge-IIoT and NSL-KDD datasets,reaching accuracy levels between 72%to 99%,with precision between 87%and 99%,while recall values and F1-scores are also between 72%and 99%,for both normal and attack detection.Despite the promising results of this study,it suffers from certain limitations,notably the use of specific datasets and the lack of evaluations in a variety of environments.Future work could include applying this model to various datasets and evaluating more advanced ensemble strategies,with the aim of further enhancing the effectiveness of IDS. 展开更多
关键词 IoT security intrusion detection RF KNN SVM EL NSL-KDD Edge-IIoT
在线阅读 下载PDF
The Security of Using Large Language Models:A Survey With Emphasis on ChatGPT 被引量:1
18
作者 Wei Zhou Xiaogang Zhu +4 位作者 Qing-Long Han Lin Li Xiao Chen Sheng Wen Yang Xiang 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期1-26,共26页
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential sec... ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential security risks that need to be carefully evaluated and addressed. In this survey, we provide an overview of the current state of research on security of using ChatGPT, with aspects of bias, disinformation, ethics, misuse,attacks and privacy. We review and discuss the literature on these topics and highlight open research questions and future directions.Through this survey, we aim to contribute to the academic discourse on AI security, enriching the understanding of potential risks and mitigations. We anticipate that this survey will be valuable for various stakeholders involved in AI development and usage, including AI researchers, developers, policy makers, and end-users. 展开更多
关键词 Artificial intelligence(AI) ChatGPT large language models(LLMs) security
在线阅读 下载PDF
Review of Techniques for Integrating Security in Software Development Lifecycle
19
作者 Hassan Saeed Imran Shafi +3 位作者 Jamil Ahmad Adnan Ahmed Khan Tahir Khurshaid Imran Ashraf 《Computers, Materials & Continua》 SCIE EI 2025年第1期139-172,共34页
Software-related security aspects are a growing and legitimate concern,especially with 5G data available just at our palms.To conduct research in this field,periodic comparative analysis is needed with the new techniq... Software-related security aspects are a growing and legitimate concern,especially with 5G data available just at our palms.To conduct research in this field,periodic comparative analysis is needed with the new techniques coming up rapidly.The purpose of this study is to review the recent developments in the field of security integration in the software development lifecycle(SDLC)by analyzing the articles published in the last two decades and to propose a way forward.This review follows Kitchenham’s review protocol.The review has been divided into three main stages including planning,execution,and analysis.From the selected 100 articles,it becomes evident that need of a collaborative approach is necessary for addressing critical software security risks(CSSRs)through effective risk management/estimation techniques.Quantifying risks using a numeric scale enables a comprehensive understanding of their severity,facilitating focused resource allocation and mitigation efforts.Through a comprehensive understanding of potential vulnerabilities and proactive mitigation efforts facilitated by protection poker,organizations can prioritize resources effectively to ensure the successful outcome of projects and initiatives in today’s dynamic threat landscape.The review reveals that threat analysis and security testing are needed to develop automated tools for the future.Accurate estimation of effort required to prioritize potential security risks is a big challenge in software security.The accuracy of effort estimation can be further improved by exploring new techniques,particularly those involving deep learning.It is also imperative to validate these effort estimation methods to ensure all potential security threats are addressed.Another challenge is selecting the right model for each specific security threat.To achieve a comprehensive evaluation,researchers should use well-known benchmark checklists. 展开更多
关键词 Software development lifecycle systematic literature review critical software security risks national institute of standards and technology DevSecOps open web application security project McGraw’s touch points
在线阅读 下载PDF
Security Strategy of Digital Medical Contents Based on Blockchain in Generative AI Model
20
作者 Hoon Ko Marek R.Ogiela 《Computers, Materials & Continua》 SCIE EI 2025年第1期259-278,共20页
This study presents an innovative approach to enhancing the security of visual medical data in the generative AI environment through the integration of blockchain technology.By combining the strengths of blockchain an... This study presents an innovative approach to enhancing the security of visual medical data in the generative AI environment through the integration of blockchain technology.By combining the strengths of blockchain and generative AI,the research team aimed to address the timely challenge of safeguarding visual medical content.The participating researchers conducted a comprehensive analysis,examining the vulnerabilities of medical AI services,personal information protection issues,and overall security weaknesses.This multi faceted exploration led to an indepth evaluation of the model’s performance and security.Notably,the correlation between accuracy,detection rate,and error rate was scrutinized.This analysis revealed insights into the model’s strengths and limitations,while the consideration of standard deviation shed light on the model’s stability and performance variability.The study proposed practical improvements,emphasizing the reduction of false negatives to enhance detection rate and leveraging blockchain technology to ensure visual data integrity in medical applications.Applying blockchain to generative AI-created medical content addresses key personal information protection issues.By utilizing the distributed ledger system of blockchain,the research team aimed to protect the privacy and integrity of medical data especially medical images.This approach not only enhances security but also enables transparent and tamperproof record-keeping.Additionally,the use of generative AI models ensures the creation of novel medical content without compromising personal information,further safeguarding patient privacy.In conclusion,this study showcases the potential of blockchain-based solutions in the medical field,particularly in securing sensitive medical data and protecting patient privacy.The proposed approach,combining blockchain and generative AI,offers a promising direction toward more robust and secure medical content management.Further research and advancements in this area will undoubtedly contribute to the development of robust and privacy-preserving healthcare systems,and visual diagnostic systems. 展开更多
关键词 Digitalmedical content medical diagnostic visualization security analysis generativeAI blockchain VULNERABILITY pattern recognition
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部