The rapid adoption of machine learning in sensitive domains,such as healthcare,finance,and government services,has heightened the need for robust,privacy-preserving techniques.Traditional machine learning approaches l...The rapid adoption of machine learning in sensitive domains,such as healthcare,finance,and government services,has heightened the need for robust,privacy-preserving techniques.Traditional machine learning approaches lack built-in privacy mechanisms,exposing sensitive data to risks,which motivates the development of Privacy-Preserving Machine Learning(PPML)methods.Despite significant advances in PPML,a comprehensive and focused exploration of Secure Multi-Party Computing(SMPC)within this context remains underdeveloped.This review aims to bridge this knowledge gap by systematically analyzing the role of SMPC in PPML,offering a structured overviewof current techniques,challenges,and future directions.Using a semi-systematicmapping studymethodology,this paper surveys recent literature spanning SMPC protocols,PPML frameworks,implementation approaches,threat models,and performance metrics.Emphasis is placed on identifying trends,technical limitations,and comparative strengths of leading SMPC-based methods.Our findings reveal thatwhile SMPCoffers strong cryptographic guarantees for privacy,challenges such as computational overhead,communication costs,and scalability persist.The paper also discusses critical vulnerabilities,practical deployment issues,and variations in protocol efficiency across use cases.展开更多
This paper proposes an efficient batch secret sharing protocol among n players resilient to t 〈 n/4 players in asynchronous network. The construction of our protocol is along the line of Hirt's protocol which works ...This paper proposes an efficient batch secret sharing protocol among n players resilient to t 〈 n/4 players in asynchronous network. The construction of our protocol is along the line of Hirt's protocol which works in synchronous model. Compared with the method of using secret share protocol m times to share m secrets, our protocol is quite efficient. The protocol can be used to improve the efficiency of secure multi-party computation (MPC) greatly in asynchronous network.展开更多
Privacy-Preserving Computation(PPC)comprises the techniques,schemes and protocols which ensure privacy and confidentiality in the context of secure computation and data analysis.Most of the current PPC techniques rely...Privacy-Preserving Computation(PPC)comprises the techniques,schemes and protocols which ensure privacy and confidentiality in the context of secure computation and data analysis.Most of the current PPC techniques rely on the complexity of cryptographic operations,which are expected to be efficiently solved by quantum computers soon.This review explores how PPC can be built on top of quantum computing itself to alleviate these future threats.We analyze quantum proposals for Secure Multi-party Computation,Oblivious Transfer and Homomorphic Encryption from the last decade focusing on their maturity and the challenges they currently face.Our findings show a strong focus on purely theoretical works,but a rise on the experimental consideration of these techniques in the last 5 years.The applicability of these techniques to actual use cases is an underexplored aspect which could lead to the practical assessment of these techniques.展开更多
Security and privacy issues have attracted the attention of researchers in the field of IoT as the information processing scale grows in sensor networks.Quantum computing,theoretically known as an absolutely secure wa...Security and privacy issues have attracted the attention of researchers in the field of IoT as the information processing scale grows in sensor networks.Quantum computing,theoretically known as an absolutely secure way to store and transmit information as well as a speed-up way to accelerate local or distributed classical algorithms that are hard to solve with polynomial complexity in computation or communication.In this paper,we focus on the phase estimation method that is crucial to the realization of a general multi-party computing model,which is able to be accelerated by quantum algorithms.A novel multi-party phase estimation algorithm and the related quantum circuit are proposed by using a distributed Oracle operator with iterations.The proved theoretical communication complexity of this algorithm shows it can give the phase estimation before applying multi-party computing efficiently without increasing any additional complexity.Moreover,a practical problem of multi-party dating investigated shows it can make a successful estimation of the number of solution in advance with zero communication complexity by utilizing its special statistic feature.Sufficient simulations present the correctness,validity and efficiency of the proposed estimation method.展开更多
Efficiency and scalability are still the bottleneck for secure multi-party computation geometry (SMCG). In this work a secure planar convex hull (SPCH) protocol for large-scaled point sets in semi-honest model has...Efficiency and scalability are still the bottleneck for secure multi-party computation geometry (SMCG). In this work a secure planar convex hull (SPCH) protocol for large-scaled point sets in semi-honest model has been proposed efficiently to solve the above problems. Firstly, a novel priva- cy-preserving point-inclusion (PPPI) protocol is designed based on the classic homomorphic encryp- tion and secure cross product protocol, and it is demonstrated that the complexity of PPPI protocol is independent of the vertex size of the input convex hull. And then on the basis of the novel PPPI pro- tocol, an effective SPCH protocol is presented. Analysis shows that this SPCH protocol has a good performance for large-scaled point sets compared with previous solutions. Moreover, analysis finds that the complexity of our SPCH protocol relies on the size of the points on the outermost layer of the input point sets only.展开更多
The wide application of intelligent terminals in microgrids has fueled the surge of data amount in recent years.In real-world scenarios,microgrids must store large amounts of data efficiently while also being able to ...The wide application of intelligent terminals in microgrids has fueled the surge of data amount in recent years.In real-world scenarios,microgrids must store large amounts of data efficiently while also being able to withstand malicious cyberattacks.To meet the high hardware resource requirements,address the vulnerability to network attacks and poor reliability in the tradi-tional centralized data storage schemes,this paper proposes a secure storage management method for microgrid data that considers node trust and directed acyclic graph(DAG)consensus mechanism.Firstly,the microgrid data storage model is designed based on the edge computing technology.The blockchain,deployed on the edge computing server and combined with cloud storage,ensures reliable data storage in the microgrid.Secondly,a blockchain consen-sus algorithm based on directed acyclic graph data structure is then proposed to effectively improve the data storage timeliness and avoid disadvantages in traditional blockchain topology such as long chain construction time and low consensus efficiency.Finally,considering the tolerance differences among the candidate chain-building nodes to network attacks,a hash value update mechanism of blockchain header with node trust identification to ensure data storage security is proposed.Experimental results from the microgrid data storage platform show that the proposed method can achieve a private key update time of less than 5 milliseconds.When the number of blockchain nodes is less than 25,the blockchain construction takes no more than 80 mins,and the data throughput is close to 300 kbps.Compared with the traditional chain-topology-based consensus methods that do not consider node trust,the proposed method has higher efficiency in data storage and better resistance to network attacks.展开更多
In software-defined networking(SDN),controllers are sinks of information such as network topology collected from switches.Organizations often like to protect their internal network topology and keep their network poli...In software-defined networking(SDN),controllers are sinks of information such as network topology collected from switches.Organizations often like to protect their internal network topology and keep their network policies private.We borrow techniques from secure multi-party computation(SMC)to preserve the privacy of policies of SDN controllers about status of routers.On the other hand,the number of controllers is one of the most important concerns in scalability of SMC application in SDNs.To address this issue,we formulate an optimization problem to minimize the number of SDN controllers while considering their reliability in SMC operations.We use Non-Dominated Sorting Genetic Algorithm II(NSGA-II)to determine the optimal number of controllers,and simulate SMC for typical SDNs with this number of controllers.Simulation results show that applying the SMC technique to preserve the privacy of organization policies causes only a little delay in SDNs,which is completely justifiable by the privacy obtained.展开更多
Secure multi-party computation(MPC)allows a set of parties to jointly compute a function on their private inputs,and reveals nothing but the output of the function.In the last decade,MPC has rapidly moved from a purel...Secure multi-party computation(MPC)allows a set of parties to jointly compute a function on their private inputs,and reveals nothing but the output of the function.In the last decade,MPC has rapidly moved from a purely theoretical study to an object of practical interest,with a growing interest in practical applications such as privacy-preserving machine learning(PPML).In this paper,we comprehensively survey existing work on concretely ecient MPC protocols with both semi-honest and malicious security,in both dishonest-majority and honest-majority settings.We focus on considering the notion of security with abort,meaning that corrupted parties could prevent honest parties from receiving output after they receive output.We present high-level ideas of the basic and key approaches for designing di erent styles of MPC protocols and the crucial building blocks of MPC.For MPC applications,we compare the known PPML protocols built on MPC,and describe the eciency of private inference and training for the state-of-the-art PPML protocols.Further-more,we summarize several challenges and open problems to break though the eciency of MPC protocols as well as some interesting future work that is worth being addressed.This survey aims to provide the recent development and key approaches of MPC to researchers,who are interested in knowing,improving,and applying concretely ecient MPC protocols.展开更多
To solve the data island problem,federated learning(FL)provides a solution paradigm where each client sends the model parameters but not the data to a server for model aggregation.Peer-to-peer(P2P)federated learning f...To solve the data island problem,federated learning(FL)provides a solution paradigm where each client sends the model parameters but not the data to a server for model aggregation.Peer-to-peer(P2P)federated learning further improves the robustness of the system,in which there is no server and each client communicates directly with the other.For secure aggregation,secure multi-party computing(SMPC)protocols have been utilized in peer-to-peer manner.However,the ideal SMPC protocols could fail when some clients drop out.In this paper,we propose a robust peer-to-peer learning(RP2PL)algorithm via SMPC to resist clients dropping out.We improve the segmentbased SMPC protocol by adding a check and designing the generation method of random segments.In RP2PL,each client aggregates their models by the improved robust secure multi-part computation protocol when finishes the local training.Experimental results demonstrate that the RP2PL paradigm can mitigate clients dropping out with no significant degradation in performance.展开更多
Universality is an important property in software and hardware design.This paper concentrates on the universality of quantum secure multi-party computation(SMC)protocol.First of all,an in-depth study of universality h...Universality is an important property in software and hardware design.This paper concentrates on the universality of quantum secure multi-party computation(SMC)protocol.First of all,an in-depth study of universality has been conducted,and then a nearly universal protocol is proposed by using the Greenberger-Horne-Zeilinger(GHZ)-like state and stabilizer formalism.The protocol can resolve the quantum SMC problem which can be deduced as modulo subtraction,and the steps are simple and effective.Secondly,three quantum SMC protocols based on the proposed universal protocol:Quantum private comparison(QPC)protocol,quantum millionaire(QM)protocol,and quantum multi-party summation(QMS)protocol are presented.These protocols are given as examples to explain universality.Thirdly,analyses of the example protocols are shown.Concretely,the correctness,fairness,and efficiency are confirmed.And the proposed universal protocol meets security from the perspective of preventing inside attacks and outside attacks.Finally,the experimental results of the example protocols on the International Business Machines(IBM)quantum platform are consistent with the theoretical results.Our research indicates that our protocol is universal to a certain degree and easy to perform.展开更多
Secure Multi-party Computation has been a research focus in international cryptographic community in recent years. In this paper the authors investigate how some computational geometric problems could be solved in a c...Secure Multi-party Computation has been a research focus in international cryptographic community in recent years. In this paper the authors investigate how some computational geometric problems could be solved in a cooperative environment, where two parties need to solve a geometric problem based on their joint data, but neither wants to disclose its private data to the other party. These problems are the distance between two private points, the relation between a private point and a circle area, the relation between a private point and an ellipse area and the shortest distance between two point sets. The paper gives solutions to these specific geometric. problems, and in doing so a building block is developed, the protocol for the distance between two private points, that is also useful in the solutions to other geometric problems and combinatorial problems.展开更多
Privacy-preserving computational geometry is a special secure multi-party computation and has many applications. Previous protocols for determining whether a point is inside a circle are not secure enough. We present ...Privacy-preserving computational geometry is a special secure multi-party computation and has many applications. Previous protocols for determining whether a point is inside a circle are not secure enough. We present a two-round protocol for computing the distance between two private points and develop a more efficient protocol for the point-circle inclusion problem based on the distance protocol. In comparison with previous solutions, our protocol not only is more secure but also reduces the number of communication rounds and the number of modular multiplications significantly.展开更多
A secure scalar product protocol is a type of specific secure multi-party computation problem. Using this kind of protocol, two involved parties are able to jointly compute the scalar product of their private vectors...A secure scalar product protocol is a type of specific secure multi-party computation problem. Using this kind of protocol, two involved parties are able to jointly compute the scalar product of their private vectors:, but no party will reveal any information about his/her private vector to another one. The secure scalar product protocol is of great importance in many privacy-preserving applications such as privacy-preserving data mining, privacy-preserving cooperative statistical analysis, and privacy-preserving geometry computation. In this paper, we give an efficient and secure scalar product protocol in the presence of malicious adversaries based on two important tools: the proof of knowledge of a discrete logarithm and the verifiable encryption. The security of the new protocol is proved under the standard simulation-based definitions. Compared with the existing schemes, our scheme offers higher efficiency because of avoiding inefficient cut-and-choose proofs.展开更多
With the increasing development of smart grid,multi-party cooperative computation between several entities has become a typical characteristic of modern energy systems.Traditionally,data exchange among parties is inev...With the increasing development of smart grid,multi-party cooperative computation between several entities has become a typical characteristic of modern energy systems.Traditionally,data exchange among parties is inevitable,rendering how to complete multi-party collaborative optimization without exposing any private information a critical issue.This paper proposes a fully privacy-preserving distributed optimization framework based on secure multi-party computation(SMPC)with secret sharing protocols.The framework decomposes the collaborative optimization problem into a master problem and several subproblems.The process of solving the master problem is executed in the SMPC framework via the secret sharing protocols among agents.The relationships of agents are completely equal,and there is no privileged agent or any third party.The process of solving subproblems is conducted by agents individually.Compared to the traditional distributed optimization framework,the proposed SMPC-based framework can fully preserve individual private information.Exchanged data among agents are encrypted and no private information disclosure is assured.Furthermore,the framework maintains a limited and acceptable increase in computational costs while guaranteeing opti-mality.Case studies are conducted on test systems of different scales to demonstrate the principle of secret sharing and verify the feasibility and scalability of the proposed methodology.展开更多
Incorporation of fog computing with low latency,preprocession(e.g.,data aggregation)and location awareness,can facilitate fine-grained collection of smart metering data in smart grid and promotes the sustainability an...Incorporation of fog computing with low latency,preprocession(e.g.,data aggregation)and location awareness,can facilitate fine-grained collection of smart metering data in smart grid and promotes the sustainability and efficiency of the grid.Recently,much attention has been paid to the research on smart grid,especially in protecting privacy and data aggregation.However,most previous works do not focus on privacy-preserving data aggregation and function computation query on enormous data simultaneously in smart grid based on fog computation.In this paper,we construct a novel verifiable privacy-preserving data collection scheme supporting multi-party computation(MPC),named VPDC-MPC,to achieve both functions simultaneously in smart grid based on fog computing.VPDC-MPC realizes verifiable secret sharing of users’data and data aggregation without revealing individual reports via practical cryptosystem and verifiable secret sharing scheme.Besides,we propose an efficient algorithm for batch verification of share consistency and detection of error reports if the external adversaries modify the SMs’report.Furthermore,VPDC-MPC allows both the control center and users with limited resources to obtain arbitrary arithmetic analysis(not only data aggregation)via secure multi-party computation between cloud servers in smart grid.Besides,VPDC-MPC tolerates fault of cloud servers and resists collusion.We also present security analysis and performance evaluation of our scheme,which indicates that even with tradeoff on computation and communication overhead,VPDC-MPC is practical with above features.展开更多
Existing commitment schemes were addressed under the classic two-party scenario, However, popularity of the secure multi-party computation in today's lush network communication is motivating us to adopt more sophisti...Existing commitment schemes were addressed under the classic two-party scenario, However, popularity of the secure multi-party computation in today's lush network communication is motivating us to adopt more sophisticate commitment schemes. In this paper, we study for the first time multireceiver commitment in unconditionally secure setting, i.e., one committer promises a group of verifiers a common secret value (in computational setting it is trivial). We extend the Rivest model for this purpose and present a provably secure generic construction using multireceiver authentication codes (without secrecy) as building blocks. Two concrete schemes are proposed as its immediate implementations, which are almost as efficient as an optimal MRA-code. We believe using other primitives to construct variants of this concept will open doors for more interesting research.展开更多
In most of the auction systems the values of bids are known to the auctioneer. This allows him to manipulate the outcome of the auction. Hence, one might be interested in hiding these values. Some cryptographically se...In most of the auction systems the values of bids are known to the auctioneer. This allows him to manipulate the outcome of the auction. Hence, one might be interested in hiding these values. Some cryptographically secure protocols for electronic auctions have been presented in the last decade. Our work extends these protocols in several ways. On the basis of garbled circuits, i.e., encrypted circuits, we present protocols for sealed-bid auctions that fulfill the following requirements: 1) protocols are information-theoretically t-private for honest but curious parties; 2) the number of bits that can be learned by malicious adversaries is bounded by the output length of the auction; 3) the computational requirements for participating parties are very low: only random bit choices and bitwise computation of the XOR-function are necessary. Note that one can distinguish between the protocol that generates a garbled circuit for an auction and the protocol to evaluate the auction. In this paper we address both problems. We will present a t-private protocol for the construction of a garbled circuit that reaches the lower bound of 2t + 1 parties, and Finally, we address the problem of bid changes in an auction. a more randomness efficient protocol for (t + 1)^2 parties展开更多
文摘The rapid adoption of machine learning in sensitive domains,such as healthcare,finance,and government services,has heightened the need for robust,privacy-preserving techniques.Traditional machine learning approaches lack built-in privacy mechanisms,exposing sensitive data to risks,which motivates the development of Privacy-Preserving Machine Learning(PPML)methods.Despite significant advances in PPML,a comprehensive and focused exploration of Secure Multi-Party Computing(SMPC)within this context remains underdeveloped.This review aims to bridge this knowledge gap by systematically analyzing the role of SMPC in PPML,offering a structured overviewof current techniques,challenges,and future directions.Using a semi-systematicmapping studymethodology,this paper surveys recent literature spanning SMPC protocols,PPML frameworks,implementation approaches,threat models,and performance metrics.Emphasis is placed on identifying trends,technical limitations,and comparative strengths of leading SMPC-based methods.Our findings reveal thatwhile SMPCoffers strong cryptographic guarantees for privacy,challenges such as computational overhead,communication costs,and scalability persist.The paper also discusses critical vulnerabilities,practical deployment issues,and variations in protocol efficiency across use cases.
基金the National Natural Science Foundation of China(No.60803146)
文摘This paper proposes an efficient batch secret sharing protocol among n players resilient to t 〈 n/4 players in asynchronous network. The construction of our protocol is along the line of Hirt's protocol which works in synchronous model. Compared with the method of using secret share protocol m times to share m secrets, our protocol is quite efficient. The protocol can be used to improve the efficiency of secure multi-party computation (MPC) greatly in asynchronous network.
基金supported by the Basque Government through the ELKARTEK program for Research and Innovation,under the BRTAQUANTUM project(Grant Agreement No.KK-2022/00041)。
文摘Privacy-Preserving Computation(PPC)comprises the techniques,schemes and protocols which ensure privacy and confidentiality in the context of secure computation and data analysis.Most of the current PPC techniques rely on the complexity of cryptographic operations,which are expected to be efficiently solved by quantum computers soon.This review explores how PPC can be built on top of quantum computing itself to alleviate these future threats.We analyze quantum proposals for Secure Multi-party Computation,Oblivious Transfer and Homomorphic Encryption from the last decade focusing on their maturity and the challenges they currently face.Our findings show a strong focus on purely theoretical works,but a rise on the experimental consideration of these techniques in the last 5 years.The applicability of these techniques to actual use cases is an underexplored aspect which could lead to the practical assessment of these techniques.
基金Supported by the National Natural Science Foundation of China under Grant Nos.61501247,61373131 and 61702277,the Six Talent Peaks Project of Jiangsu Province(Grant No.2015-XXRJ-013)Natural Science Foundation of Jiangsu Province(Grant No.BK20171458)+3 种基金the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(China under Grant No.16KJB520030)the NUIST Research Foundation for Talented Scholars under Grant Nos.2015r014,PAPD and CICAEET fundsfunded in part by the Science and Technology Development Fund,Macao SAR(File No.SKL-IOTSC-2018-2020,0018/2019/AKP,0008/2019/AGJ,and FDCT/194/2017/A3)in part by the University of Macao under Grant Nos.MYRG2018-00248-FST and MYRG2019-0137-FST.
文摘Security and privacy issues have attracted the attention of researchers in the field of IoT as the information processing scale grows in sensor networks.Quantum computing,theoretically known as an absolutely secure way to store and transmit information as well as a speed-up way to accelerate local or distributed classical algorithms that are hard to solve with polynomial complexity in computation or communication.In this paper,we focus on the phase estimation method that is crucial to the realization of a general multi-party computing model,which is able to be accelerated by quantum algorithms.A novel multi-party phase estimation algorithm and the related quantum circuit are proposed by using a distributed Oracle operator with iterations.The proved theoretical communication complexity of this algorithm shows it can give the phase estimation before applying multi-party computing efficiently without increasing any additional complexity.Moreover,a practical problem of multi-party dating investigated shows it can make a successful estimation of the number of solution in advance with zero communication complexity by utilizing its special statistic feature.Sufficient simulations present the correctness,validity and efficiency of the proposed estimation method.
基金Supported by the Young Scientists Program of CUEB(No.2014XJQ016,00791462722337)National Natural Science Foundation of China(No.61302087)+1 种基金Young Scientific Research Starting Foundation of CUEBImprove Scientific Research Foundation of Beijing Education
文摘Efficiency and scalability are still the bottleneck for secure multi-party computation geometry (SMCG). In this work a secure planar convex hull (SPCH) protocol for large-scaled point sets in semi-honest model has been proposed efficiently to solve the above problems. Firstly, a novel priva- cy-preserving point-inclusion (PPPI) protocol is designed based on the classic homomorphic encryp- tion and secure cross product protocol, and it is demonstrated that the complexity of PPPI protocol is independent of the vertex size of the input convex hull. And then on the basis of the novel PPPI pro- tocol, an effective SPCH protocol is presented. Analysis shows that this SPCH protocol has a good performance for large-scaled point sets compared with previous solutions. Moreover, analysis finds that the complexity of our SPCH protocol relies on the size of the points on the outermost layer of the input point sets only.
文摘The wide application of intelligent terminals in microgrids has fueled the surge of data amount in recent years.In real-world scenarios,microgrids must store large amounts of data efficiently while also being able to withstand malicious cyberattacks.To meet the high hardware resource requirements,address the vulnerability to network attacks and poor reliability in the tradi-tional centralized data storage schemes,this paper proposes a secure storage management method for microgrid data that considers node trust and directed acyclic graph(DAG)consensus mechanism.Firstly,the microgrid data storage model is designed based on the edge computing technology.The blockchain,deployed on the edge computing server and combined with cloud storage,ensures reliable data storage in the microgrid.Secondly,a blockchain consen-sus algorithm based on directed acyclic graph data structure is then proposed to effectively improve the data storage timeliness and avoid disadvantages in traditional blockchain topology such as long chain construction time and low consensus efficiency.Finally,considering the tolerance differences among the candidate chain-building nodes to network attacks,a hash value update mechanism of blockchain header with node trust identification to ensure data storage security is proposed.Experimental results from the microgrid data storage platform show that the proposed method can achieve a private key update time of less than 5 milliseconds.When the number of blockchain nodes is less than 25,the blockchain construction takes no more than 80 mins,and the data throughput is close to 300 kbps.Compared with the traditional chain-topology-based consensus methods that do not consider node trust,the proposed method has higher efficiency in data storage and better resistance to network attacks.
文摘In software-defined networking(SDN),controllers are sinks of information such as network topology collected from switches.Organizations often like to protect their internal network topology and keep their network policies private.We borrow techniques from secure multi-party computation(SMC)to preserve the privacy of policies of SDN controllers about status of routers.On the other hand,the number of controllers is one of the most important concerns in scalability of SMC application in SDNs.To address this issue,we formulate an optimization problem to minimize the number of SDN controllers while considering their reliability in SMC operations.We use Non-Dominated Sorting Genetic Algorithm II(NSGA-II)to determine the optimal number of controllers,and simulate SMC for typical SDNs with this number of controllers.Simulation results show that applying the SMC technique to preserve the privacy of organization policies causes only a little delay in SDNs,which is completely justifiable by the privacy obtained.
基金the National Key Research and Development Program of China(Grant No.2018YFB0804105)in part by the National Natural Science Foundation of China(Grant Nos.62102037,61932019).
文摘Secure multi-party computation(MPC)allows a set of parties to jointly compute a function on their private inputs,and reveals nothing but the output of the function.In the last decade,MPC has rapidly moved from a purely theoretical study to an object of practical interest,with a growing interest in practical applications such as privacy-preserving machine learning(PPML).In this paper,we comprehensively survey existing work on concretely ecient MPC protocols with both semi-honest and malicious security,in both dishonest-majority and honest-majority settings.We focus on considering the notion of security with abort,meaning that corrupted parties could prevent honest parties from receiving output after they receive output.We present high-level ideas of the basic and key approaches for designing di erent styles of MPC protocols and the crucial building blocks of MPC.For MPC applications,we compare the known PPML protocols built on MPC,and describe the eciency of private inference and training for the state-of-the-art PPML protocols.Further-more,we summarize several challenges and open problems to break though the eciency of MPC protocols as well as some interesting future work that is worth being addressed.This survey aims to provide the recent development and key approaches of MPC to researchers,who are interested in knowing,improving,and applying concretely ecient MPC protocols.
基金supported by the National Key R&D Program of China(2022YFB3102100)Shenzhen Fundamental Research Program(JCYJ20220818102414030)+2 种基金the Major Key Project of PCL(PCL2022A03)Shenzhen Science and Technology Program(ZDSYS20210623091809029)Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies(2022B1212010005).
文摘To solve the data island problem,federated learning(FL)provides a solution paradigm where each client sends the model parameters but not the data to a server for model aggregation.Peer-to-peer(P2P)federated learning further improves the robustness of the system,in which there is no server and each client communicates directly with the other.For secure aggregation,secure multi-party computing(SMPC)protocols have been utilized in peer-to-peer manner.However,the ideal SMPC protocols could fail when some clients drop out.In this paper,we propose a robust peer-to-peer learning(RP2PL)algorithm via SMPC to resist clients dropping out.We improve the segmentbased SMPC protocol by adding a check and designing the generation method of random segments.In RP2PL,each client aggregates their models by the improved robust secure multi-part computation protocol when finishes the local training.Experimental results demonstrate that the RP2PL paradigm can mitigate clients dropping out with no significant degradation in performance.
基金supported by the National Key Research and Development Program of China(2020YFB1805405)the 111 Project(B21049)+1 种基金the Foundation of Guizhou Provincial Key Laboratory of Public Big Data(2019BDKFJJ014)the Fundamental Research Funds for the Central Universities(2020RC38)
文摘Universality is an important property in software and hardware design.This paper concentrates on the universality of quantum secure multi-party computation(SMC)protocol.First of all,an in-depth study of universality has been conducted,and then a nearly universal protocol is proposed by using the Greenberger-Horne-Zeilinger(GHZ)-like state and stabilizer formalism.The protocol can resolve the quantum SMC problem which can be deduced as modulo subtraction,and the steps are simple and effective.Secondly,three quantum SMC protocols based on the proposed universal protocol:Quantum private comparison(QPC)protocol,quantum millionaire(QM)protocol,and quantum multi-party summation(QMS)protocol are presented.These protocols are given as examples to explain universality.Thirdly,analyses of the example protocols are shown.Concretely,the correctness,fairness,and efficiency are confirmed.And the proposed universal protocol meets security from the perspective of preventing inside attacks and outside attacks.Finally,the experimental results of the example protocols on the International Business Machines(IBM)quantum platform are consistent with the theoretical results.Our research indicates that our protocol is universal to a certain degree and easy to perform.
文摘Secure Multi-party Computation has been a research focus in international cryptographic community in recent years. In this paper the authors investigate how some computational geometric problems could be solved in a cooperative environment, where two parties need to solve a geometric problem based on their joint data, but neither wants to disclose its private data to the other party. These problems are the distance between two private points, the relation between a private point and a circle area, the relation between a private point and an ellipse area and the shortest distance between two point sets. The paper gives solutions to these specific geometric. problems, and in doing so a building block is developed, the protocol for the distance between two private points, that is also useful in the solutions to other geometric problems and combinatorial problems.
基金Supported by the National Natural Science Foundation of China (Grant No. 60573171), the National Grand Fundaznental Research 973 Program of China, (Grant No. 2006CB303006),and Research Program of Anhui Province Education Department (Grant Nos.2006KJ024A and JYXM2005166). We are very grateful to Professor X. Yao at University of Birmingham for useful comments and some corrections. We also thank Professor H. Shen at Japhan Advanced Institute of Science and Technology for helpful suggestions.
文摘Privacy-preserving computational geometry is a special secure multi-party computation and has many applications. Previous protocols for determining whether a point is inside a circle are not secure enough. We present a two-round protocol for computing the distance between two private points and develop a more efficient protocol for the point-circle inclusion problem based on the distance protocol. In comparison with previous solutions, our protocol not only is more secure but also reduces the number of communication rounds and the number of modular multiplications significantly.
基金This work was supported by the National Natural Science Foundation of China under Grant Nos. 60973134, 61173164, 61003232, and the Natural Science Foundation of Guangdong Province of China under Grant No. 10351806001000000.
文摘A secure scalar product protocol is a type of specific secure multi-party computation problem. Using this kind of protocol, two involved parties are able to jointly compute the scalar product of their private vectors:, but no party will reveal any information about his/her private vector to another one. The secure scalar product protocol is of great importance in many privacy-preserving applications such as privacy-preserving data mining, privacy-preserving cooperative statistical analysis, and privacy-preserving geometry computation. In this paper, we give an efficient and secure scalar product protocol in the presence of malicious adversaries based on two important tools: the proof of knowledge of a discrete logarithm and the verifiable encryption. The security of the new protocol is proved under the standard simulation-based definitions. Compared with the existing schemes, our scheme offers higher efficiency because of avoiding inefficient cut-and-choose proofs.
基金supported in part by the National Key Research and Development Program of China 2020YFB2104500.
文摘With the increasing development of smart grid,multi-party cooperative computation between several entities has become a typical characteristic of modern energy systems.Traditionally,data exchange among parties is inevitable,rendering how to complete multi-party collaborative optimization without exposing any private information a critical issue.This paper proposes a fully privacy-preserving distributed optimization framework based on secure multi-party computation(SMPC)with secret sharing protocols.The framework decomposes the collaborative optimization problem into a master problem and several subproblems.The process of solving the master problem is executed in the SMPC framework via the secret sharing protocols among agents.The relationships of agents are completely equal,and there is no privileged agent or any third party.The process of solving subproblems is conducted by agents individually.Compared to the traditional distributed optimization framework,the proposed SMPC-based framework can fully preserve individual private information.Exchanged data among agents are encrypted and no private information disclosure is assured.Furthermore,the framework maintains a limited and acceptable increase in computational costs while guaranteeing opti-mality.Case studies are conducted on test systems of different scales to demonstrate the principle of secret sharing and verify the feasibility and scalability of the proposed methodology.
基金This work was supported in part by the National Key Research and Development Project of China(Grant No.2020YFA0712300)in part by the National Natural Science Foundation of China(Grant Nos.62132005,61632012,62172162 and 62072404).
文摘Incorporation of fog computing with low latency,preprocession(e.g.,data aggregation)and location awareness,can facilitate fine-grained collection of smart metering data in smart grid and promotes the sustainability and efficiency of the grid.Recently,much attention has been paid to the research on smart grid,especially in protecting privacy and data aggregation.However,most previous works do not focus on privacy-preserving data aggregation and function computation query on enormous data simultaneously in smart grid based on fog computation.In this paper,we construct a novel verifiable privacy-preserving data collection scheme supporting multi-party computation(MPC),named VPDC-MPC,to achieve both functions simultaneously in smart grid based on fog computing.VPDC-MPC realizes verifiable secret sharing of users’data and data aggregation without revealing individual reports via practical cryptosystem and verifiable secret sharing scheme.Besides,we propose an efficient algorithm for batch verification of share consistency and detection of error reports if the external adversaries modify the SMs’report.Furthermore,VPDC-MPC allows both the control center and users with limited resources to obtain arbitrary arithmetic analysis(not only data aggregation)via secure multi-party computation between cloud servers in smart grid.Besides,VPDC-MPC tolerates fault of cloud servers and resists collusion.We also present security analysis and performance evaluation of our scheme,which indicates that even with tradeoff on computation and communication overhead,VPDC-MPC is practical with above features.
基金Supported by the Foundation of Development and Reform Commission of China under Grant High-Tech ([2007] 2367)
文摘Existing commitment schemes were addressed under the classic two-party scenario, However, popularity of the secure multi-party computation in today's lush network communication is motivating us to adopt more sophisticate commitment schemes. In this paper, we study for the first time multireceiver commitment in unconditionally secure setting, i.e., one committer promises a group of verifiers a common secret value (in computational setting it is trivial). We extend the Rivest model for this purpose and present a provably secure generic construction using multireceiver authentication codes (without secrecy) as building blocks. Two concrete schemes are proposed as its immediate implementations, which are almost as efficient as an optimal MRA-code. We believe using other primitives to construct variants of this concept will open doors for more interesting research.
文摘In most of the auction systems the values of bids are known to the auctioneer. This allows him to manipulate the outcome of the auction. Hence, one might be interested in hiding these values. Some cryptographically secure protocols for electronic auctions have been presented in the last decade. Our work extends these protocols in several ways. On the basis of garbled circuits, i.e., encrypted circuits, we present protocols for sealed-bid auctions that fulfill the following requirements: 1) protocols are information-theoretically t-private for honest but curious parties; 2) the number of bits that can be learned by malicious adversaries is bounded by the output length of the auction; 3) the computational requirements for participating parties are very low: only random bit choices and bitwise computation of the XOR-function are necessary. Note that one can distinguish between the protocol that generates a garbled circuit for an auction and the protocol to evaluate the auction. In this paper we address both problems. We will present a t-private protocol for the construction of a garbled circuit that reaches the lower bound of 2t + 1 parties, and Finally, we address the problem of bid changes in an auction. a more randomness efficient protocol for (t + 1)^2 parties