期刊文献+
共找到9,385篇文章
< 1 2 250 >
每页显示 20 50 100
Batch Secret Sharing for Secure Multi-party Computation in Asynchronous Network
1
作者 黄征 龚征 李强 《Journal of Shanghai Jiaotong university(Science)》 EI 2009年第1期112-116,共5页
This paper proposes an efficient batch secret sharing protocol among n players resilient to t 〈 n/4 players in asynchronous network. The construction of our protocol is along the line of Hirt's protocol which works ... This paper proposes an efficient batch secret sharing protocol among n players resilient to t 〈 n/4 players in asynchronous network. The construction of our protocol is along the line of Hirt's protocol which works in synchronous model. Compared with the method of using secret share protocol m times to share m secrets, our protocol is quite efficient. The protocol can be used to improve the efficiency of secure multi-party computation (MPC) greatly in asynchronous network. 展开更多
关键词 secret share secure multi-party computation asynchronous network
原文传递
On Privacy-Preserved Machine Learning Using Secure Multi-Party Computing:Techniques and Trends
2
作者 Oshan Mudannayake Amila Indika +2 位作者 Upul Jayasinghe Gyu MyoungLee Janaka Alawatugoda 《Computers, Materials & Continua》 2025年第11期2527-2578,共52页
The rapid adoption of machine learning in sensitive domains,such as healthcare,finance,and government services,has heightened the need for robust,privacy-preserving techniques.Traditional machine learning approaches l... The rapid adoption of machine learning in sensitive domains,such as healthcare,finance,and government services,has heightened the need for robust,privacy-preserving techniques.Traditional machine learning approaches lack built-in privacy mechanisms,exposing sensitive data to risks,which motivates the development of Privacy-Preserving Machine Learning(PPML)methods.Despite significant advances in PPML,a comprehensive and focused exploration of Secure Multi-Party Computing(SMPC)within this context remains underdeveloped.This review aims to bridge this knowledge gap by systematically analyzing the role of SMPC in PPML,offering a structured overviewof current techniques,challenges,and future directions.Using a semi-systematicmapping studymethodology,this paper surveys recent literature spanning SMPC protocols,PPML frameworks,implementation approaches,threat models,and performance metrics.Emphasis is placed on identifying trends,technical limitations,and comparative strengths of leading SMPC-based methods.Our findings reveal thatwhile SMPCoffers strong cryptographic guarantees for privacy,challenges such as computational overhead,communication costs,and scalability persist.The paper also discusses critical vulnerabilities,practical deployment issues,and variations in protocol efficiency across use cases. 展开更多
关键词 CRYPTOGRAPHY data privacy machine learning multi-party computation PRIVACY SMPC PPML
在线阅读 下载PDF
Computational Optimization of RIS-Enhanced Backscatter and Direct Communication for 6G IoT:A DDPG-Based Approach with Physical Layer Security
3
作者 Syed Zain Ul Abideen Mian Muhammad Kamal +4 位作者 Eaman Alharbi Ashfaq Ahmad Malik Wadee Alhalabi Muhammad Shahid Anwar Liaqat Ali 《Computer Modeling in Engineering & Sciences》 2025年第3期2191-2210,共20页
The rapid evolution of wireless technologies and the advent of 6G networks present new challenges and opportunities for Internet ofThings(IoT)applications,particularly in terms of ultra-reliable,secure,and energyeffic... The rapid evolution of wireless technologies and the advent of 6G networks present new challenges and opportunities for Internet ofThings(IoT)applications,particularly in terms of ultra-reliable,secure,and energyefficient communication.This study explores the integration of Reconfigurable Intelligent Surfaces(RIS)into IoT networks to enhance communication performance.Unlike traditional passive reflector-based approaches,RIS is leveraged as an active optimization tool to improve both backscatter and direct communication modes,addressing critical IoT challenges such as energy efficiency,limited communication range,and double-fading effects in backscatter communication.We propose a novel computational framework that combines RIS functionality with Physical Layer Security(PLS)mechanisms,optimized through the algorithm known as Deep Deterministic Policy Gradient(DDPG).This framework adaptively adapts RIS configurations and transmitter beamforming to reduce key challenges,including imperfect channel state information(CSI)and hardware limitations like quantized RIS phase shifts.By optimizing both RIS settings and beamforming in real-time,our approach outperforms traditional methods by significantly increasing secrecy rates,improving spectral efficiency,and enhancing energy efficiency.Notably,this framework adapts more effectively to the dynamic nature of wireless channels compared to conventional optimization techniques,providing scalable solutions for large-scale RIS deployments.Our results demonstrate substantial improvements in communication performance setting a new benchmark for secure,efficient and scalable 6G communication.This work offers valuable insights for the future of IoT networks,with a focus on computational optimization,high spectral efficiency and energy-aware operations. 展开更多
关键词 computational optimization reconfigurable intelligent surfaces(RIS) 6G networks IoT and DDPG physical layer security(PLS) backscatter communication
在线阅读 下载PDF
Physical-layer secure hybrid task scheduling and resource management for fog computing IoT networks
4
作者 ZHANG Shibo GAO Hongyuan +1 位作者 SU Yumeng SUN Rongchen 《Journal of Systems Engineering and Electronics》 2025年第5期1146-1160,共15页
Fog computing has emerged as an important technology which can improve the performance of computation-intensive and latency-critical communication networks.Nevertheless,the fog computing Internet-of-Things(IoT)systems... Fog computing has emerged as an important technology which can improve the performance of computation-intensive and latency-critical communication networks.Nevertheless,the fog computing Internet-of-Things(IoT)systems are susceptible to malicious eavesdropping attacks during the information transmission,and this issue has not been adequately addressed.In this paper,we propose a physical-layer secure fog computing IoT system model,which is able to improve the physical layer security of fog computing IoT networks against the malicious eavesdropping of multiple eavesdroppers.The secrecy rate of the proposed model is analyzed,and the quantum galaxy–based search algorithm(QGSA)is proposed to solve the hybrid task scheduling and resource management problem of the network.The computational complexity and convergence of the proposed algorithm are analyzed.Simulation results validate the efficiency of the proposed model and reveal the influence of various environmental parameters on fog computing IoT networks.Moreover,the simulation results demonstrate that the proposed hybrid task scheduling and resource management scheme can effectively enhance secrecy performance across different communication scenarios. 展开更多
关键词 fog computing Internet-of-Things(IoT) physical layer security hybrid task scheduling and resource management quantum galaxy-based search algorithm(QGSA)
在线阅读 下载PDF
Concretely ecient secure multi-party computation protocols:survey and mor 被引量:3
5
作者 Dengguo Feng Kang Yang 《Security and Safety》 2022年第1期47-89,共43页
Secure multi-party computation(MPC)allows a set of parties to jointly compute a function on their private inputs,and reveals nothing but the output of the function.In the last decade,MPC has rapidly moved from a purel... Secure multi-party computation(MPC)allows a set of parties to jointly compute a function on their private inputs,and reveals nothing but the output of the function.In the last decade,MPC has rapidly moved from a purely theoretical study to an object of practical interest,with a growing interest in practical applications such as privacy-preserving machine learning(PPML).In this paper,we comprehensively survey existing work on concretely ecient MPC protocols with both semi-honest and malicious security,in both dishonest-majority and honest-majority settings.We focus on considering the notion of security with abort,meaning that corrupted parties could prevent honest parties from receiving output after they receive output.We present high-level ideas of the basic and key approaches for designing di erent styles of MPC protocols and the crucial building blocks of MPC.For MPC applications,we compare the known PPML protocols built on MPC,and describe the eciency of private inference and training for the state-of-the-art PPML protocols.Further-more,we summarize several challenges and open problems to break though the eciency of MPC protocols as well as some interesting future work that is worth being addressed.This survey aims to provide the recent development and key approaches of MPC to researchers,who are interested in knowing,improving,and applying concretely ecient MPC protocols. 展开更多
关键词 secure multi-party computation Privacy-preserving machine learning Secret sharings Garbled circuits Oblivious transfer and its arithmetic generalization
原文传递
Secure Computation Efficiency Resource Allocation for Massive MIMO-Enabled Mobile Edge Computing Networks 被引量:1
6
作者 Sun Gangcan Sun Jiwei +3 位作者 Hao Wanming Zhu Zhengyu Ji Xiang Zhou Yiqing 《China Communications》 SCIE CSCD 2024年第11期150-162,共13页
In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based ... In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based on the mMIMO under imperfect channel state information.Based on this,the SCE maximization problem is formulated by jointly optimizing the local computation frequency,the offloading time,the downloading time,the users and the base station transmit power.Due to its difficulty to directly solve the formulated problem,we first transform the fractional objective function into the subtractive form one via the dinkelbach method.Next,the original problem is transformed into a convex one by applying the successive convex approximation technique,and an iteration algorithm is proposed to obtain the solutions.Finally,the stimulations are conducted to show that the performance of the proposed schemes is superior to that of the other schemes. 展开更多
关键词 EAVESDROPPING massive multiple input multiple output mobile edge computing partial offloading secure computation efficiency
在线阅读 下载PDF
Robust peer-to-peer learning via secure multi-party computation 被引量:1
7
作者 Yongkang Luo Wenjian Luo +2 位作者 Ruizhuo Zhang Hongwei Zhang Yuhui Shi 《Journal of Information and Intelligence》 2023年第4期341-351,共11页
To solve the data island problem,federated learning(FL)provides a solution paradigm where each client sends the model parameters but not the data to a server for model aggregation.Peer-to-peer(P2P)federated learning f... To solve the data island problem,federated learning(FL)provides a solution paradigm where each client sends the model parameters but not the data to a server for model aggregation.Peer-to-peer(P2P)federated learning further improves the robustness of the system,in which there is no server and each client communicates directly with the other.For secure aggregation,secure multi-party computing(SMPC)protocols have been utilized in peer-to-peer manner.However,the ideal SMPC protocols could fail when some clients drop out.In this paper,we propose a robust peer-to-peer learning(RP2PL)algorithm via SMPC to resist clients dropping out.We improve the segmentbased SMPC protocol by adding a check and designing the generation method of random segments.In RP2PL,each client aggregates their models by the improved robust secure multi-part computation protocol when finishes the local training.Experimental results demonstrate that the RP2PL paradigm can mitigate clients dropping out with no significant degradation in performance. 展开更多
关键词 Federated learning Swarm learning secure multi-party computation Peer-to-peer learning
原文传递
Nearly universal and efficient quantum secure multi-party computation protocol
8
作者 Han Yushan Che Bichen +2 位作者 Liu Jiali Dou Zhao Di Junyu 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2022年第4期51-68,88,共19页
Universality is an important property in software and hardware design.This paper concentrates on the universality of quantum secure multi-party computation(SMC)protocol.First of all,an in-depth study of universality h... Universality is an important property in software and hardware design.This paper concentrates on the universality of quantum secure multi-party computation(SMC)protocol.First of all,an in-depth study of universality has been conducted,and then a nearly universal protocol is proposed by using the Greenberger-Horne-Zeilinger(GHZ)-like state and stabilizer formalism.The protocol can resolve the quantum SMC problem which can be deduced as modulo subtraction,and the steps are simple and effective.Secondly,three quantum SMC protocols based on the proposed universal protocol:Quantum private comparison(QPC)protocol,quantum millionaire(QM)protocol,and quantum multi-party summation(QMS)protocol are presented.These protocols are given as examples to explain universality.Thirdly,analyses of the example protocols are shown.Concretely,the correctness,fairness,and efficiency are confirmed.And the proposed universal protocol meets security from the perspective of preventing inside attacks and outside attacks.Finally,the experimental results of the example protocols on the International Business Machines(IBM)quantum platform are consistent with the theoretical results.Our research indicates that our protocol is universal to a certain degree and easy to perform. 展开更多
关键词 UNIVERSALITY quantum secure multi-party computation security Greenberger-Horne-Zeilinger-like state simple operation
原文传递
EG-STC: An Efficient Secure Two-Party Computation Scheme Based on Embedded GPU for Artificial Intelligence Systems
9
作者 Zhenjiang Dong Xin Ge +2 位作者 Yuehua Huang Jiankuo Dong Jiang Xu 《Computers, Materials & Continua》 SCIE EI 2024年第6期4021-4044,共24页
This paper presents a comprehensive exploration into the integration of Internet of Things(IoT),big data analysis,cloud computing,and Artificial Intelligence(AI),which has led to an unprecedented era of connectivity.W... This paper presents a comprehensive exploration into the integration of Internet of Things(IoT),big data analysis,cloud computing,and Artificial Intelligence(AI),which has led to an unprecedented era of connectivity.We delve into the emerging trend of machine learning on embedded devices,enabling tasks in resource-limited environ-ments.However,the widespread adoption of machine learning raises significant privacy concerns,necessitating the development of privacy-preserving techniques.One such technique,secure multi-party computation(MPC),allows collaborative computations without exposing private inputs.Despite its potential,complex protocols and communication interactions hinder performance,especially on resource-constrained devices.Efforts to enhance efficiency have been made,but scalability remains a challenge.Given the success of GPUs in deep learning,lever-aging embedded GPUs,such as those offered by NVIDIA,emerges as a promising solution.Therefore,we propose an Embedded GPU-based Secure Two-party Computation(EG-STC)framework for Artificial Intelligence(AI)systems.To the best of our knowledge,this work represents the first endeavor to fully implement machine learning model training based on secure two-party computing on the Embedded GPU platform.Our experimental results demonstrate the effectiveness of EG-STC.On an embedded GPU with a power draw of 5 W,our implementation achieved a secure two-party matrix multiplication throughput of 5881.5 kilo-operations per millisecond(kops/ms),with an energy efficiency ratio of 1176.3 kops/ms/W.Furthermore,leveraging our EG-STC framework,we achieved an overall time acceleration ratio of 5–6 times compared to solutions running on server-grade CPUs.Our solution also exhibited a reduced runtime,requiring only 60%to 70%of the runtime of previously best-known methods on the same platform.In summary,our research contributes to the advancement of secure and efficient machine learning implementations on resource-constrained embedded devices,paving the way for broader adoption of AI technologies in various applications. 展开更多
关键词 secure two-party computation embedded GPU acceleration privacy-preserving machine learning edge computing
在线阅读 下载PDF
Secure and Efficient Outsourced Computation in Cloud Computing Environments
10
作者 Varun Dixit Davinderjit Kaur 《Journal of Software Engineering and Applications》 2024年第9期750-762,共13页
Secure and efficient outsourced computation in cloud computing environments is crucial for ensuring data confidentiality, integrity, and resource optimization. In this research, we propose novel algorithms and methodo... Secure and efficient outsourced computation in cloud computing environments is crucial for ensuring data confidentiality, integrity, and resource optimization. In this research, we propose novel algorithms and methodologies to address these challenges. Through a series of experiments, we evaluate the performance, security, and efficiency of the proposed algorithms in real-world cloud environments. Our results demonstrate the effectiveness of homomorphic encryption-based secure computation, secure multiparty computation, and trusted execution environment-based approaches in mitigating security threats while ensuring efficient resource utilization. Specifically, our homomorphic encryption-based algorithm exhibits encryption times ranging from 20 to 1000 milliseconds and decryption times ranging from 25 to 1250 milliseconds for payload sizes varying from 100 KB to 5000 KB. Furthermore, our comparative analysis against state-of-the-art solutions reveals the strengths of our proposed algorithms in terms of security guarantees, encryption overhead, and communication latency. 展开更多
关键词 secure computation Cloud computing Homomorphic Encryption secure Multiparty computation Resource Optimization
在线阅读 下载PDF
Preserving Privacy of Software-Defined Networking Policies by Secure Multi-Party Computation 被引量:1
11
作者 Maryam Zarezadeh Hamid Mala Homa Khajeh 《Journal of Computer Science & Technology》 SCIE EI CSCD 2020年第4期863-874,共12页
In software-defined networking(SDN),controllers are sinks of information such as network topology collected from switches.Organizations often like to protect their internal network topology and keep their network poli... In software-defined networking(SDN),controllers are sinks of information such as network topology collected from switches.Organizations often like to protect their internal network topology and keep their network policies private.We borrow techniques from secure multi-party computation(SMC)to preserve the privacy of policies of SDN controllers about status of routers.On the other hand,the number of controllers is one of the most important concerns in scalability of SMC application in SDNs.To address this issue,we formulate an optimization problem to minimize the number of SDN controllers while considering their reliability in SMC operations.We use Non-Dominated Sorting Genetic Algorithm II(NSGA-II)to determine the optimal number of controllers,and simulate SMC for typical SDNs with this number of controllers.Simulation results show that applying the SMC technique to preserve the privacy of organization policies causes only a little delay in SDNs,which is completely justifiable by the privacy obtained. 展开更多
关键词 software-defined NETWORKING (SDN) PRIVACY secure multi-party computation (SMC) structure function MULTI-OBJECTIVE optimization
原文传递
A Study of Secure Multi-Party Elementary Function Computation Protocols 被引量:1
12
作者 Wenjun Luo Xiang Li 《通讯和计算机(中英文版)》 2005年第5期32-40,共9页
关键词 安全系统 操作系统 基础功能 计算机设备安全
在线阅读 下载PDF
An Efficient and Secure Data Audit Scheme for Cloud-Based EHRs with Recoverable and Batch Auditing
13
作者 Yuanhang Zhang Xu An Wang +3 位作者 Weiwei Jiang Mingyu Zhou Xiaoxuan Xu Hao Liu 《Computers, Materials & Continua》 2025年第4期1533-1553,共21页
Cloud storage,a core component of cloud computing,plays a vital role in the storage and management of data.Electronic Health Records(EHRs),which document users’health information,are typically stored on cloud servers... Cloud storage,a core component of cloud computing,plays a vital role in the storage and management of data.Electronic Health Records(EHRs),which document users’health information,are typically stored on cloud servers.However,users’sensitive data would then become unregulated.In the event of data loss,cloud storage providers might conceal the fact that data has been compromised to protect their reputation and mitigate losses.Ensuring the integrity of data stored in the cloud remains a pressing issue that urgently needs to be addressed.In this paper,we propose a data auditing scheme for cloud-based EHRs that incorporates recoverability and batch auditing,alongside a thorough security and performance evaluation.Our scheme builds upon the indistinguishability-based privacy-preserving auditing approach proposed by Zhou et al.We identify that this scheme is insecure and vulnerable to forgery attacks on data storage proofs.To address these vulnerabilities,we enhanced the auditing process using masking techniques and designed new algorithms to strengthen security.We also provide formal proof of the security of the signature algorithm and the auditing scheme.Furthermore,our results show that our scheme effectively protects user privacy and is resilient against malicious attacks.Experimental results indicate that our scheme is not only secure and efficient but also supports batch auditing of cloud data.Specifically,when auditing 10,000 users,batch auditing reduces computational overhead by 101 s compared to normal auditing. 展开更多
关键词 securITY cloud computing cloud storage recoverable batch auditing
在线阅读 下载PDF
A Genetic Algorithm-Based Double Auction Framework for Secure and Scalable Resource Allocation in Cloud-Integrated Intrusion Detection Systems
14
作者 Siraj Un Muneer Ihsan Ullah +1 位作者 Zeshan Iqbal Rajermani Thinakaran 《Computers, Materials & Continua》 2025年第12期4959-4975,共17页
The complexity of cloud environments challenges secure resource management,especially for intrusion detection systems(IDS).Existing strategies struggle to balance efficiency,cost fairness,and threat resilience.This pa... The complexity of cloud environments challenges secure resource management,especially for intrusion detection systems(IDS).Existing strategies struggle to balance efficiency,cost fairness,and threat resilience.This paper proposes an innovative approach to managing cloud resources through the integration of a genetic algorithm(GA)with a“double auction”method.This approach seeks to enhance security and efficiency by aligning buyers and sellers within an intelligent market framework.It guarantees equitable pricing while utilizing resources efficiently and optimizing advantages for all stakeholders.The GA functions as an intelligent search mechanism that identifies optimal combinations of bids from users and suppliers,addressing issues arising from the intricacies of cloud systems.Analyses proved that our method surpasses previous strategies,particularly in terms of price accuracy,speed,and the capacity to manage large-scale activities,critical factors for real-time cybersecurity systems,such as IDS.Our research integrates artificial intelligence-inspired evolutionary algorithms with market-driven methods to develop intelligent resource management systems that are secure,scalable,and adaptable to evolving risks,such as process innovation. 展开更多
关键词 Cloud computing combinatorial double auction genetic algorithm optimization resource allocation intrusion detection system(IDS) cloud security
在线阅读 下载PDF
Integrating AI, Blockchain, and Edge Computing for Zero-Trust IoT Security:A Comprehensive Review of Advanced Cybersecurity Framework
15
作者 Inam Ullah Khan Fida Muhammad Khan +1 位作者 Zeeshan Ali Haider Fahad Alturise 《Computers, Materials & Continua》 2025年第12期4307-4344,共38页
The rapid expansion of the Internet of Things(IoT)has introduced significant security challenges due to the scale,complexity,and heterogeneity of interconnected devices.The current traditional centralized security mod... The rapid expansion of the Internet of Things(IoT)has introduced significant security challenges due to the scale,complexity,and heterogeneity of interconnected devices.The current traditional centralized security models are deemed irrelevant in dealing with these threats,especially in decentralized applications where the IoT devices may at times operate on minimal resources.The emergence of new technologies,including Artificial Intelligence(AI),blockchain,edge computing,and Zero-Trust-Architecture(ZTA),is offering potential solutions as it helps with additional threat detection,data integrity,and system resilience in real-time.AI offers sophisticated anomaly detection and prediction analytics,and blockchain delivers decentralized and tamper-proof insurance over device communication and exchange of information.Edge computing enables low-latency character processing by distributing and moving the computational workload near the devices.The ZTA enhances security by continuously verifying each device and user on the network,adhering to the“never trust,always verify”ideology.The present research paper is a review of these technologies,finding out how they are used in securing IoT ecosystems,the issues of such integration,and the possibility of developing a multi-layered,adaptive security structure.Major concerns,such as scalability,resource limitations,and interoperability,are identified,and the way to optimize the application of AI,blockchain,and edge computing in zero-trust IoT systems in the future is discussed. 展开更多
关键词 Internet of Things(IoT) artificial intelligence(AI) blockchain edge computing zero-trust-architecture(ZTA) IoT security real-time threat detection
在线阅读 下载PDF
IECC-SAIN:Innovative ECC-Based Approach for Secure Authentication in IoT Networks
16
作者 Younes Lahraoui Jihane Jebrane +2 位作者 Youssef Amal Saiida Lazaar Cheng-Chi Lee 《Computer Modeling in Engineering & Sciences》 2025年第7期615-641,共27页
Due to their resource constraints,Internet of Things(IoT)devices require authentication mechanisms that are both secure and efficient.Elliptic curve cryptography(ECC)meets these needs by providing strong security with... Due to their resource constraints,Internet of Things(IoT)devices require authentication mechanisms that are both secure and efficient.Elliptic curve cryptography(ECC)meets these needs by providing strong security with shorter key lengths,which significantly reduces the computational overhead required for authentication algorithms.This paper introduces a novel ECC-based IoT authentication system utilizing our previously proposed efficient mapping and reverse mapping operations on elliptic curves over prime fields.By reducing reliance on costly point multiplication,the proposed algorithm significantly improves execution time,storage requirements,and communication cost across varying security levels.The proposed authentication protocol demonstrates superior performance when benchmarked against relevant ECC-based schemes,achieving reductions of up to 35.83%in communication overhead,62.51%in device-side storage consumption,and 71.96%in computational cost.The security robustness of the scheme is substantiated through formal analysis using the Automated Validation of Internet Security Protocols and Applications(AVISPA)tool and Burrows-Abadir-Needham(BAN)logic,complemented by a comprehensive informal analysis that confirms its resilience against various attack models,including impersonation,replay,and man-in-the-middle attacks.Empirical evaluation under simulated conditions demonstrates notable gains in efficiency and security.While these results indicate the protocol’s strong potential for scalable IoT deployments,further validation on real-world embedded platforms is required to confirm its applicability and robustness at scale. 展开更多
关键词 Industrial IoT Elliptic Curve Cryptography(ECC) National Institute of Standards and Technology(NIST)curves mapping AVISPA BAN logic computational efficiency security scalable IoT deployments
在线阅读 下载PDF
Secure intelligent reflecting surface assisted mobile edge computing system with wireless power transfer
17
作者 Dawei Wang Xuanrui Li +4 位作者 Menghan Wu Yixin He Yi Lou Yu Pang Yi Lu 《Digital Communications and Networks》 CSCD 2024年第6期1874-1880,共7页
In this paper,we study an Intelligent Reflecting Surface(IRS)assisted Mobile Edge Computing(MEC)system under eavesdropping threats,where the IRS is used to enhance the energy signal transmission and the offloading per... In this paper,we study an Intelligent Reflecting Surface(IRS)assisted Mobile Edge Computing(MEC)system under eavesdropping threats,where the IRS is used to enhance the energy signal transmission and the offloading performance between Wireless Devices(WDs)and the Access Point(AP).Specifically,in the proposed scheme,the AP first powers all WDs with the wireless power transfer through both direct and IRS-assisted links.Then,powered by the harvested energy,all WDs securely offload their computation tasks through the two links in the time division multiple access mode.To determine the local and offloading computational bits,we formulate an optimization problem to jointly design the IRS's phase shift and allocate the time slots constrained by the security and energy requirements.To cope with this non-convex optimization problem,we adopt semidefinite relaxations,singular value decomposition techniques,and Lagrange dual method.Moreover,we propose a dichotomy particle swarm algorithm based on the bisection method to process the overall optimization problem and improve the convergence speed.The numerical results illustrate that the proposed scheme can boost the performance of MEC and secure computation rates compared with other IRS-assisted MEC benchmark schemes. 展开更多
关键词 Intelligent reflecting surface Mobile edge computing Power transfer Information security
在线阅读 下载PDF
Comparative Evaluation of Elliptic Curve Cryptography Based Homomorphic Encryption Schemes for a Novel Secure Multiparty Computation 被引量:1
18
作者 Sankita J. Patel Ankit Chouhan Devesh C. Jinwala 《Journal of Information Security》 2014年第1期12-18,共7页
In this paper, we focus on Elliptic Curve Cryptography based approach for Secure Multiparty Computation (SMC) problem. Widespread proliferation of data and the growth of communication technologies have enabled collabo... In this paper, we focus on Elliptic Curve Cryptography based approach for Secure Multiparty Computation (SMC) problem. Widespread proliferation of data and the growth of communication technologies have enabled collaborative computations among parties in distributed scenario. Preserving privacy of data owned by parties is crucial in such scenarios. Classical approach to SMC is to perform computation using Trusted Third Party (TTP). However, in practical scenario, TTPs are hard to achieve and it is imperative to eliminate TTP in SMC. In addition, existing solutions proposed for SMC use classical homomorphic encryption schemes such as RSA and Paillier. Due to the higher cost incurred by such cryptosystems, the resultant SMC protocols are not scalable. We propose Elliptic Curve Cryptography (ECC) based approach for SMC that is scalable in terms of computational and communication cost and avoids TTP. In literature, there do exist various ECC based homomorphic schemes and it is imperative to investigate and analyze these schemes in order to select the suitable for a given application. In this paper, we empirically analyze various ECC based homomorphic encryption schemes based on performance metrics such as computational cost and communication cost. We recommend an efficient algorithm amongst several selected ones, that offers security with lesser overheads and can be applied in any application demanding privacy. 展开更多
关键词 ELLIPTIC CURVE CRYPTOGRAPHY PRIVACY PRESERVATION secure MULTIPARTY computation
在线阅读 下载PDF
Online Optimization of Physical-Layer Secure Computation Offloading in Dynamic Environments
19
作者 Chenshan Ren Wei Song +1 位作者 Lizhi Zhao Xiaobing Zhao 《China Communications》 SCIE CSCD 2020年第10期19-30,共12页
Mobile edge computing can provide powerful computation services around the end-users.However,given the broadcast nature of wireless transmissions,offloading the computation tasks via the uplink channels would raise se... Mobile edge computing can provide powerful computation services around the end-users.However,given the broadcast nature of wireless transmissions,offloading the computation tasks via the uplink channels would raise serious security concerns.This paper proposes an online approach to jointly optimize local processing,transmit power,and task offloading decisions without the a-priori knowledge of the dynamic environments.The proposed approach can guarantee the secure offloading and asymptotically minimize the time-average energy consumption of devices while maintaining the stability of the ergodic secrecy queues and task queues.By exploiting the Lyapunov optimization,the local processing,transmit power,and task offloading variables can be decoupled between time slots.The subproblems on local processing and computation offloading can be solved separately.Convex optimization and graph matching can be used to solve the computation offloading subproblem.Simulations show that the performances of the proposed approach are superior to other popular approaches. 展开更多
关键词 mobile edge computing physical-layer security Lyapunov optimization ergodic secrecy queue
在线阅读 下载PDF
Security Implications of Edge Computing in Cloud Networks 被引量:2
20
作者 Sina Ahmadi 《Journal of Computer and Communications》 2024年第2期26-46,共21页
Security issues in cloud networks and edge computing have become very common. This research focuses on analyzing such issues and developing the best solutions. A detailed literature review has been conducted in this r... Security issues in cloud networks and edge computing have become very common. This research focuses on analyzing such issues and developing the best solutions. A detailed literature review has been conducted in this regard. The findings have shown that many challenges are linked to edge computing, such as privacy concerns, security breaches, high costs, low efficiency, etc. Therefore, there is a need to implement proper security measures to overcome these issues. Using emerging trends, like machine learning, encryption, artificial intelligence, real-time monitoring, etc., can help mitigate security issues. They can also develop a secure and safe future in cloud computing. It was concluded that the security implications of edge computing can easily be covered with the help of new technologies and techniques. 展开更多
关键词 Edge computing Cloud Networks Artificial Intelligence Machine Learning Cloud security
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部