期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Real-Time Spreading Thickness Monitoring of High-core Rockfill Dam Based on K-nearest Neighbor Algorithm 被引量:4
1
作者 Denghua Zhong Rongxiang Du +2 位作者 Bo Cui Binping Wu Tao Guan 《Transactions of Tianjin University》 EI CAS 2018年第3期282-289,共8页
During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and... During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and the overallquality of the entire dam. Currently, the method used to monitor and controlspreading thickness during the dam construction process is artificialsampling check after spreading, which makes it difficult to monitor the entire dam storehouse surface. In this paper, we present an in-depth study based on real-time monitoring and controltheory of storehouse surface rolling construction and obtain the rolling compaction thickness by analyzing the construction track of the rolling machine. Comparatively, the traditionalmethod can only analyze the rolling thickness of the dam storehouse surface after it has been compacted and cannot determine the thickness of the dam storehouse surface in realtime. To solve these problems, our system monitors the construction progress of the leveling machine and employs a real-time spreading thickness monitoring modelbased on the K-nearest neighbor algorithm. Taking the LHK core rockfilldam in Southwest China as an example, we performed real-time monitoring for the spreading thickness and conducted real-time interactive queries regarding the spreading thickness. This approach provides a new method for controlling the spreading thickness of the core rockfilldam storehouse surface. 展开更多
关键词 Core rockfill dam Dam storehouse surface construction Spreading thickness k-nearest neighbor algorithm Real-time monitor
在线阅读 下载PDF
Wireless Communication Signal Strength Prediction Method Based on the K-nearest Neighbor Algorithm
2
作者 Zhao Chen Ning Xiong +6 位作者 Yujue Wang Yong Ding Hengkui Xiang Chenjun Tang Lingang Liu Xiuqing Zou Decun Luo 《国际计算机前沿大会会议论文集》 2019年第1期238-240,共3页
Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically ... Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically modeling the actual scene, so that the hand-held full-band spectrum analyzer would be able to collect signal field strength values for indoor complex scenes. An improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression was proposed to predict the signal field strengths for the whole plane before and after being shield. Then the highest accuracy set of data could be picked out by comparison. The experimental results show that the improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression can scientifically and objectively predict the indoor complex scenes’ signal strength and evaluate the interference protection with high accuracy. 展开更多
关键词 INTERFERENCE protection k-nearest neighbor algorithm NON-PARAMETRIC KERNEL regression SIGNAL field STRENGTH
在线阅读 下载PDF
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
3
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
在线阅读 下载PDF
A Study of EM Algorithm as an Imputation Method: A Model-Based Simulation Study with Application to a Synthetic Compositional Data
4
作者 Yisa Adeniyi Abolade Yichuan Zhao 《Open Journal of Modelling and Simulation》 2024年第2期33-42,共10页
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode... Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance. 展开更多
关键词 Compositional Data Linear Regression Model Least Square Method Robust Least Square Method Synthetic Data Aitchison Distance Maximum Likelihood Estimation Expectation-Maximization algorithm k-nearest neighbor and Mean imputation
在线阅读 下载PDF
Optimizing Clear Air Turbulence Forecasts Using the K-Nearest Neighbor Algorithm
5
作者 Aoqi GU Ye WANG 《Journal of Meteorological Research》 CSCD 2024年第6期1064-1077,共14页
The complexity and unpredictability of clear air turbulence(CAT)pose significant challenges to aviation safety.Accurate prediction of turbulence events is crucial for reducing flight accidents and economic losses.Howe... The complexity and unpredictability of clear air turbulence(CAT)pose significant challenges to aviation safety.Accurate prediction of turbulence events is crucial for reducing flight accidents and economic losses.However,traditional turbulence prediction methods,such as ensemble forecasting techniques,have certain limitations:they only consider turbulence data from the most recent period,making it difficult to capture the nonlinear relationships present in turbulence.This study proposes a turbulence forecasting model based on the K-nearest neighbor(KNN)algorithm,which uses a combination of eight CAT diagnostic features as the feature vector and introduces CAT diagnostic feature weights to improve prediction accuracy.The model calculates the results of seven years of CAT diagnostics from 125 to 500 hPa obtained from the ECMWF fifth-generation reanalysis dataset(ERA5)as feature vector inputs and combines them with the labels of Pilot Reports(PIREP)annotated data,where each sample contributes to the prediction result.By measuring the distance between the current CAT diagnostic variable and other variables,the model determines the climatically most similar neighbors and identifies the turbulence intensity category caused by the current variable.To evaluate the model’s performance in diagnosing high-altitude turbulence over Colorado,PIREP cases were randomly selected for analysis.The results show that the weighted KNN(W-KNN)model exhibits higher skill in turbulence prediction,and outperforms traditional prediction methods and other machine learning models(e.g.,Random Forest)in capturing moderate or greater(MOG)level turbulence.The performance of the model was confirmed by evaluating the receiver operating characteristic(ROC)curve,maximum True Skill Statistic(maxTSS=0.552),and reliability plot.A robust score(area under the curve:AUC=0.86)was obtained,and the model demonstrated sensitivity to seasonal and annual climate fluctuations. 展开更多
关键词 clear air turbulence k-nearest neighbor(KNN)algorithm the ECMWF fifth-generation reanalysis dataset(ERA5) turbulence prediction
原文传递
A Memetic Algorithm With Competition for the Capacitated Green Vehicle Routing Problem 被引量:8
6
作者 Ling Wang Jiawen Lu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第2期516-526,共11页
In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used t... In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used to encode the solution, and an effective decoding method to construct the CGVRP route is presented accordingly. Secondly, the k-nearest neighbor(k NN) based initialization is presented to take use of the location information of the customers. Thirdly, according to the characteristics of the CGVRP, the search operators in the variable neighborhood search(VNS) framework and the simulated annealing(SA) strategy are executed on the TSP route for all solutions. Moreover, the customer adjustment operator and the alternative fuel station(AFS) adjustment operator on the CGVRP route are executed for the elite solutions after competition. In addition, the crossover operator is employed to share information among different solutions. The effect of parameter setting is investigated using the Taguchi method of design-ofexperiment to suggest suitable values. Via numerical tests, it demonstrates the effectiveness of both the competitive search and the decoding method. Moreover, extensive comparative results show that the proposed algorithm is more effective and efficient than the existing methods in solving the CGVRP. 展开更多
关键词 Capacitated green VEHICLE ROUTING problem(CGVRP) COMPETITION k-nearest neighbor(kNN) local INTENSIFICATION memetic algorithm
在线阅读 下载PDF
An Improved Whale Optimization Algorithm for Feature Selection 被引量:4
7
作者 Wenyan Guo Ting Liu +1 位作者 Fang Dai Peng Xu 《Computers, Materials & Continua》 SCIE EI 2020年第1期337-354,共18页
Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in term... Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in terms of simple calculation and high computational accuracy,but its convergence speed is slow and it is easy to fall into the local optimal solution.In order to overcome the shortcomings,this paper integrates adaptive neighborhood and hybrid mutation strategies into whale optimization algorithms,designs the average distance from itself to other whales as an adaptive neighborhood radius,and chooses to learn from the optimal solution in the neighborhood instead of random learning strategies.The hybrid mutation strategy is used to enhance the ability of algorithm to jump out of the local optimal solution.A new whale optimization algorithm(HMNWOA)is proposed.The proposed algorithm inherits the global search capability of the original algorithm,enhances the exploitation ability,improves the quality of the population,and thus improves the convergence speed of the algorithm.A feature selection algorithm based on binary HMNWOA is proposed.Twelve standard datasets from UCI repository test the validity of the proposed algorithm for feature selection.The experimental results show that HMNWOA is very competitive compared to the other six popular feature selection methods in improving the classification accuracy and reducing the number of features,and ensures that HMNWOA has strong search ability in the search feature space. 展开更多
关键词 Whale optimization algorithm Filter and Wrapper model k-nearest neighbor method Adaptive neighborhood hybrid mutation
在线阅读 下载PDF
Research on Initialization on EM Algorithm Based on Gaussian Mixture Model 被引量:4
8
作者 Ye Li Yiyan Chen 《Journal of Applied Mathematics and Physics》 2018年第1期11-17,共7页
The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effectiv... The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effective algorithm to estimate the finite mixture model parameters. However, EM algorithm can not guarantee to find the global optimal solution, and often easy to fall into local optimal solution, so it is sensitive to the determination of initial value to iteration. Traditional EM algorithm select the initial value at random, we propose an improved method of selection of initial value. First, we use the k-nearest-neighbor method to delete outliers. Second, use the k-means to initialize the EM algorithm. Compare this method with the original random initial value method, numerical experiments show that the parameter estimation effect of the initialization of the EM algorithm is significantly better than the effect of the original EM algorithm. 展开更多
关键词 EM algorithm GAUSSIAN MIXTURE Model k-nearest neighbor K-MEANS algorithm INITIALIZATION
在线阅读 下载PDF
An Optimization System for Intent Recognition Based on an Improved KNN Algorithm with Minimal Feature Set for Powered Knee Prosthesis
9
作者 Yao Zhang Xu Wang +6 位作者 Haohua Xiu Lei Ren Yang Han Yongxin Ma Wei Chen Guowu Wei Luquan Ren 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2619-2632,共14页
In this article,a new optimization system that uses few features to recognize locomotion with high classification accuracy is proposed.The optimization system consists of three parts.First,the features of the mixed me... In this article,a new optimization system that uses few features to recognize locomotion with high classification accuracy is proposed.The optimization system consists of three parts.First,the features of the mixed mechanical signal data are extracted from each analysis window of 200 ms after each foot contact event.Then,the Binary version of the hybrid Gray Wolf Optimization and Particle Swarm Optimization(BGWOPSO)algorithm is used to select features.And,the selected features are optimized and assigned different weights by the Biogeography-Based Optimization(BBO)algorithm.Finally,an improved K-Nearest Neighbor(KNN)classifier is employed for intention recognition.This classifier has the advantages of high accuracy,few parameters as well as low memory burden.Based on data from eight patients with transfemoral amputations,the optimization system is evaluated.The numerical results indicate that the proposed model can recognize nine daily locomotion modes(i.e.,low-,mid-,and fast-speed level-ground walking,ramp ascent/decent,stair ascent/descent,and sit/stand)by only seven features,with an accuracy of 96.66%±0.68%.As for real-time prediction on a powered knee prosthesis,the shortest prediction time is only 9.8 ms.These promising results reveal the potential of intention recognition based on the proposed system for high-level control of the prosthetic knee. 展开更多
关键词 Intent recognition k-nearest neighbor algorithm Powered knee prosthesis Locomotion mode classification
在线阅读 下载PDF
应用于加速安全约束机组组合问题的K最邻近算法 被引量:3
10
作者 陈子瑞 刘明波 +2 位作者 曾贵华 谢敏 林舜江 《南方电网技术》 CSCD 北大核心 2024年第11期48-57,78,共11页
随着电网规模的扩大和对安全性要求的提高,安全约束机组组合问题求解难度也在不断增加。针对安全约束机组组合问题中输电线路传输功率约束和0-1启停整数变量的特点,提出了两个基于改进K最邻近算法的预测方法,分别用于识别起作用的传输... 随着电网规模的扩大和对安全性要求的提高,安全约束机组组合问题求解难度也在不断增加。针对安全约束机组组合问题中输电线路传输功率约束和0-1启停整数变量的特点,提出了两个基于改进K最邻近算法的预测方法,分别用于识别起作用的传输功率约束和确定部分整数变量的取值。同时考虑到负荷参数对整数变量取值的影响,提出限制整数变量取值预测方法的作用区间以提高预测准确率。在求解问题之前,两个预测方法能快速预测出起作用的传输功率约束和部分整数变量的取值,利用这些信息可以构建一个简化的安全约束机组组合模型,再应用优化求解器直接求解该模型,缩短安全约束机组组合问题的求解时间。最后,用标准测试系统和某实际省级电网数据验证了所提方法的正确性和有效性。 展开更多
关键词 安全约束机组组合 传输功率约束 混合整数线性规划 K最邻近算法
在线阅读 下载PDF
Rapid prediction of flow and concentration fields in solid-liquid suspensions of slurry electrolysis tanks 被引量:1
11
作者 Tingting Lu Kang Li +4 位作者 Hongliang Zhao Wei Wang Zhenhao Zhou Xiaoyi Cai Fengqin Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期2006-2016,共11页
Slurry electrolysis(SE),as a hydrometallurgical process,has the characteristic of a multitank series connection,which leads to various stirring conditions and a complex solid suspension state.The computational fluid d... Slurry electrolysis(SE),as a hydrometallurgical process,has the characteristic of a multitank series connection,which leads to various stirring conditions and a complex solid suspension state.The computational fluid dynamics(CFD),which requires high computing resources,and a combination with machine learning was proposed to construct a rapid prediction model for the liquid flow and solid concentration fields in a SE tank.Through scientific selection of calculation samples via orthogonal experiments,a comprehensive dataset covering a wide range of conditions was established while effectively reducing the number of simulations and providing reasonable weights for each factor.Then,a prediction model of the SE tank was constructed using the K-nearest neighbor algorithm.The results show that with the increase in levels of orthogonal experiments,the prediction accuracy of the model improved remarkably.The model established with four factors and nine levels can accurately predict the flow and concentration fields,and the regression coefficients of average velocity and solid concentration were 0.926 and 0.937,respectively.Compared with traditional CFD,the response time of field information prediction in this model was reduced from 75 h to 20 s,which solves the problem of serious lag in CFD applied alone to actual production and meets real-time production control requirements. 展开更多
关键词 slurry electrolysis solid-liquid suspension computational fluid dynamics k-nearest neighbor algorithm rapid prediction
在线阅读 下载PDF
基于权重k邻近的通信网络安全漏洞自动化检测 被引量:4
12
作者 吕连 谢东刚 《自动化与仪器仪表》 2024年第4期21-24,31,共5页
无线通信网络的安全漏洞检测是保护无线通信网络安全的重要任务,传统检测方法存在效率低下和错误率高的问题。因此,研究将权重概念引入到K邻近分类算法中,将其用于构建一种新型的无线通信网络的安全漏洞自动化检测方法。首先利用k邻近... 无线通信网络的安全漏洞检测是保护无线通信网络安全的重要任务,传统检测方法存在效率低下和错误率高的问题。因此,研究将权重概念引入到K邻近分类算法中,将其用于构建一种新型的无线通信网络的安全漏洞自动化检测方法。首先利用k邻近对网络安全漏洞进行检测,然后再引入权重概念,以提升漏洞检测的性能,最后利用数据集来验证构建方法的性能。结果表明在相同的漏洞检测背景下,权重k邻近对漏洞的检测准确性平均值为93.26%,在200条漏洞数据中,检测耗时4.2 s。这表明构建的检测方法对于无线通信网络的安全保护具有一定的实际意义,具有较高的准确性和鲁棒性,有助于提高无线通信网络的安全性和可靠性。 展开更多
关键词 权重 K近邻算法 通信网络 安全漏洞 自动化
原文传递
基于最邻近算法的数据中台内生性数据安全交互系统 被引量:1
13
作者 张译 魏永瑜 +2 位作者 马燕 冶秀兰 马元明 《电子设计工程》 2024年第8期121-124,129,共5页
数据中台是一种可实现数据采集、清洗、存储的架构,使其优化内部数据的管理效果,提升数据价值的释放。但由于数据中台架构较为复杂,导致数据安全交互时效性下降。为解决此问题,基于最邻近算法设计一种新的数据中台内生性数据安全交互系... 数据中台是一种可实现数据采集、清洗、存储的架构,使其优化内部数据的管理效果,提升数据价值的释放。但由于数据中台架构较为复杂,导致数据安全交互时效性下降。为解决此问题,基于最邻近算法设计一种新的数据中台内生性数据安全交互系统。设置入口节点和出口节点协调模式,抑制混乱传输现象,通过业务服务和数据存储双中台架构搭建硬件结构。利用最邻近算法排序处理数据,设定准确度阈值,分析密钥参数,实现安全交互。实验结果表明,该方法的精准度在99%以上,交互时间显著缩短,对于数据中台有积极的推动作用。 展开更多
关键词 最邻近算法 数据中台 内生性数据 数据安全 数据交互 安全交互
在线阅读 下载PDF
基于字典分级和属性加权的密文排序检索方案
14
作者 王娟 努尔买买提·黑力力 《新疆大学学报(自然科学版中英文)》 CAS 2024年第2期246-256,共11页
可搜索加密支持用户在不解密原始数据的前提下对加密数据执行检索操作.现有的多关键词排序可搜索加密方案,其索引和陷门构建的时间成本通常依赖于由全局关键词字典张成的向量空间.为了减少用户端的计算开销和通信成本,进一步提升数据使... 可搜索加密支持用户在不解密原始数据的前提下对加密数据执行检索操作.现有的多关键词排序可搜索加密方案,其索引和陷门构建的时间成本通常依赖于由全局关键词字典张成的向量空间.为了减少用户端的计算开销和通信成本,进一步提升数据使用者对检索结果的满意度,提出了一种支持细粒度访问控制的多关键词密文排序检索方案.该方案首先设计基于互信息的字典剥离机制差异化全局字典中的关键词,得到两个信息量不同的附属子字典,进一步在低维子字典空间上生成索引和陷门;其次,引入文档访问策略中属性的权重,将其作为排序标准之一,使数据使用者获得更为相关的结果;最后,检索时利用筛选向量对数据进行初次过滤并借助属性匹配完成二次剔除,从而避免检索过程中不必要的计算. 展开更多
关键词 可搜索加密 多关键词排序检索 安全K-近邻算法 字典分级 属性加权
在线阅读 下载PDF
量子密钥分发技术在计算机网络安全中的应用 被引量:3
15
作者 黄晓平 《信息与电脑》 2024年第19期126-128,共3页
量子密钥分发(Quantum Key Distribution,QKD)技术借助量子力学原理,确保了通信双方所共享密钥的安全性。近年来,全球范围内利用QKD技术组建的量子密钥分发网络日益增多。因此,在复杂的网络结构中,如何高效地选择路由进行密钥分发,已成... 量子密钥分发(Quantum Key Distribution,QKD)技术借助量子力学原理,确保了通信双方所共享密钥的安全性。近年来,全球范围内利用QKD技术组建的量子密钥分发网络日益增多。因此,在复杂的网络结构中,如何高效地选择路由进行密钥分发,已成为亟待解决的关键问题。本文研究了QKD网络中的路由选择问题,介绍了基于K–最近邻算法的网络路由算法,讨论了QKD在计算机网络安全中的应用,包括其网络管理架构、节点功能以及基于纠缠态的QKD协议模型。同时,本文对QKD与RSA加密方法的防窃听能力进行了对比测试,得出了在不同攻击模式下,QKD在抗量子计算攻击方面具有显著优势的结论。 展开更多
关键词 量子密钥分发技术 计算机网络安全 K–最近邻算法
在线阅读 下载PDF
Feature Selection Based on Improved White Shark Optimizer
16
作者 Qianqian Cui Shijie Zhao +1 位作者 Miao Chen Qiuli Zhao 《Journal of Bionic Engineering》 CSCD 2024年第6期3123-3150,共28页
Feature Selection(FS)is an optimization problem that aims to downscale and improve the quality of a dataset by retaining relevant features while excluding redundant ones.It enhances the classification accuracy of a da... Feature Selection(FS)is an optimization problem that aims to downscale and improve the quality of a dataset by retaining relevant features while excluding redundant ones.It enhances the classification accuracy of a dataset and holds a crucial position in the field of data mining.Utilizing metaheuristic algorithms for selecting feature subsets contributes to optimizing the FS problem.The White Shark Optimizer(WSO),as a metaheuristic algorithm,primarily simulates the behavior of great white sharks’sense of hearing and smelling during swimming and hunting.However,it fails to consider their other randomly occurring behaviors,for example,Tail Slapping and Clustered Together behaviors.The Tail Slapping behavior can increase population diversity and improve the global search performance of the algorithm.The Clustered Together behavior includes access to food and mating,which can change the direction of local search and enhance local utilization.It incorporates Tail Slapping and Clustered Together behavior into the original algorithm to propose an Improved White Shark Optimizer(IWSO).The two behaviors and the presented IWSO are tested separately using the CEC2017 benchmark functions,and the test results of IWSO are compared with other metaheuristic algorithms,which proves that IWSO combining the two behaviors has a stronger search capability.Feature selection can be mathematically described as a weighted combination of feature subset size and classification error rate as an optimization model,which is iteratively optimized using discretized IWSO which combines with K-Nearest Neighbor(KNN)on 16 benchmark datasets and the results are compared with 7 metaheuristics.Experimental results show that the IWSO is more capable in selecting feature subsets and improving classification accuracy. 展开更多
关键词 Metaheuristic algorithm Feature Selection White Shark Optimizer k-nearest neighbor
在线阅读 下载PDF
基于K近邻算法的主机异常行为检测 被引量:1
17
作者 黄智睿 谢显杰 杨晓丹 《无线互联科技》 2024年第5期122-128,共7页
基于主机异常的入侵检测方法可以识别用户操作是否存在异常,从而提醒用户进行处理以保证系统安全。为了能够快速高效地识别用户操作异常,文章提出了基于K近邻算法的主机异常检测方法。该方法首先在特征提取过程中使用自然语言处理的算... 基于主机异常的入侵检测方法可以识别用户操作是否存在异常,从而提醒用户进行处理以保证系统安全。为了能够快速高效地识别用户操作异常,文章提出了基于K近邻算法的主机异常检测方法。该方法首先在特征提取过程中使用自然语言处理的算法来提取特征向量,然后采用主成分分析算法进行降维处理,接着使用K近邻算法学习主机的正常操作和异常操作的相关特征,建立检测模型,最后使用学习后建立的模型来判断主机是否存在异常操作。该方法采用澳大利亚国防学院的ADFA-LD数据集进行实验,验证了所提出方法性能良好。 展开更多
关键词 网络空间安全 机器学习 主机异常检测 K近邻算法 自然语言处理
在线阅读 下载PDF
基于主动学习和TCM-KNN方法的有指导入侵检测技术 被引量:31
18
作者 李洋 方滨兴 +1 位作者 郭莉 田志宏 《计算机学报》 EI CSCD 北大核心 2007年第8期1464-1473,共10页
有指导网络入侵检测技术是网络安全领域研究的热点和难点内容,但目前仍然存在着对建立检测模型的数据要求过高、训练数据的标记需要依赖领域专家以及因此而导致的工作量及难度过大和实用性不强等问题,而当前的研究工作很少涉及到这些问... 有指导网络入侵检测技术是网络安全领域研究的热点和难点内容,但目前仍然存在着对建立检测模型的数据要求过高、训练数据的标记需要依赖领域专家以及因此而导致的工作量及难度过大和实用性不强等问题,而当前的研究工作很少涉及到这些问题的解决办法.基于TCM-KNN数据挖掘算法,提出了一种有指导入侵检测的新方法,并且采用主动学习的方法,选择使用少量高质量的训练样本进行建模从而高效地完成入侵检测任务.实验结果表明:其相对于传统的有指导入侵检测方法,在保证较高检测率的前提下,有效地降低了误报率;在采用选择后的训练集以及进行特征选择等优化处理后,其性能没有明显的削减,因而更适用于现实的网络应用环境. 展开更多
关键词 网络安全 入侵检测 TCM-KNN算法 主动学习 数据挖掘
在线阅读 下载PDF
基于直推式方法的网络异常检测方法 被引量:26
19
作者 李洋 方滨兴 +1 位作者 郭莉 陈友 《软件学报》 EI CSCD 北大核心 2007年第10期2595-2604,共10页
网络异常检测技术是入侵检测领域研究的热点和难点内容,目前仍然存在着误报率较高、对建立检测模型的数据要求过高、在复杂的网络环境中由于"噪音"的影响而导致检测率不高等问题.基于改进的TCM-KNN(transductive confidence m... 网络异常检测技术是入侵检测领域研究的热点和难点内容,目前仍然存在着误报率较高、对建立检测模型的数据要求过高、在复杂的网络环境中由于"噪音"的影响而导致检测率不高等问题.基于改进的TCM-KNN(transductive confidence machines for K-nearest neighbors)置信度机器学习算法,提出了一种网络异常检测的新方法,能够在高置信度的情况下,使用训练的正常样本有效地对异常进行检测.通过大量基于著名的KDD Cup1999数据集的实验,表明其相对于传统的异常检测方法在保证较高检测率的前提下,有效地降低了误报率.另外,在训练集有少量"噪音"数据干扰的情况下,其仍能保证较高的检测性能;并且在采用"小样本"训练集以及为了避免"维灾难"而进行特征选取等优化处理后,其性能没有明显的削减. 展开更多
关键词 网络安全 异常检测 奇异值 直推式信度机 TCM—KNN算法
在线阅读 下载PDF
针对特征选择问题的改进蚁群算法及其在电力系统安全评估中的应用 被引量:10
20
作者 章小强 管霖 王同文 《电工技术学报》 EI CSCD 北大核心 2010年第12期154-160,166,共8页
提出基于改进蚁群优化算法和k近邻算法相结合的特征选择算法。利用k近邻分类器的分类精度和特征子集维数加权构造了综合适应度指标,利用改进蚁群算法的全局寻优和多次优解搜索能力实现特征子集搜索。针对传统蚁群算法在特征选择中可能... 提出基于改进蚁群优化算法和k近邻算法相结合的特征选择算法。利用k近邻分类器的分类精度和特征子集维数加权构造了综合适应度指标,利用改进蚁群算法的全局寻优和多次优解搜索能力实现特征子集搜索。针对传统蚁群算法在特征选择中可能含有冗余特征的问题,设计了局部细化搜索方式,使得特征选择结果不含冗余特征的同时提高了算法的收敛性。通过测试数据验证了算法的有效性和快速性后,将所提算法应用于10机39节点电力系统的安全评估问题,获得了良好的特征选择和稳定预测性能。 展开更多
关键词 特征选择 蚁群优化算法 k-近邻分类器 电力系统安全评估
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部