The static test of 13 square hollow section(SHS) X-joints with different β and different types of plate reinforcement under in-plane moment in brace was carried out. Experimental test schemes, failure modes of specim...The static test of 13 square hollow section(SHS) X-joints with different β and different types of plate reinforcement under in-plane moment in brace was carried out. Experimental test schemes, failure modes of specimens, moment-vertical displacement curves, moment-deformation of the chord, and strain strength distribution curves were presented. The effect of β and plate reinforcement types on in-plane flexural property of SHS X-joints was studied. Results show that punching shear of chord face disappears, brace material fracture appears and concave and convex deformation of chord decrease when either collar plates or doubler plates were welded on chord face. Moment-vertical displacement curves of all specimens have obvious elastic, elastic-plastic and plastic stages. As β increases, the in-plane flexural ultimate capacity and initial stiffness of joints of the same plate reinforcement type increase, but ductility of joints decreases. With the same β, the in-plane flexural initial stiffness and ultimate capacity of doubler plate reinforced joints, collar plate reinforced joints, and unreinforced joints decrease progressively. Thickness of reinforcement plate has no obvious effect on in-plane flexural initial stiffness and ultimate capacity of joints. As thickness of reinforcement plate increases, the ductility of reinforced X-joints decreases. The concave and convex deformation of every specimen has good symmetry;as β increases, the yield and ultimate deformation of chord decrease.展开更多
Based on the traditional Nielsen model,a unified failure model on the uniformly reinforced concrete box section members under combined forces was introduced by Luo and Liu.One of their contributions is adjustment of t...Based on the traditional Nielsen model,a unified failure model on the uniformly reinforced concrete box section members under combined forces was introduced by Luo and Liu.One of their contributions is adjustment of the shear carrying capacity of concrete at the member failure surface.In the unified failure model,the comparison with the experimental results verified this adjustment.Nevertheless,it should be pointed out that the adjustment factor of shear carrying capacity at member failure surface for the reinforced concrete members in the unified failure model is a fixed adjustment constant for all experiment data,which is basically determined by curve fitting.However,the adjustment factor should vary with the normal stress at the member failure surface.In this paper,an advanced theoretical model is introduced,in which the adjustment factor of shear carrying capacity at failure surface is a variable related to the normal stress at failure surface.Furthermore,the advanced unified failure model on the uniformly reinforced concrete box section member can still be expressed in a simple form.Finally,the comparison with several groups of test data has verified that this advanced model is more accurate and feasible to be used in design.展开更多
A building retrofitted with wing walls in the bottom story, which was damaged during the 2008 M8.0 Wenchuan earthquake in China, is introduced and a corresponding 1/4 scale wing wall-frame model was subjected to shake...A building retrofitted with wing walls in the bottom story, which was damaged during the 2008 M8.0 Wenchuan earthquake in China, is introduced and a corresponding 1/4 scale wing wall-frame model was subjected to shake table motions to study the seismic behavior of this retrofitted structural system. The results show that wing walls can effectively protect columns from damage by moving areas that bear reciprocating tension and compression to the sections of the wing walls, thus achieving an extra measure of seismic fortification. A ‘strong column-weak beam' mechanism was realized, the flexural rigidity of the vertical member was strengthened, and a more uniform distribution of deformation among all the stories was measured. In addition, the joint between the wing walls and the beams suffered severe damage during the tests, due to an area of local stress concentration. A longer area of intensive stirrup is suggested in the end of the beams.展开更多
基金Projects(51278209 and 51478047) supported by the National Natural Science Foundation of ChinaProject(ZQN-PY110) supported by Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University,China+1 种基金Project(2014FJ-NCET-ZR03) supported by Program for New Century Excellent Talents in Fujian Province University,ChinaProject(JA13005) supported by Incubation Programme for Excellent Young Science and Technology Talents in Fujian Province Universities,China
文摘The static test of 13 square hollow section(SHS) X-joints with different β and different types of plate reinforcement under in-plane moment in brace was carried out. Experimental test schemes, failure modes of specimens, moment-vertical displacement curves, moment-deformation of the chord, and strain strength distribution curves were presented. The effect of β and plate reinforcement types on in-plane flexural property of SHS X-joints was studied. Results show that punching shear of chord face disappears, brace material fracture appears and concave and convex deformation of chord decrease when either collar plates or doubler plates were welded on chord face. Moment-vertical displacement curves of all specimens have obvious elastic, elastic-plastic and plastic stages. As β increases, the in-plane flexural ultimate capacity and initial stiffness of joints of the same plate reinforcement type increase, but ductility of joints decreases. With the same β, the in-plane flexural initial stiffness and ultimate capacity of doubler plate reinforced joints, collar plate reinforced joints, and unreinforced joints decrease progressively. Thickness of reinforcement plate has no obvious effect on in-plane flexural initial stiffness and ultimate capacity of joints. As thickness of reinforcement plate increases, the ductility of reinforced X-joints decreases. The concave and convex deformation of every specimen has good symmetry;as β increases, the yield and ultimate deformation of chord decrease.
基金the National Natural Science Foundation of China(No.50378054)the National Basic Research Program(973)of China(No.2002CB412709)
文摘Based on the traditional Nielsen model,a unified failure model on the uniformly reinforced concrete box section members under combined forces was introduced by Luo and Liu.One of their contributions is adjustment of the shear carrying capacity of concrete at the member failure surface.In the unified failure model,the comparison with the experimental results verified this adjustment.Nevertheless,it should be pointed out that the adjustment factor of shear carrying capacity at member failure surface for the reinforced concrete members in the unified failure model is a fixed adjustment constant for all experiment data,which is basically determined by curve fitting.However,the adjustment factor should vary with the normal stress at the member failure surface.In this paper,an advanced theoretical model is introduced,in which the adjustment factor of shear carrying capacity at failure surface is a variable related to the normal stress at failure surface.Furthermore,the advanced unified failure model on the uniformly reinforced concrete box section member can still be expressed in a simple form.Finally,the comparison with several groups of test data has verified that this advanced model is more accurate and feasible to be used in design.
基金National Natural Science Foundation of China under Grant Nos.51478117,51508295,51478231the Shandong Province Taishan Scholar Advanced Disciplinary Talent Group Project
文摘A building retrofitted with wing walls in the bottom story, which was damaged during the 2008 M8.0 Wenchuan earthquake in China, is introduced and a corresponding 1/4 scale wing wall-frame model was subjected to shake table motions to study the seismic behavior of this retrofitted structural system. The results show that wing walls can effectively protect columns from damage by moving areas that bear reciprocating tension and compression to the sections of the wing walls, thus achieving an extra measure of seismic fortification. A ‘strong column-weak beam' mechanism was realized, the flexural rigidity of the vertical member was strengthened, and a more uniform distribution of deformation among all the stories was measured. In addition, the joint between the wing walls and the beams suffered severe damage during the tests, due to an area of local stress concentration. A longer area of intensive stirrup is suggested in the end of the beams.