This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in lin...This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in line with the general understanding of the impact different geometries have on RCS but show that geometries can also influence the variance of measured RCS, and typical attributes that reduce RCS increase the variance of the measured RCS. Notably, an increased angle between the front face of a plate and the direction of the radar signal decreased RCS but increased the variance of the RCS measured.展开更多
Three new control factors are presented for calculating the multipole mode number (MMN) efficiently and precisely. The effects of these control factors on the number of integral samples and the precision of multilev...Three new control factors are presented for calculating the multipole mode number (MMN) efficiently and precisely. The effects of these control factors on the number of integral samples and the precision of multilevel fast multipole algorithm (MLFMA) are investigated. A new approach based on control factors which is proven to be able to improve the computational efficiency and reduce the needed memory significantly as well as ensuring the proper precision. For three aircraft models,the improved MLFMA is employed to analyze their multi-frequency scattering characteristics. It is found that aircraft shape can influence radar cross section (RCS) in different frequency zones. Both the multi-frequency RCS reduction characteristics of shape stealth aircraft and the conventional aircraft with stealth design taken into account are investigated,and the results show that shape stealth exhibits significant RCS reduction in the resonance and high-frequency zones,and with a weaker influence in the Rayleigh zone. Compared with radar absorbing material (RAM),shape stealth yields a wider multi-frequency RCS reduction. The above-mentioned results can be applied to stealth design for multiple frequencies or even for all frequencies.展开更多
In order to fast analyze the aircraft Radar Cross Section(RCS) and accurately reduce it with Radar Absorbing Materials(RAM), a comprehensive analysis method based on Higher-Order Method of Moments(HOMOM), termed Local...In order to fast analyze the aircraft Radar Cross Section(RCS) and accurately reduce it with Radar Absorbing Materials(RAM), a comprehensive analysis method based on Higher-Order Method of Moments(HOMOM), termed Locally Coating Method(LCM), is proposed in this paper. There are two steps to fast analyze coatings for RCS reduction in this method: analyze the RCS of various parts before coating the aircraft;model a coating over the aircraft and analyze the wave absorbing effect of it. The aircraft RCS is calculated as a whole but analyzed in various parts by LCM, and thus the RCS contribution of different parts can be compared without disturbing the current continuity. A model expansion algorithm is also presented in LCM to model absorption coatings on specified aircraft parts for later stage RCS calculation of the coated aircraft.展开更多
Radar cross section(RCS) is the measurement of the reflective strength of a target.Reducing the RCS of a naval ship enables its late detection,which is useful for capitalizing on elements of surprise and initiative....Radar cross section(RCS) is the measurement of the reflective strength of a target.Reducing the RCS of a naval ship enables its late detection,which is useful for capitalizing on elements of surprise and initiative.Thus,the RCS of a naval ship has become a very important design factor for achieving surprise,initiative,and survivability.Consequently,accurate RCS determination and RCS reduction are of extreme importance for a naval ship.The purpose of this paper is to provide an understanding of the theoretical background and engineering approach to deal with RCS prediction and reduction for naval ships.The importance of RCS,radar fundamentals,RCS basics,RCS prediction methods,and RCS reduction methods for naval ships is also discussed.展开更多
Origami,such as Miura-ori,is the art of folding two-dimensional materials into complex,elaborate,and multifunctional three-dimensional objects.In this paper,SMP MO sheet are prepared,and the accuracy of deployable pro...Origami,such as Miura-ori,is the art of folding two-dimensional materials into complex,elaborate,and multifunctional three-dimensional objects.In this paper,SMP MO sheet are prepared,and the accuracy of deployable process is verified by experiments.The folding and deployable process of SMP MO sheet is divided into 4 stages,and each stage is described in detail.The stiffness of smart deployable stage is characterized by an exponential decline at the beginning and a gradual decrease to 0,and this is similar to the theoretical shear equivalent modulus in the Y direction.The effects of various parameters on strain and stress are also explored.The purpose of studying these mechanical characteristics is to provide driving force reference in application;In terms of application,the flow field and electromagnetic characteristics of MO sheet in different directions are studied.The aerodynamic drag and RCS reduction of MO unit cell and graded MO sheet during the deployable process are evaluated.When the dihedral fold angle is about 45°,the RCS reduction and drag reduction characteristics of MO sheet are relatively optimal,which is most beneficial to morphing aircraft.展开更多
A scheme of combing wave absorption and phase cancellation mechanisms for widening radar cross section(RCS)reduction band is proposed.An absorptive coding metasurface implementing this scheme is derived from tradition...A scheme of combing wave absorption and phase cancellation mechanisms for widening radar cross section(RCS)reduction band is proposed.An absorptive coding metasurface implementing this scheme is derived from traditional circuit analog absorber(CAA)composed of resistive ring elements which characterize dual resonances behavior.It is constructed by replacing some of the CAA elements by another kind of resistive ring elements which is singly resonant in between the original two resonant bands and has reflection phase opposite to that of the original elements at resonance.Hence the developed metasurface achieves an improved low-RCS band over which the lower and higher sub-bands are mainly contributed by wave absorption mainly while the middle sub-band is formed by joint effect of wave absorption and antiphase cancellation mechanisms.The polarization-independent wideband RCS reduction property of the metasurface is validated by full-wave simulation results of a preliminary and an advanced design examples which employ the same element configuration but different element layout schemes as partitioned distribution and random coding.The advanced design also exhibits broadband bistatic low-RCS property and keeps a stable specular RCS reduction performance with regard to incident elevation angle up to 35◦.The advanced design is fabricated and the experimental results of the sample agrees qualitatively well with their simulated counterparts.The measured figure of merit(i.e.,low-RCS bandwidth ratio versus electrical thickness)of the sample is 40.572,which is superior to or comparable with those for most of other existing metasurface with compound RCS reduction mechanism.The proposed compound metasurface technique also features simple structure,light weight,low cost and easy fabrication compared with other techniques.This makes it promising in applications such as radar stealth and electromagnetic compatibility.展开更多
An artificial magnetic conductor(AMC)chessboard reflector is designed which shows low backscattered radar cross sections(RCS)in a broad frequency band in this paper.Designed by the phase cancellation principle,a conve...An artificial magnetic conductor(AMC)chessboard reflector is designed which shows low backscattered radar cross sections(RCS)in a broad frequency band in this paper.Designed by the phase cancellation principle,a conventional chessboard low RCS metasurface can be formed by polarization-dependent mushroom-shaped AMCs.Two new features are added to this design based on the conventional chessboard metasurface.Firstly,the long edge of the metallic patch on the AMC element is concave to obtain a broader bandwidth.Then,the width of the patch in each AMC block is tapered in one direction to further extend the operating bandwidth for RCS reduction.The backscattered RCS of the tapered AMC reflector is numerically investigated and compared with a non-tapered one.It is found that by introducing the above features,an RCS reduction greater than 10.dB can be obtained by the reflectors with relative bandwidth of 46%in the X-band.展开更多
The radar cross section (RCS) of dispenser and its components is computed by graphical electromagnetic computing (GRECO) method, which bases on physical optics (PO) method. A satisfied agreement is gotten between comp...The radar cross section (RCS) of dispenser and its components is computed by graphical electromagnetic computing (GRECO) method, which bases on physical optics (PO) method. A satisfied agreement is gotten between computed and measured results outdoor. The results show that the main scattering source of the dispenser is the mirror reflecting of the body; in the most crucial nose-on region, the nose mirror reflecting plays important role; the corner reflecting is important to the fins' RCS. The corresponding measures to reduce dispenser's RCS are proposed. It is indicated that to reduce RCS, shaping should be adopts first, while aerodynamic characteristics and stealth characteristics should be considered synthetically during the design of dispenser.展开更多
Radar cross section (RCS) reduction technologies are very important in survivability of the military naval vessels. Ship appearance shaping as an effective countermeasure of RCS reduction redirects the scattered energ...Radar cross section (RCS) reduction technologies are very important in survivability of the military naval vessels. Ship appearance shaping as an effective countermeasure of RCS reduction redirects the scattered energy from one angular region of interest in space to another region of little interest. To decrease the scattering electromagnetic signals from ship scientifically, optimization methods should be introduced in shaping design. Based on the assumption of the characteristic section design method, mathematical formulations for optimal shaping design were established. Because of the computation-intensive analysis and singularity in shaping optimization, the response surface method (RSM) combined genetic algorithm (GA) was proposed. The poly-nomial response surface method was adopted in model approximation. Then genetic algorithms were employed to solve the surrogate optimization problem. By comparison RCS of the conventional and the optimal design, the superiority and effectiveness of proposed design methodology were verified.展开更多
文摘This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in line with the general understanding of the impact different geometries have on RCS but show that geometries can also influence the variance of measured RCS, and typical attributes that reduce RCS increase the variance of the measured RCS. Notably, an increased angle between the front face of a plate and the direction of the radar signal decreased RCS but increased the variance of the RCS measured.
基金National Basic Research Program of China (61320)
文摘Three new control factors are presented for calculating the multipole mode number (MMN) efficiently and precisely. The effects of these control factors on the number of integral samples and the precision of multilevel fast multipole algorithm (MLFMA) are investigated. A new approach based on control factors which is proven to be able to improve the computational efficiency and reduce the needed memory significantly as well as ensuring the proper precision. For three aircraft models,the improved MLFMA is employed to analyze their multi-frequency scattering characteristics. It is found that aircraft shape can influence radar cross section (RCS) in different frequency zones. Both the multi-frequency RCS reduction characteristics of shape stealth aircraft and the conventional aircraft with stealth design taken into account are investigated,and the results show that shape stealth exhibits significant RCS reduction in the resonance and high-frequency zones,and with a weaker influence in the Rayleigh zone. Compared with radar absorbing material (RAM),shape stealth yields a wider multi-frequency RCS reduction. The above-mentioned results can be applied to stealth design for multiple frequencies or even for all frequencies.
基金supported by the National Key Research and Development Program of China (No. 2017YFB0202102),the National Key Research and Development Program of China (No. 2016YFE0121600)the China Postdoctoral Science Foundation funded project (No. 2017M613068)+2 种基金the National High Technology Research and Development Program of China (863 Program) (No. 2014AA01A302)the Key Research and Development Program of Shandong Province, China (No. 2015GGX101028)the Special Program for Applied Research on Super Computation of the NSFC (National Natural Science Foundation of China)-Guangdong Joint Fund, China (the second phase) (No. U1501501)
文摘In order to fast analyze the aircraft Radar Cross Section(RCS) and accurately reduce it with Radar Absorbing Materials(RAM), a comprehensive analysis method based on Higher-Order Method of Moments(HOMOM), termed Locally Coating Method(LCM), is proposed in this paper. There are two steps to fast analyze coatings for RCS reduction in this method: analyze the RCS of various parts before coating the aircraft;model a coating over the aircraft and analyze the wave absorbing effect of it. The aircraft RCS is calculated as a whole but analyzed in various parts by LCM, and thus the RCS contribution of different parts can be compared without disturbing the current continuity. A model expansion algorithm is also presented in LCM to model absorption coatings on specified aircraft parts for later stage RCS calculation of the coated aircraft.
基金Supported by Program for New Century Excellent Talents in University under Grant No.NCET-07-0230the "111" Project under Grant No.B07019 at Harbin Engineering University
文摘Radar cross section(RCS) is the measurement of the reflective strength of a target.Reducing the RCS of a naval ship enables its late detection,which is useful for capitalizing on elements of surprise and initiative.Thus,the RCS of a naval ship has become a very important design factor for achieving surprise,initiative,and survivability.Consequently,accurate RCS determination and RCS reduction are of extreme importance for a naval ship.The purpose of this paper is to provide an understanding of the theoretical background and engineering approach to deal with RCS prediction and reduction for naval ships.The importance of RCS,radar fundamentals,RCS basics,RCS prediction methods,and RCS reduction methods for naval ships is also discussed.
基金the financial support from the National Natural Science Foundation of China(No.11872160)the Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments(JCKYS2020603C007)。
文摘Origami,such as Miura-ori,is the art of folding two-dimensional materials into complex,elaborate,and multifunctional three-dimensional objects.In this paper,SMP MO sheet are prepared,and the accuracy of deployable process is verified by experiments.The folding and deployable process of SMP MO sheet is divided into 4 stages,and each stage is described in detail.The stiffness of smart deployable stage is characterized by an exponential decline at the beginning and a gradual decrease to 0,and this is similar to the theoretical shear equivalent modulus in the Y direction.The effects of various parameters on strain and stress are also explored.The purpose of studying these mechanical characteristics is to provide driving force reference in application;In terms of application,the flow field and electromagnetic characteristics of MO sheet in different directions are studied.The aerodynamic drag and RCS reduction of MO unit cell and graded MO sheet during the deployable process are evaluated.When the dihedral fold angle is about 45°,the RCS reduction and drag reduction characteristics of MO sheet are relatively optimal,which is most beneficial to morphing aircraft.
基金supported by the National Natural Science Foundation of China(Grant Nos.61871280,61372012,and 61671315).
文摘A scheme of combing wave absorption and phase cancellation mechanisms for widening radar cross section(RCS)reduction band is proposed.An absorptive coding metasurface implementing this scheme is derived from traditional circuit analog absorber(CAA)composed of resistive ring elements which characterize dual resonances behavior.It is constructed by replacing some of the CAA elements by another kind of resistive ring elements which is singly resonant in between the original two resonant bands and has reflection phase opposite to that of the original elements at resonance.Hence the developed metasurface achieves an improved low-RCS band over which the lower and higher sub-bands are mainly contributed by wave absorption mainly while the middle sub-band is formed by joint effect of wave absorption and antiphase cancellation mechanisms.The polarization-independent wideband RCS reduction property of the metasurface is validated by full-wave simulation results of a preliminary and an advanced design examples which employ the same element configuration but different element layout schemes as partitioned distribution and random coding.The advanced design also exhibits broadband bistatic low-RCS property and keeps a stable specular RCS reduction performance with regard to incident elevation angle up to 35◦.The advanced design is fabricated and the experimental results of the sample agrees qualitatively well with their simulated counterparts.The measured figure of merit(i.e.,low-RCS bandwidth ratio versus electrical thickness)of the sample is 40.572,which is superior to or comparable with those for most of other existing metasurface with compound RCS reduction mechanism.The proposed compound metasurface technique also features simple structure,light weight,low cost and easy fabrication compared with other techniques.This makes it promising in applications such as radar stealth and electromagnetic compatibility.
基金National Key R&D Program of China(2017YFB0202500)the National Natural Science Foundation of China(61601023U1730102)。
文摘An artificial magnetic conductor(AMC)chessboard reflector is designed which shows low backscattered radar cross sections(RCS)in a broad frequency band in this paper.Designed by the phase cancellation principle,a conventional chessboard low RCS metasurface can be formed by polarization-dependent mushroom-shaped AMCs.Two new features are added to this design based on the conventional chessboard metasurface.Firstly,the long edge of the metallic patch on the AMC element is concave to obtain a broader bandwidth.Then,the width of the patch in each AMC block is tapered in one direction to further extend the operating bandwidth for RCS reduction.The backscattered RCS of the tapered AMC reflector is numerically investigated and compared with a non-tapered one.It is found that by introducing the above features,an RCS reduction greater than 10.dB can be obtained by the reflectors with relative bandwidth of 46%in the X-band.
文摘The radar cross section (RCS) of dispenser and its components is computed by graphical electromagnetic computing (GRECO) method, which bases on physical optics (PO) method. A satisfied agreement is gotten between computed and measured results outdoor. The results show that the main scattering source of the dispenser is the mirror reflecting of the body; in the most crucial nose-on region, the nose mirror reflecting plays important role; the corner reflecting is important to the fins' RCS. The corresponding measures to reduce dispenser's RCS are proposed. It is indicated that to reduce RCS, shaping should be adopts first, while aerodynamic characteristics and stealth characteristics should be considered synthetically during the design of dispenser.
基金the National Natural Science Founda-tion of China (No. 10672100)
文摘Radar cross section (RCS) reduction technologies are very important in survivability of the military naval vessels. Ship appearance shaping as an effective countermeasure of RCS reduction redirects the scattered energy from one angular region of interest in space to another region of little interest. To decrease the scattering electromagnetic signals from ship scientifically, optimization methods should be introduced in shaping design. Based on the assumption of the characteristic section design method, mathematical formulations for optimal shaping design were established. Because of the computation-intensive analysis and singularity in shaping optimization, the response surface method (RSM) combined genetic algorithm (GA) was proposed. The poly-nomial response surface method was adopted in model approximation. Then genetic algorithms were employed to solve the surrogate optimization problem. By comparison RCS of the conventional and the optimal design, the superiority and effectiveness of proposed design methodology were verified.