Heat-resistant alloys with excellent mechanical properties are widely used in various fields,and further improvement in their properties is essential to meet the requirements in new-generation advanced supercritical b...Heat-resistant alloys with excellent mechanical properties are widely used in various fields,and further improvement in their properties is essential to meet the requirements in new-generation advanced supercritical boilers,nuclear reactors,superheaters,and other new materials applications.To effectively enhance the comprehensive performance of heat-resistant alloys,second-phase particle strengthening has been widely studied,and in the face of different service envi-ronments of advanced heat-resistant steels,the selection of suitable second-phase particles is essential to maximize the performance of these alloys.To this end,three major types of reinforcing phases in heat-resistant alloys such as carbides,rare earth oxides,and intermetallic compounds are summarized.A comparative analysis of the precipitation behavior of the reinforcing phases with different types as well as the risks and means of controlling their use in service,is presented.Key parameters for the application of various types of second-phase particles in heat-resistant alloys are provided to support the design and preparation of new ultrahigh-performance heat-resistant alloys.展开更多
The T_(1)(Al_(2) CuLi)phase is one of the most effective strengthening nanoscale-precipitate in Al-Cu alloys with Li.However,its formation and evolution still need to be further clarified during aging due to the compl...The T_(1)(Al_(2) CuLi)phase is one of the most effective strengthening nanoscale-precipitate in Al-Cu alloys with Li.However,its formation and evolution still need to be further clarified during aging due to the complex precipitation sequences.Here,a detailed investigation has been carried out on the atomic struc-tural evolution of T_(1) precipitate in an aged Al-Cu-Li-Mg-Ag alloy using state-of-the-art Cs-corrected high-angle annular dark field(HAADF)-coupled with integrated differential phase contrast(iDPC)-scanning transmission electron microscopy(STEM)and energy-dispersive X-ray spectroscopy(EDXS)techniques.An intermediate T_(1)’phase between T_(1p) and T_(1) phase,with a crystal structure and orientation rela-tionship consistent with T_(1),but exhibiting different atomic occupancy and chemical composition was found.We observed the atomic structural transformation from T_(1p) to T_(1)’phase(fcc→hcp),involving only 1/12<112>Al shear component.DFT calculation results validated our proposed structural models and the precipitation sequence.Besides,the distributions of minor solute elements(Ag,Mg,and Zn)in the pre-cipitates exhibited significant differences.These findings may contribute to a further understanding of the nucleation mechanism of T_(1) precipitate.展开更多
How to achieve high-entropy alloys(HEAs)with ultrahigh strength and ductility is a challenging issue.Precipitation strengthening is one of the methods to significantly enhance strength,but unfortunately,ductility will...How to achieve high-entropy alloys(HEAs)with ultrahigh strength and ductility is a challenging issue.Precipitation strengthening is one of the methods to significantly enhance strength,but unfortunately,ductility will be lost.To overcome the strength-ductility trade-off,the strategy of this study is to induce the formation of high-density nanoprecipitates through dual aging(DA),triggering multiple deformation mechanisms,to obtain HEAs with ultrahigh strength and ductility.First,the effect of precold deformation on precipitation behavior was studied using Ni_(35)(CoFe)_(55)V_(5)Nb_(5)(at.%)HEAas the object.The results reveal that the activation energy of recrystallization is 112.2 kJ/mol.As the precold-deformation amount increases from 15%to 65%,the activation energy of precipitation gradually decreases from 178.8 to 159.7 kJ/mol.The precipitation time shortens,the size of the nanoprecipitate decreases,and the density increases.Subsequently,the thermal treatment parameters were optimized,and the DA process was customized based on the effect of precold deformation on precipitation behavior.High-density L1_(2) nanoprecipitates(~3.21×10^(25) m^(-3))were induced in the 65% precold-deformed HEA,which led to the simultaneous formation of twins and stacking fault(SF)networks during deformation.The yield strength(YS),ultimate tensile strength,and ductility of the DA-HEA are~2.0 GPa,~2.2 GPa,and~12.3%,respectively.Compared with the solid solution HEA,the YS of the DA-HEA increased by 1,657 MPa,possessing an astonishing increase of~440%.The high YS stems from the precipitation strengthening contributed by the L1_(2) nanoprecipitates and the dislocation strengthening contributed by precold deformation.The synergistically enhanced ductility stems from the high strain-hardening ability under the dual support of twinning-induced plasticity and SF-induced plasticity.展开更多
Precipitation via thermal treatments is among the most effective approaches to strengthening and is widely applied in the Al industry. Thermal treatments combined with deformation are capable of finely regulating the ...Precipitation via thermal treatments is among the most effective approaches to strengthening and is widely applied in the Al industry. Thermal treatments combined with deformation are capable of finely regulating the process of precipitation and distribution of precipitates. Deformation-induced defects exert significant impacts on the precipitation and already present precipitates, which however is often overlooked. In this study, the interactions between deformation and precipitation/precipitates, and their impacts on mechanical properties were systematically investigated in the solution-treated (ST) Al-0.61Mg-1.17Si-0.5Cu (wt.%), processed by multi-pass equal channel angular pressing (ECAP) and thermal treatments. Novel deformation-mediated cyclic evolution of precipitates is discovered: ST→ (1,2 passes: deformation induced precipitation) Guinier Preston (GP) zones→ (An250/30) Q’ and L phases→ (3-pass: deformation induced fragmentation/resolution) spherical precipitates→ (4-pass: deformation induced further fragmentation/resolution) GP zones. On this basis, we extend the quasi-binary phase diagram of Al-Mg_(2)Si along deformation as the third dimension and construct an innovative defect phase diagram for the Al-Mg-Si-based system. To testify to the effect of deformation-mediated cyclic evolution of precipitation/precipitates on the optimum mechanical properties, peak-aging treatments were performed in samples of ST and 3-pass states. Based on the microscopic characterizations, a distinctive mechanism of peak-aging strengthening is proposed. Notably in the 3-pass ECAPed and peak-aged sample the dominant strengthening phases become the L precipitates that thrived from the segmented and spherical L phases, rather than β’’ precipitates in the solely peak-aged ST sample. Our work provides a feasible example for exploring the combined processing technique of multi-step deformation and thermal treatments, to optimize the mechanical properties.展开更多
Introducing B2 ordering can effectively improve the mechanical properties of lightweight refractory high-entropy alloys(LRHEAs).However,(Zr,Al)-enriched B2 precipitates generally reduce the ductility because their ord...Introducing B2 ordering can effectively improve the mechanical properties of lightweight refractory high-entropy alloys(LRHEAs).However,(Zr,Al)-enriched B2 precipitates generally reduce the ductility because their ordering characteristic is destroyed after dislocation shearing.Meanwhile,the local chemical order(LCO)cannot provide an adequate strengthening effect due to its small size.展开更多
The acuurate prediction of the time-dependent mechanical behavior and deformation mechanisms of second-phase reinforced alloys under size effects is critical for the development of high-strength ductile metals and all...The acuurate prediction of the time-dependent mechanical behavior and deformation mechanisms of second-phase reinforced alloys under size effects is critical for the development of high-strength ductile metals and alloys for dynamic applications.However,solving their responses using high-fidelity numerical methods is computationally expensive and,in many cases,impractical.To address this issue,a dual-scale incremental variational formulation is proposed that incorporates the influence of plastic gradients on plastic evolution characteristics,integrating a strain-rate-dependent strain gradient plasticity model and including plastic gradients in the inelastic dissipation potential.Subsequently,two minimization problems based on the energy dissipation mechanisms of strain gradient plasticity,corresponding to the macroscopic and microscopic structures,are solved,leading to the development of a homogenization-based dual-scale solution algorithm.Finally,the effectiveness of the variational model and tangent algorithm is validated through a series of numerical simulations.The contributions of this work are as follows:first,it advances the theory of self-consistent computational homogenization modeling based on the energy dissipation mechanisms of plastic strain rates and their gradients,along with the development of a rigorous multi-level finite element method(FE2)solution procedure;second,the proposed algorithm provides an efficient and accurate method for evaluating the time-dependent mechanical behavior of second-phase reinforced alloys under strain gradient effects,exploring how these effects vary with the strain rate,and investigating their potential interactions.展开更多
The nano-scale L1_(2)-Ni_(3)Al precipitates significantly contribute to thermal stability of alumina-forming austenitic(AFA)steels.The coarsening behavior of L1_(2)-Ni_(3)Al precipitates in AFA steels during isotherma...The nano-scale L1_(2)-Ni_(3)Al precipitates significantly contribute to thermal stability of alumina-forming austenitic(AFA)steels.The coarsening behavior of L1_(2)-Ni_(3)Al precipitates in AFA steels during isothermal aging with considering the influence of alloying elements was investigated.The results show that the coarsening rate of L1_(2)-Ni_(3)Al precipitates increases with co-additions of Ni and Cu,and especially,the increase of Cu content promotes the nucleation of L1_(2)-Ni_(3)Al precipitates.A dynamic competition exists between Lifshitz-Slyozov-Wagner theory and transient interface diffusion-controlled theory for coarsening behavior of L1_(2)-Ni_(3)Al precipitates with duration of isothermal aging.Additionally,the transition from L1_(2)-Ni_(3)Al precipitates to B2-NiAl precipitates during isothermal aging results in the formation of a depleted zone of L1_(2)-Ni_(3)Al precipitates around B2-NiAl precipitates,which inhibits the growth of L1_(2)-Ni_(3)Al precipitates.The coarsening of L1_(2)-Ni_(3)Al precipitates significantly contributes to the yield strength of AFA steels.展开更多
The orientation effect of θʹ precipitates in stress-aged Al-Cu alloys has ambiguous interpretations. One view is that θʹ precipitates prefer to grow on the habit planes perpendicular to the applied compressive stres...The orientation effect of θʹ precipitates in stress-aged Al-Cu alloys has ambiguous interpretations. One view is that θʹ precipitates prefer to grow on the habit planes perpendicular to the applied compressive stress, while the other view suggests growth on habit planes parallel to the applied stress. In this study, stress-aged Al-4 wt.%Cu single crystal was sampled from three different <100>Al zone axes to observe the distribution of θʹ precipitates. A hybrid Monte-Carlo/ molecular dynamics simulations were used to investigate the orientation effect of θʹ precipitates. The simulation results are consistent with experimental observations and indicate that θʹ precipitates prefer to grow on the habit planes that are parallel to the direction of the applied compressive stress, not along the planes perpendicular to it. It is also found that 1/2<110> perfect dislocations are generated as θʹ precipitates plates grow thicker, and the reaction of 1/2<110> perfect dislocations decomposing into 1/6<112> Shockley dislocations lead to an increase in the length of θʹ precipitates. The former does not enhance the orientation effect, whereas the latter leads to a more significant orientation effect. Additionally, the degree of the orientation effect of θʹ precipitates is determined by the reduction of 1/2<110> dislocations with a positive correlation between them.展开更多
The development of low-cost,high-performance Mg alloys is crucial to the industrial applications of large-scale production of Mg alloys.In this work,extruded Mg-5Bi-3Al alloy with excellent mechanical properties is su...The development of low-cost,high-performance Mg alloys is crucial to the industrial applications of large-scale production of Mg alloys.In this work,extruded Mg-5Bi-3Al alloy with excellent mechanical properties is successfully prepared by modifying the extrusion temperatures(240℃and 300℃).The extruded alloy obtained ultra-high strength(yield strength=380 MPa,ultimate tensile strength=418 MPa)and excellent plasticity(elongation=10.2%)at the extrusion temperature of 240℃,the main contributing factors are primarily attributed to the synergistic effect of ultrafine recrystallized grain size(~0.5µm)and high density of Mg_(3)Bi_(2)precipitates.Stacking faults within the sub-micron Mg_(3)Bi_(2)phase are observed in the E240 alloy,confirming the plastic deformation capability of Mg_(3)Bi_(2)phase.The effects of extrusion temperature on the microstructure,mechanical properties,and work-hardening behavior of the extruded Mg-5Bi-3Al alloys at room temperature are systematically investigated.The results suggest that decreasing the extrusion temperature can refine recrystallized grain size and Mg_(3)Bi_(2)phase size,and the quantity of Mg_(3)Bi_(2)phase is increased,while increasing the extrusion temperature can improve the degree of recrystallization and weaken texture.The work hardening rate is increased with the increased extrusion temperature,mainly due to the coarsening of grains and precipitates,and the weakening of texture.This work provides an experimental basis for preparing high-performance wrought Mg-5Bi-3Al alloys.展开更多
Non-oriented silicon steels with both excellent magnetic properties and high strength are essential for the drive motors of new energy vehicles.However,achieving a balance between strength and magnetic properties is a...Non-oriented silicon steels with both excellent magnetic properties and high strength are essential for the drive motors of new energy vehicles.However,achieving a balance between strength and magnetic properties is a challenging task.This study successfully developed non-oriented silicon steel that met these demanding requirements by utilizing the coherent nano-Cu-rich phases precipitated during aging.In the current investigation,the evolution of precipitation during the aging process of Cu-alloyed non-oriented silicon steel is revealed as:BCC Cu-rich cluster(Fe:Cu>1)→B2 FeCu cluster(Fe:Cu approaches 1)→BCC Cu cluster(Fe:Cu<1)→Twinned 9R Cu→Detwinned 9R Cu.Notably,the 9R Cu precipitated in the later stage of aging was coarse and incoherent with the matrix,offering minimal strengthening benefits while considerably deteriorated the magnetic properties.Conversely,the other three phases that formed in the early stage of aging were fine,dispersed,and coherent with the matrix,effectively enhancing the yield strength of the steel with minimal negative impact on its magnetic properties.The total increment of yield strength attributed to BCC Cu-rich clusters,B2 FeCu clusters,and BCC Cu clusters were 207,304,and 374 MPa,respectively.The strengthening mechanism operated primarily through the cutting mechanism,which was dominated by the modulus difference strengthening and coherent strain strengthening.Moreover,a unique ordered strengthening of approximately 207 MPa arose from the ordered B2 FeCu clusters.Thus,the steel aged for 3–30 min with the precipitation of B2 FeCu clusters and BCC Cu clusters exhibited the most favorable overall performance with a yield strength of 750–800 MPa,P1.0/400 of 16.3–18.3 W kg^(−1),and B5000 of 1.641–1.656 T.展开更多
The effect of high welding heat inputs in the range of 50–200 kJ/cm on the microstructural evolution,MX(M=Ti,Nb and V;X=N and C)precipitation and mechanical properties was investigated in the coarse-grained heat-affe...The effect of high welding heat inputs in the range of 50–200 kJ/cm on the microstructural evolution,MX(M=Ti,Nb and V;X=N and C)precipitation and mechanical properties was investigated in the coarse-grained heat-affected zone(CGHAZ)of a high-Nb(0.10 wt.%)structural steel.The results showed that the primary microconstituents varied from lath bainite(LB)to intragranular acicular ferrite(IAF)+intragranular polygonal ferrite(IPF),and the most content of IAF was acquired at 100 kJ/cm.Moreover,the submicron Ti-and Nb-rich MX precipitates not only pinned prior austenite grain boundaries but also facilitated IAF and IPF nucleation with the Kurdjumov–Sachs orientation relationship of[011]_(MX)//[111]_(Ferrite);the nanoscale V-rich MX precipitates hindered dislocation movement and followed the Baker–Nutting orientation relationship of[001]_(MX)//[001]_(Ferrite)with ferrite matrix,synergistically strengthening and toughening the CGHAZ.In addition,the−20℃impact absorbed energy firstly elevated from 93±5.2 J at 50 kJ/cm to 131±5.4 J at 100 kJ/cm and finally decreased to 59±3.0 J at 200 kJ/cm,being related to the IAF content,while the microhardness decreased from 312±26.1 to 269±12.9 HV0.1,because of the coarsened microstructure and the decreased content of LB and martensite.Compared to the CGHAZ properties with 0.05 wt.%Nb,a higher Nb content produced better low-temperature toughness,as more solid dissolved Nb atoms and precipitated Nb-rich MX particles in austenite limited prior austenite grain growth and promoted IAF formation.Furthermore,the welding process at 100 kJ/cm was most applicable for the high-Nb steel.展开更多
Realizing the greater potential for precipitation strengthening in nanograined alloys is highly desirable but often challenging.In this study,an Fe-Ni based alloy was subjected to plastic deformation followed by aging...Realizing the greater potential for precipitation strengthening in nanograined alloys is highly desirable but often challenging.In this study,an Fe-Ni based alloy was subjected to plastic deformation followed by aging treatment to further strengthen nanograins through high-density precipitates.Microstructural characterization showed that nanograins account for∼64%of the volume,with an average size of 44 nm.Notably,the nanoprecipitates in the nanograins exhibit utterly different characteristics from those in the coarse grains.As a result,the sample has an ultra-high yield strength of 1677 MPa.Further analyses indicated that the D0_(24)-structured nanoprecipitates at the nanograin boundaries provide a greater precipitation strengthening than conventional L1_(2)-structured nanoprecipitates within the coarse grains,the reason of which is that the precipitates inhibit partial dislocation emission and grain boundary migration of the nanograins.This work deepens the understanding of precipitation strengthening in nanograined materials and proposes a novel strategy to further strengthen nanograined alloys.展开更多
Nickel-based alloys are the primary structural materials in steam generators of high-temperature gas reactors.To understand the irradiation effect of nickel-based alloys,it is necessary to examine dislocation movement...Nickel-based alloys are the primary structural materials in steam generators of high-temperature gas reactors.To understand the irradiation effect of nickel-based alloys,it is necessary to examine dislocation movement and its interaction with irradiation defects at the microscale.Hardening due to voids and Ni_(3)Al precipitates may significantly impact irradiation damage in nickel-based alloys.This paper employs the molecular dynamics method to analyze the interaction between edge dislocations and irradiation defects(void and Ni_(3)Al precipitates)in face-centered cubic nickel.The effects of temperature and defect size on the interaction are also explored.The results show that the interaction process of the edge dislocation and irradiation defects can be divided into four stages:dislocation free slip,dislocation attracted,dislocation pinned,and dislocation unpinned.Interaction modes include the formation of stair-rod dislocations and the climbing of extended dislocation bundles for voids,as well as the generation of stair-rod dislocation and dislocation shear for precipitates.Besides,the interactions of edge dislocations with voids and Ni_(3)Al precipitates are strongly influenced by temperature and defect size.展开更多
This work focuses on the influence of Al content on the precipitation of nanoprecipitates,growth of prior austenite grains(PAGs),and impact toughness in simulated coarse-grained heat-affected zones (CGHAZs) of two exp...This work focuses on the influence of Al content on the precipitation of nanoprecipitates,growth of prior austenite grains(PAGs),and impact toughness in simulated coarse-grained heat-affected zones (CGHAZs) of two experimental shipbuilding steels after being subjected to high-heat input welding at 400 kJ·cm^(-1).The base metals (BMs) of both steels contained three types of precipitates Type Ⅰ:cubic (Ti,Nb)(C,N),Type Ⅱ:precipitate with cubic (Ti,Nb)(C,N) core and Nb-rich cap,and Type Ⅲ:ellipsoidal Nb-rich precipitate.In the BM of 60Al and 160Al steels,the number densities of the precipitates were 11.37×10^(5) and 13.88×10^(5) mm^(-2),respectively The 60Al and 160Al steel contained 38.12% and 6.39% Type Ⅲ precipitates,respectively.The difference in the content of Type Ⅲ precipitates in the 60Al steel reduced the pinning effect at the elevated temperature of the CGHAZ,which facilitated the growth of PAGs The average PAG sizes in the CGHAZ of the 60Al and 160Al steels were 189.73 and 174.7μm,respectively.In the 60Al steel,the low lattice mismatch among Cu_(2)S,TiN,and γ-Al_(2)O_(3)facilitated the precipitation of Cu_(2)S and TiN onto γ-Al_(2)O_(3)during welding,which decreased the number density of independently precipitated (Ti,Nb)(C,N) particles but increased that of γ-Al_(2)O_(3)–Ti N–Cu_(2)S particles.Thus abnormally large PAGs formed in the CGHAZ of the 60Al steel,and they reached a maximum size of 1 mm.These PAGs greatly reduced the microstructural homogeneity and consequently decreased the impact toughness from 134 (0.016wt%Al) to 54 J (0.006wt%Al)at-40℃.展开更多
Face-centered cubic(FCC)-structured multicomponent alloys typically exhibit good ductility but low strength.To simultaneously improve strength and ductility,a multicomponent alloy,Ni_(43.9)Co_(22.4)Fe_(8.8)Al_(10.7)Ti...Face-centered cubic(FCC)-structured multicomponent alloys typically exhibit good ductility but low strength.To simultaneously improve strength and ductility,a multicomponent alloy,Ni_(43.9)Co_(22.4)Fe_(8.8)Al_(10.7)Ti_(11.7)B_(2.5)(at%)with a unique microstructure was developed in this work.The microstructure,which includes 17.8%nanosized L12 precipitates and 26.6%micron-sized annealing twins distributed within~8μm fine FCC grains,was achieved through cryogenic rolling and subsequent annealing.The alloy exhibits a yield strength(YS)of 1063 MPa,ultimate tensile strength(UTS)of 1696 MPa,and excellent elongation of~26%.The L1_(2) precipitates and high-density grain boundaries act as a barrier to the dislocation movement,resulting in a substantial strengthening effect.In addition,the dislocations can cut through the L1_(2) precipitates that are coherent with the FCC matrix,whereas the twin boundaries can effectively absorb and store dislocations,leading to a high work-hardening rate.Furthermore,the stacking faults,Lomer-Cottrell locks,and 9-layer rhombohedral stacking sequence(9R)structures formed during tensile deformation significantly enhance strain hardening by blocking dislocation movement and accumulating dislocations,resulting in excellent comprehensive tensile properties.Theoretical calculations reveal that the grain boundaries,L1_(2)precipitates,and twin boundaries contribute the strengths of 263.8,412.6,and 68.7 MPa,respectively,accounting for 71.9%of the YS.This study introduces a promising strategy for developing multicomponent alloys with significant strength-ductility synergies.展开更多
Boundary engineering has proven effective in enhancing the thermoelectric performance of materials.SnSe,known for its low thermal conductivity,has garnered significant interest;however,its application is hindered by p...Boundary engineering has proven effective in enhancing the thermoelectric performance of materials.SnSe,known for its low thermal conductivity,has garnered significant interest;however,its application is hindered by poor electrical conductivity.Herein,the Ag_(8)GeSe_(6) is introduced into the p-type polycrystalline SnSe matrix to optimize the thermoelectric performance,and the in-situ Ag_(2)Se precipitates are formed in grain boundaries,which play dual roles,acting as an electron attraction center for improving hole concentration and a phonon scattering center for reducing lattice thermal conductivity.It effectively decouples the thermal and electrical transport properties to optimize the thermoelectric performance.Importantly,the amount of Ag_(2)Se can be controlled by adjusting the amount of Ag_(8)GeSe_(6) added to the SnSe matrix.The introduction of Ag_(8)GeSe_(6) enhances electrical conductivity due to the increased hole carrier caused by the introduced Ag+and the formed electron attraction center(in-situ Ag_(2)Se precipitates).Based on the DFT calculations,the band gap of the Ag_(8)GeSe_(6)-doped samples is considerably decreased,facilitating carrier transport.As a result,the electrical transport properties increase to 808μW m^(−1) K^(−2) at 823 K for SnSe+0.5 wt%Ag_(8)GeSe_(6).In addition,in-situ Ag_(2)Se precipitates in grain boundaries strongly enhance phonon scattering,causing a decrease in lattice thermal conductivity.Furthermore,the presence of defects contributes to a reduction in lattice thermal conductivity.Specifically,the thermal conductivity of SnSe+1.0 wt%Ag_(8)GeSe_(6) decreases to 0.29 W m^(−1) K^(−1) at 823 K.Consequently,SnSe+0.5 wt%Ag_(8)GeSe_(6) obtains a high ZT value of 1.7 at 823 K and maintains a high average ZT value of 0.57 over the temperature range of 323−773 K.Additionally,the mechanical properties of Ag_(8)GeSe_(6)-doped also show an improvement.These advancements can be applied to energy supply applications during deep space exploration.展开更多
The water-quenched(WQ)2195 Al−Li alloy was subjected to stretching at different temperatures,from room temperature(RT)to−196℃(CT),to investigate the effect of cryogenic deformation on the aging precipitation behavior...The water-quenched(WQ)2195 Al−Li alloy was subjected to stretching at different temperatures,from room temperature(RT)to−196℃(CT),to investigate the effect of cryogenic deformation on the aging precipitation behaviors and mechanical properties.The precipitation kinetics of the T1 phase and the microstructures in peak aging state were investigated through the differential scanning calorimetric(DSC)tests and electron microscopy observation.The results show that−196℃deformation produces a high dislocation density,which promotes the precipitation of the T1 phase and refines its sizes significantly.In addition,the grain boundary precipitates(GBPs)of−196℃-stretched samples are suppressed considerably due to the high dislocation density in the grain interiors,which increases the ductility.In comparison,the strength remains nearly constant.Thus,it is indicated that cryogenic forming has the potential to provide the shape and property control for the manufacture of critical components of aluminum alloys.展开更多
Precipitation events,which follow a life cycle of initiation,development,and decay,represent the fundamental form of precipitation.Comprehensive and accurate detection of these events is crucial for effective water re...Precipitation events,which follow a life cycle of initiation,development,and decay,represent the fundamental form of precipitation.Comprehensive and accurate detection of these events is crucial for effective water resource management and flood control.However,current investigations on their spatio-temporal patterns remain limited,largely because of the lack of systematic detection indices that are specifically designed for precipitation events,which constrains event-scale research.In this study,we defined a set of precipitation event detection indices(PEDI)that consists of five conventional and fourteen extreme indices to characterize precipitation events from the perspectives of intensity,duration,and frequency.Applications of the PEDI revealed the spatial patterns of hourly precipitation events in China and its first-and second-order river basins from 2008 to 2017.Both conventional and extreme precipitation events displayed spatial distribution patterns that gradually decreased in intensity,duration,and frequency from southeast to northwest China.Compared with those in northwest China,the average values of most PEDIs in southeast China were usually 2-10 times greater for first-order river basins and 3-15 times greater for second-order basins.The PEDI could serve as a reference method for investigating precipitation events at global,regional,and basin scales.展开更多
基金The authors express their gratitude to the National Science Foundation for Young Scientists of China(51704021)Key Research and Development Projects of Shandong Province(2021CXGC010)+1 种基金Key Research and Development Projects of Sichuan Province(021YFG0114)Fundamental Research Funds for the Central Universities(FRF-IDRY-20-015,FRF-TP-20-004A3,FRF-TP-19-030A2,and FRF-TP-16-079A1)for their kind financial support.
文摘Heat-resistant alloys with excellent mechanical properties are widely used in various fields,and further improvement in their properties is essential to meet the requirements in new-generation advanced supercritical boilers,nuclear reactors,superheaters,and other new materials applications.To effectively enhance the comprehensive performance of heat-resistant alloys,second-phase particle strengthening has been widely studied,and in the face of different service envi-ronments of advanced heat-resistant steels,the selection of suitable second-phase particles is essential to maximize the performance of these alloys.To this end,three major types of reinforcing phases in heat-resistant alloys such as carbides,rare earth oxides,and intermetallic compounds are summarized.A comparative analysis of the precipitation behavior of the reinforcing phases with different types as well as the risks and means of controlling their use in service,is presented.Key parameters for the application of various types of second-phase particles in heat-resistant alloys are provided to support the design and preparation of new ultrahigh-performance heat-resistant alloys.
基金supported by the Pre-research fund(No.412130024).
文摘The T_(1)(Al_(2) CuLi)phase is one of the most effective strengthening nanoscale-precipitate in Al-Cu alloys with Li.However,its formation and evolution still need to be further clarified during aging due to the complex precipitation sequences.Here,a detailed investigation has been carried out on the atomic struc-tural evolution of T_(1) precipitate in an aged Al-Cu-Li-Mg-Ag alloy using state-of-the-art Cs-corrected high-angle annular dark field(HAADF)-coupled with integrated differential phase contrast(iDPC)-scanning transmission electron microscopy(STEM)and energy-dispersive X-ray spectroscopy(EDXS)techniques.An intermediate T_(1)’phase between T_(1p) and T_(1) phase,with a crystal structure and orientation rela-tionship consistent with T_(1),but exhibiting different atomic occupancy and chemical composition was found.We observed the atomic structural transformation from T_(1p) to T_(1)’phase(fcc→hcp),involving only 1/12<112>Al shear component.DFT calculation results validated our proposed structural models and the precipitation sequence.Besides,the distributions of minor solute elements(Ag,Mg,and Zn)in the pre-cipitates exhibited significant differences.These findings may contribute to a further understanding of the nucleation mechanism of T_(1) precipitate.
基金supported by the National Key Research and Development Project(No.2023YFA1600082)the National Natural Science Foundation of China(Nos.U2141207,52001083,52171111)+3 种基金Natural Science Foundation of Heilongjiang(No.YQ2023E026)the Fundamental Research Funds for the Central Universities(No.3072022JIP1002)Key Laboratory Found of the Ministry of Industry and Information Technology(No.GXB202201)Youth Talent Project of China National Nuclear Corporation(No.CNNC2021YTEP-HEU01).
文摘How to achieve high-entropy alloys(HEAs)with ultrahigh strength and ductility is a challenging issue.Precipitation strengthening is one of the methods to significantly enhance strength,but unfortunately,ductility will be lost.To overcome the strength-ductility trade-off,the strategy of this study is to induce the formation of high-density nanoprecipitates through dual aging(DA),triggering multiple deformation mechanisms,to obtain HEAs with ultrahigh strength and ductility.First,the effect of precold deformation on precipitation behavior was studied using Ni_(35)(CoFe)_(55)V_(5)Nb_(5)(at.%)HEAas the object.The results reveal that the activation energy of recrystallization is 112.2 kJ/mol.As the precold-deformation amount increases from 15%to 65%,the activation energy of precipitation gradually decreases from 178.8 to 159.7 kJ/mol.The precipitation time shortens,the size of the nanoprecipitate decreases,and the density increases.Subsequently,the thermal treatment parameters were optimized,and the DA process was customized based on the effect of precold deformation on precipitation behavior.High-density L1_(2) nanoprecipitates(~3.21×10^(25) m^(-3))were induced in the 65% precold-deformed HEA,which led to the simultaneous formation of twins and stacking fault(SF)networks during deformation.The yield strength(YS),ultimate tensile strength,and ductility of the DA-HEA are~2.0 GPa,~2.2 GPa,and~12.3%,respectively.Compared with the solid solution HEA,the YS of the DA-HEA increased by 1,657 MPa,possessing an astonishing increase of~440%.The high YS stems from the precipitation strengthening contributed by the L1_(2) nanoprecipitates and the dislocation strengthening contributed by precold deformation.The synergistically enhanced ductility stems from the high strain-hardening ability under the dual support of twinning-induced plasticity and SF-induced plasticity.
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A20187,52171007,52371111,and 52371177).
文摘Precipitation via thermal treatments is among the most effective approaches to strengthening and is widely applied in the Al industry. Thermal treatments combined with deformation are capable of finely regulating the process of precipitation and distribution of precipitates. Deformation-induced defects exert significant impacts on the precipitation and already present precipitates, which however is often overlooked. In this study, the interactions between deformation and precipitation/precipitates, and their impacts on mechanical properties were systematically investigated in the solution-treated (ST) Al-0.61Mg-1.17Si-0.5Cu (wt.%), processed by multi-pass equal channel angular pressing (ECAP) and thermal treatments. Novel deformation-mediated cyclic evolution of precipitates is discovered: ST→ (1,2 passes: deformation induced precipitation) Guinier Preston (GP) zones→ (An250/30) Q’ and L phases→ (3-pass: deformation induced fragmentation/resolution) spherical precipitates→ (4-pass: deformation induced further fragmentation/resolution) GP zones. On this basis, we extend the quasi-binary phase diagram of Al-Mg_(2)Si along deformation as the third dimension and construct an innovative defect phase diagram for the Al-Mg-Si-based system. To testify to the effect of deformation-mediated cyclic evolution of precipitation/precipitates on the optimum mechanical properties, peak-aging treatments were performed in samples of ST and 3-pass states. Based on the microscopic characterizations, a distinctive mechanism of peak-aging strengthening is proposed. Notably in the 3-pass ECAPed and peak-aged sample the dominant strengthening phases become the L precipitates that thrived from the segmented and spherical L phases, rather than β’’ precipitates in the solely peak-aged ST sample. Our work provides a feasible example for exploring the combined processing technique of multi-step deformation and thermal treatments, to optimize the mechanical properties.
基金supported by the National Natural Science Foundation of China(Nos.52171166 and U20A20231)the Natural Science Foundation of Hunan Province,China(Nos.2024JJ2060 and 2024JJ5406)+1 种基金the Key Laboratory of Materials in Dynamic Extremes of Sichuan Province(No.2023SCKT1102)the Postgraduate Scientific Research Innovation Project of National University of Defense Technology(No.XJJC2024065).
文摘Introducing B2 ordering can effectively improve the mechanical properties of lightweight refractory high-entropy alloys(LRHEAs).However,(Zr,Al)-enriched B2 precipitates generally reduce the ductility because their ordering characteristic is destroyed after dislocation shearing.Meanwhile,the local chemical order(LCO)cannot provide an adequate strengthening effect due to its small size.
基金Project supported by the National Natural Science Foundation of China(Nos.11922206,11702089,12272132)the Postgraduate Scientific Research Innovation Project of Hunan Province(No.CX20240388)。
文摘The acuurate prediction of the time-dependent mechanical behavior and deformation mechanisms of second-phase reinforced alloys under size effects is critical for the development of high-strength ductile metals and alloys for dynamic applications.However,solving their responses using high-fidelity numerical methods is computationally expensive and,in many cases,impractical.To address this issue,a dual-scale incremental variational formulation is proposed that incorporates the influence of plastic gradients on plastic evolution characteristics,integrating a strain-rate-dependent strain gradient plasticity model and including plastic gradients in the inelastic dissipation potential.Subsequently,two minimization problems based on the energy dissipation mechanisms of strain gradient plasticity,corresponding to the macroscopic and microscopic structures,are solved,leading to the development of a homogenization-based dual-scale solution algorithm.Finally,the effectiveness of the variational model and tangent algorithm is validated through a series of numerical simulations.The contributions of this work are as follows:first,it advances the theory of self-consistent computational homogenization modeling based on the energy dissipation mechanisms of plastic strain rates and their gradients,along with the development of a rigorous multi-level finite element method(FE2)solution procedure;second,the proposed algorithm provides an efficient and accurate method for evaluating the time-dependent mechanical behavior of second-phase reinforced alloys under strain gradient effects,exploring how these effects vary with the strain rate,and investigating their potential interactions.
基金financial supports from the National Natural Science Foundation of China(Nos.52471004,52171107,52201203)the Industry-University-Research Cooperation Project of Hebei Based Universities and Shijiazhuang City(No.241791237A)the Fundamental Research Funds for the Central Universities(No.N2423030)。
文摘The nano-scale L1_(2)-Ni_(3)Al precipitates significantly contribute to thermal stability of alumina-forming austenitic(AFA)steels.The coarsening behavior of L1_(2)-Ni_(3)Al precipitates in AFA steels during isothermal aging with considering the influence of alloying elements was investigated.The results show that the coarsening rate of L1_(2)-Ni_(3)Al precipitates increases with co-additions of Ni and Cu,and especially,the increase of Cu content promotes the nucleation of L1_(2)-Ni_(3)Al precipitates.A dynamic competition exists between Lifshitz-Slyozov-Wagner theory and transient interface diffusion-controlled theory for coarsening behavior of L1_(2)-Ni_(3)Al precipitates with duration of isothermal aging.Additionally,the transition from L1_(2)-Ni_(3)Al precipitates to B2-NiAl precipitates during isothermal aging results in the formation of a depleted zone of L1_(2)-Ni_(3)Al precipitates around B2-NiAl precipitates,which inhibits the growth of L1_(2)-Ni_(3)Al precipitates.The coarsening of L1_(2)-Ni_(3)Al precipitates significantly contributes to the yield strength of AFA steels.
基金Project(2023YFB3710503) supported by the National Key R&D Program of ChinaProject(52305439) supported by the National Natural Science Foundation of China。
文摘The orientation effect of θʹ precipitates in stress-aged Al-Cu alloys has ambiguous interpretations. One view is that θʹ precipitates prefer to grow on the habit planes perpendicular to the applied compressive stress, while the other view suggests growth on habit planes parallel to the applied stress. In this study, stress-aged Al-4 wt.%Cu single crystal was sampled from three different <100>Al zone axes to observe the distribution of θʹ precipitates. A hybrid Monte-Carlo/ molecular dynamics simulations were used to investigate the orientation effect of θʹ precipitates. The simulation results are consistent with experimental observations and indicate that θʹ precipitates prefer to grow on the habit planes that are parallel to the direction of the applied compressive stress, not along the planes perpendicular to it. It is also found that 1/2<110> perfect dislocations are generated as θʹ precipitates plates grow thicker, and the reaction of 1/2<110> perfect dislocations decomposing into 1/6<112> Shockley dislocations lead to an increase in the length of θʹ precipitates. The former does not enhance the orientation effect, whereas the latter leads to a more significant orientation effect. Additionally, the degree of the orientation effect of θʹ precipitates is determined by the reduction of 1/2<110> dislocations with a positive correlation between them.
基金supported by the National Natural Science Foundation of China[grant nos.52371005,52022017,and 51927801]Fundamental Research Funds for the Central Universities.E.G.thanks Xiaomi Foundation for support.
文摘The development of low-cost,high-performance Mg alloys is crucial to the industrial applications of large-scale production of Mg alloys.In this work,extruded Mg-5Bi-3Al alloy with excellent mechanical properties is successfully prepared by modifying the extrusion temperatures(240℃and 300℃).The extruded alloy obtained ultra-high strength(yield strength=380 MPa,ultimate tensile strength=418 MPa)and excellent plasticity(elongation=10.2%)at the extrusion temperature of 240℃,the main contributing factors are primarily attributed to the synergistic effect of ultrafine recrystallized grain size(~0.5µm)and high density of Mg_(3)Bi_(2)precipitates.Stacking faults within the sub-micron Mg_(3)Bi_(2)phase are observed in the E240 alloy,confirming the plastic deformation capability of Mg_(3)Bi_(2)phase.The effects of extrusion temperature on the microstructure,mechanical properties,and work-hardening behavior of the extruded Mg-5Bi-3Al alloys at room temperature are systematically investigated.The results suggest that decreasing the extrusion temperature can refine recrystallized grain size and Mg_(3)Bi_(2)phase size,and the quantity of Mg_(3)Bi_(2)phase is increased,while increasing the extrusion temperature can improve the degree of recrystallization and weaken texture.The work hardening rate is increased with the increased extrusion temperature,mainly due to the coarsening of grains and precipitates,and the weakening of texture.This work provides an experimental basis for preparing high-performance wrought Mg-5Bi-3Al alloys.
基金supported by the National Natural Science Foundation of China(Nos.52074200,52274393,and 12102310)the Key R&D Program of Hubei Province(No.2023BAB141)the State Key Laboratory for Advanced Metals and Materials(No.2023-ZD03).
文摘Non-oriented silicon steels with both excellent magnetic properties and high strength are essential for the drive motors of new energy vehicles.However,achieving a balance between strength and magnetic properties is a challenging task.This study successfully developed non-oriented silicon steel that met these demanding requirements by utilizing the coherent nano-Cu-rich phases precipitated during aging.In the current investigation,the evolution of precipitation during the aging process of Cu-alloyed non-oriented silicon steel is revealed as:BCC Cu-rich cluster(Fe:Cu>1)→B2 FeCu cluster(Fe:Cu approaches 1)→BCC Cu cluster(Fe:Cu<1)→Twinned 9R Cu→Detwinned 9R Cu.Notably,the 9R Cu precipitated in the later stage of aging was coarse and incoherent with the matrix,offering minimal strengthening benefits while considerably deteriorated the magnetic properties.Conversely,the other three phases that formed in the early stage of aging were fine,dispersed,and coherent with the matrix,effectively enhancing the yield strength of the steel with minimal negative impact on its magnetic properties.The total increment of yield strength attributed to BCC Cu-rich clusters,B2 FeCu clusters,and BCC Cu clusters were 207,304,and 374 MPa,respectively.The strengthening mechanism operated primarily through the cutting mechanism,which was dominated by the modulus difference strengthening and coherent strain strengthening.Moreover,a unique ordered strengthening of approximately 207 MPa arose from the ordered B2 FeCu clusters.Thus,the steel aged for 3–30 min with the precipitation of B2 FeCu clusters and BCC Cu clusters exhibited the most favorable overall performance with a yield strength of 750–800 MPa,P1.0/400 of 16.3–18.3 W kg^(−1),and B5000 of 1.641–1.656 T.
基金financially supported by the National Natural Science Foundation of China(Grant No.52104333)the Natural Science Foundation of Inner Mongolia(Grant No.2024MS05029)+1 种基金the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(Grant No.NJYT24070)the Research Project of Carbon Peak and Carbon Neutrality in Universities of Inner Mongolia Autonomous Region(Grant No.STZX202316).
文摘The effect of high welding heat inputs in the range of 50–200 kJ/cm on the microstructural evolution,MX(M=Ti,Nb and V;X=N and C)precipitation and mechanical properties was investigated in the coarse-grained heat-affected zone(CGHAZ)of a high-Nb(0.10 wt.%)structural steel.The results showed that the primary microconstituents varied from lath bainite(LB)to intragranular acicular ferrite(IAF)+intragranular polygonal ferrite(IPF),and the most content of IAF was acquired at 100 kJ/cm.Moreover,the submicron Ti-and Nb-rich MX precipitates not only pinned prior austenite grain boundaries but also facilitated IAF and IPF nucleation with the Kurdjumov–Sachs orientation relationship of[011]_(MX)//[111]_(Ferrite);the nanoscale V-rich MX precipitates hindered dislocation movement and followed the Baker–Nutting orientation relationship of[001]_(MX)//[001]_(Ferrite)with ferrite matrix,synergistically strengthening and toughening the CGHAZ.In addition,the−20℃impact absorbed energy firstly elevated from 93±5.2 J at 50 kJ/cm to 131±5.4 J at 100 kJ/cm and finally decreased to 59±3.0 J at 200 kJ/cm,being related to the IAF content,while the microhardness decreased from 312±26.1 to 269±12.9 HV0.1,because of the coarsened microstructure and the decreased content of LB and martensite.Compared to the CGHAZ properties with 0.05 wt.%Nb,a higher Nb content produced better low-temperature toughness,as more solid dissolved Nb atoms and precipitated Nb-rich MX particles in austenite limited prior austenite grain growth and promoted IAF formation.Furthermore,the welding process at 100 kJ/cm was most applicable for the high-Nb steel.
基金support from the National Natural Science Foundation(No.52473339).
文摘Realizing the greater potential for precipitation strengthening in nanograined alloys is highly desirable but often challenging.In this study,an Fe-Ni based alloy was subjected to plastic deformation followed by aging treatment to further strengthen nanograins through high-density precipitates.Microstructural characterization showed that nanograins account for∼64%of the volume,with an average size of 44 nm.Notably,the nanoprecipitates in the nanograins exhibit utterly different characteristics from those in the coarse grains.As a result,the sample has an ultra-high yield strength of 1677 MPa.Further analyses indicated that the D0_(24)-structured nanoprecipitates at the nanograin boundaries provide a greater precipitation strengthening than conventional L1_(2)-structured nanoprecipitates within the coarse grains,the reason of which is that the precipitates inhibit partial dislocation emission and grain boundary migration of the nanograins.This work deepens the understanding of precipitation strengthening in nanograined materials and proposes a novel strategy to further strengthen nanograined alloys.
基金supported by the Ministry of Industry and Information Technology of China(grant number TC220A04W-7,203)CNNC Youth Elite Scientific Research Project,the National Key R&D Plan of China(grant number 2020YFB1901600)the National Science Technology Major Project of China(grant numbers 2017ZX06902012 and 2017ZX06901024).
文摘Nickel-based alloys are the primary structural materials in steam generators of high-temperature gas reactors.To understand the irradiation effect of nickel-based alloys,it is necessary to examine dislocation movement and its interaction with irradiation defects at the microscale.Hardening due to voids and Ni_(3)Al precipitates may significantly impact irradiation damage in nickel-based alloys.This paper employs the molecular dynamics method to analyze the interaction between edge dislocations and irradiation defects(void and Ni_(3)Al precipitates)in face-centered cubic nickel.The effects of temperature and defect size on the interaction are also explored.The results show that the interaction process of the edge dislocation and irradiation defects can be divided into four stages:dislocation free slip,dislocation attracted,dislocation pinned,and dislocation unpinned.Interaction modes include the formation of stair-rod dislocations and the climbing of extended dislocation bundles for voids,as well as the generation of stair-rod dislocation and dislocation shear for precipitates.Besides,the interactions of edge dislocations with voids and Ni_(3)Al precipitates are strongly influenced by temperature and defect size.
基金support from the National Natural Science Foundation of China (No. U1960202)the Opening Foundation from Shanghai Engineering Research Center of Hot Manufacturing, China (No. 18DZ2253400)。
文摘This work focuses on the influence of Al content on the precipitation of nanoprecipitates,growth of prior austenite grains(PAGs),and impact toughness in simulated coarse-grained heat-affected zones (CGHAZs) of two experimental shipbuilding steels after being subjected to high-heat input welding at 400 kJ·cm^(-1).The base metals (BMs) of both steels contained three types of precipitates Type Ⅰ:cubic (Ti,Nb)(C,N),Type Ⅱ:precipitate with cubic (Ti,Nb)(C,N) core and Nb-rich cap,and Type Ⅲ:ellipsoidal Nb-rich precipitate.In the BM of 60Al and 160Al steels,the number densities of the precipitates were 11.37×10^(5) and 13.88×10^(5) mm^(-2),respectively The 60Al and 160Al steel contained 38.12% and 6.39% Type Ⅲ precipitates,respectively.The difference in the content of Type Ⅲ precipitates in the 60Al steel reduced the pinning effect at the elevated temperature of the CGHAZ,which facilitated the growth of PAGs The average PAG sizes in the CGHAZ of the 60Al and 160Al steels were 189.73 and 174.7μm,respectively.In the 60Al steel,the low lattice mismatch among Cu_(2)S,TiN,and γ-Al_(2)O_(3)facilitated the precipitation of Cu_(2)S and TiN onto γ-Al_(2)O_(3)during welding,which decreased the number density of independently precipitated (Ti,Nb)(C,N) particles but increased that of γ-Al_(2)O_(3)–Ti N–Cu_(2)S particles.Thus abnormally large PAGs formed in the CGHAZ of the 60Al steel,and they reached a maximum size of 1 mm.These PAGs greatly reduced the microstructural homogeneity and consequently decreased the impact toughness from 134 (0.016wt%Al) to 54 J (0.006wt%Al)at-40℃.
基金supported by the Major Science and Technology Project of Gansu Province(Nos.23ZDGA010 and 22ZD6GA008)the National Natural Science Foundation of China(No.51564035).
文摘Face-centered cubic(FCC)-structured multicomponent alloys typically exhibit good ductility but low strength.To simultaneously improve strength and ductility,a multicomponent alloy,Ni_(43.9)Co_(22.4)Fe_(8.8)Al_(10.7)Ti_(11.7)B_(2.5)(at%)with a unique microstructure was developed in this work.The microstructure,which includes 17.8%nanosized L12 precipitates and 26.6%micron-sized annealing twins distributed within~8μm fine FCC grains,was achieved through cryogenic rolling and subsequent annealing.The alloy exhibits a yield strength(YS)of 1063 MPa,ultimate tensile strength(UTS)of 1696 MPa,and excellent elongation of~26%.The L1_(2) precipitates and high-density grain boundaries act as a barrier to the dislocation movement,resulting in a substantial strengthening effect.In addition,the dislocations can cut through the L1_(2) precipitates that are coherent with the FCC matrix,whereas the twin boundaries can effectively absorb and store dislocations,leading to a high work-hardening rate.Furthermore,the stacking faults,Lomer-Cottrell locks,and 9-layer rhombohedral stacking sequence(9R)structures formed during tensile deformation significantly enhance strain hardening by blocking dislocation movement and accumulating dislocations,resulting in excellent comprehensive tensile properties.Theoretical calculations reveal that the grain boundaries,L1_(2)precipitates,and twin boundaries contribute the strengths of 263.8,412.6,and 68.7 MPa,respectively,accounting for 71.9%of the YS.This study introduces a promising strategy for developing multicomponent alloys with significant strength-ductility synergies.
基金supported by the Outstanding Youth Fund of Yunnan Province(Grant No.202201AV070005)the National Natural Science Foundation of China(Grant No.52162029)the National Key R&D Program of China(Grant No.2022YFF0503804).
文摘Boundary engineering has proven effective in enhancing the thermoelectric performance of materials.SnSe,known for its low thermal conductivity,has garnered significant interest;however,its application is hindered by poor electrical conductivity.Herein,the Ag_(8)GeSe_(6) is introduced into the p-type polycrystalline SnSe matrix to optimize the thermoelectric performance,and the in-situ Ag_(2)Se precipitates are formed in grain boundaries,which play dual roles,acting as an electron attraction center for improving hole concentration and a phonon scattering center for reducing lattice thermal conductivity.It effectively decouples the thermal and electrical transport properties to optimize the thermoelectric performance.Importantly,the amount of Ag_(2)Se can be controlled by adjusting the amount of Ag_(8)GeSe_(6) added to the SnSe matrix.The introduction of Ag_(8)GeSe_(6) enhances electrical conductivity due to the increased hole carrier caused by the introduced Ag+and the formed electron attraction center(in-situ Ag_(2)Se precipitates).Based on the DFT calculations,the band gap of the Ag_(8)GeSe_(6)-doped samples is considerably decreased,facilitating carrier transport.As a result,the electrical transport properties increase to 808μW m^(−1) K^(−2) at 823 K for SnSe+0.5 wt%Ag_(8)GeSe_(6).In addition,in-situ Ag_(2)Se precipitates in grain boundaries strongly enhance phonon scattering,causing a decrease in lattice thermal conductivity.Furthermore,the presence of defects contributes to a reduction in lattice thermal conductivity.Specifically,the thermal conductivity of SnSe+1.0 wt%Ag_(8)GeSe_(6) decreases to 0.29 W m^(−1) K^(−1) at 823 K.Consequently,SnSe+0.5 wt%Ag_(8)GeSe_(6) obtains a high ZT value of 1.7 at 823 K and maintains a high average ZT value of 0.57 over the temperature range of 323−773 K.Additionally,the mechanical properties of Ag_(8)GeSe_(6)-doped also show an improvement.These advancements can be applied to energy supply applications during deep space exploration.
基金financially supported by the National Key Research and Development Program of China (No. 2019YFA0708801)the National Natural Science Foundation of China (No. 51875125)。
文摘The water-quenched(WQ)2195 Al−Li alloy was subjected to stretching at different temperatures,from room temperature(RT)to−196℃(CT),to investigate the effect of cryogenic deformation on the aging precipitation behaviors and mechanical properties.The precipitation kinetics of the T1 phase and the microstructures in peak aging state were investigated through the differential scanning calorimetric(DSC)tests and electron microscopy observation.The results show that−196℃deformation produces a high dislocation density,which promotes the precipitation of the T1 phase and refines its sizes significantly.In addition,the grain boundary precipitates(GBPs)of−196℃-stretched samples are suppressed considerably due to the high dislocation density in the grain interiors,which increases the ductility.In comparison,the strength remains nearly constant.Thus,it is indicated that cryogenic forming has the potential to provide the shape and property control for the manufacture of critical components of aluminum alloys.
基金National Key Research and Development Program of China,No.2023YFC3206605,No.2021YFC3201102National Natural Science Foundation of China,No.41971035。
文摘Precipitation events,which follow a life cycle of initiation,development,and decay,represent the fundamental form of precipitation.Comprehensive and accurate detection of these events is crucial for effective water resource management and flood control.However,current investigations on their spatio-temporal patterns remain limited,largely because of the lack of systematic detection indices that are specifically designed for precipitation events,which constrains event-scale research.In this study,we defined a set of precipitation event detection indices(PEDI)that consists of five conventional and fourteen extreme indices to characterize precipitation events from the perspectives of intensity,duration,and frequency.Applications of the PEDI revealed the spatial patterns of hourly precipitation events in China and its first-and second-order river basins from 2008 to 2017.Both conventional and extreme precipitation events displayed spatial distribution patterns that gradually decreased in intensity,duration,and frequency from southeast to northwest China.Compared with those in northwest China,the average values of most PEDIs in southeast China were usually 2-10 times greater for first-order river basins and 3-15 times greater for second-order basins.The PEDI could serve as a reference method for investigating precipitation events at global,regional,and basin scales.