In this study, the microstructure and second-phase particles in yttrium (0.05 wt.%and 0.8 wt.%) bearing Fe-10Ni-7Mn steels were characterized. The results of X-ray analysis as well as scanning electron microscopy co...In this study, the microstructure and second-phase particles in yttrium (0.05 wt.%and 0.8 wt.%) bearing Fe-10Ni-7Mn steels were characterized. The results of X-ray analysis as well as scanning electron microscopy coupled with energy dispersive X-ray spectroscopy indicated the formation of (Fe, Ni, Mn)17Y2 precipitates with hexagonal structure in a Fe-10Ni-7Mn-0.8Y (wt.%) alloy. Lattice parameters of these precipitates were calculated as follows:a=0.8485 nm and c=0.8274 nm. Formation of Y2O3 sub-micron particles was also confirmed in both yttrium bearing steels via electrolytic phase extraction method. The effect of these precipitates on the prior austenite grain size was investigated. The results revealed that these precipitates had an effective role in controlling the prior austenite grain size.展开更多
This study investigates the effects of fine and coarse undissolved particles in a billet of the Mg–7 Sn–1 Al–1 Zn(TAZ711)alloy on the dynamic recrystallization(DRX)behavior during hot extrusion at low and high temp...This study investigates the effects of fine and coarse undissolved particles in a billet of the Mg–7 Sn–1 Al–1 Zn(TAZ711)alloy on the dynamic recrystallization(DRX)behavior during hot extrusion at low and high temperatures and the resultant microstructure and mechanical properties of the alloy.To this end,partially homogenized(PH)and fully homogenized(FH)billets are extruded at temperatures of250 and 450°C.The PH billet contains fine and coarse undissolved Mg_(2) Sn particles in the interdendritic region and along the grain boundaries,respectively.The fine particles(<1μm in size)retard DRX during extrusion at 250°C via the Zener pinning effect,and this retardation causes a decrease in the area fraction of dynamically recrystallized(DRXed)grains of the extruded alloy.In addition,the inhomogeneous distribution of fine particles in the PH billet leads to the formation of a bimodal DRXed grain structure with excessively grown grains in particle-scarce regions.In contrast,in the FH billet,numerous nanosized Mg_(2) Sn precipitates are formed throughout the material during extrusion at 250°C,which,in turn,leads to the formation of small,uniform DRXed grains by the grain-boundary pinning effect of the precipitates.When the PH billet is extruded at the high temperature of 450°C,the retardation effect of the fine particles on DRX is weakened by their dissolution in theα-Mg matrix and the increased extent of thermally activated grain-boundary migration.In contrast,the coarse Mg_(2) Sn particles in the billet promote DRX during extrusion through the particle-stimulated nucleation phenomenon,which results in an increase in the area fraction of DRXed grains.At both low and high extrusion temperatures,the extruded material fabricated using the PH billet,which contains both fine and coarse undissolved particles,has a lower tensile strength than that fabricated using the FH billet,which is virtually devoid of second-phase particles.This lower strength of the former is attributed mainly to the larger grains and/or absence of nanosized M2 Sn precipitates in it.展开更多
The selective abnormal growth of Goss grains in magnetic sheets of Fe-3%Si (grade Hi-B) induced by second-phase particles (AlN and MnS) was studied using a modified Monte Carlo Ports model. The starting microstruc...The selective abnormal growth of Goss grains in magnetic sheets of Fe-3%Si (grade Hi-B) induced by second-phase particles (AlN and MnS) was studied using a modified Monte Carlo Ports model. The starting microstructures for the simulations were generated from electron backscatter diffraction (EBSD) orientation imaging maps of recrystallized samples. In the simulation, second-phase particles were assumed to be randomly distributed in the initial microstructures and the Zener drag effect of particles on Goss grain boundaries was assumed to be selectively invalid because of the unique properties of Goss grain boundaries. The simulation results suggest that normal growth of the matrix grains stagnates because of the pinning effect of particles on their boundaries. During the onset of abnormal grain growth, some Goss grains with concave boundaries in the initial microstructure grow fast abnormally and other Goss grains with convex boundaries shrink and eventually disappear.展开更多
The structure and electric properties of the mixed conductors of Li_(1+x)V_3O_8(x=0.1) containing dispersed second-phase α-Al_2O_3 particles have been studied in the paper. The total conductivity of the specimen cont...The structure and electric properties of the mixed conductors of Li_(1+x)V_3O_8(x=0.1) containing dispersed second-phase α-Al_2O_3 particles have been studied in the paper. The total conductivity of the specimen containing 6m/o α-Al_2O_3 is five or six times as much as that of pure Li_(1+x)V_3O_8 (x=0.1) at room temperature. By the analyses of NMR and ESR, it is known that at low temperature, the transport activation energy of Li^+ ions reduced, the transport frequency of Li^+ ions are speeded up and thus ionic conductivity increased in the specimens containing α-Al_2O_3 particles. At high temperature, diffusion effect of α-Al_2O_3 on electronic transport becomes great, the enhancement of ionic conductivity caused by α-Al_2O_3 doesn't make up the decrease of electronic conductivity caused by the diffusion effect, so that total conductivity of the specimens containing DSPP is lower than that of pure Li_(1+x)V_3O_8(x=0.1). As a result, DSPP mainly increases ionic conductivity of the mixed conductors at room temperature.展开更多
Several alloying elements involving Zr, Cu, Zn and Sc were added to Al-Mg sheet alloys in order to obtain an excellent combination of high strength and good high-temperature formability. Microstruc-tural examination s...Several alloying elements involving Zr, Cu, Zn and Sc were added to Al-Mg sheet alloys in order to obtain an excellent combination of high strength and good high-temperature formability. Microstruc-tural examination showed that coarse intermetallic particles were formed in the microstructure and their amounts changed with variations of the alloying elements. During warm rolling of thermome-chanical treatments prior to warm deformation, the coarse particles initiated cracks, decreasing the warm formability. For healing the crack damage and further improving the warm formability, a process of hot isothermal press was developed and optimized to the sheet alloys. With this process, the biaxial stretch formability at 350℃ was improved by 22% for an aluminum alloy containing a large amount of coarse particles.展开更多
Heat-resistant alloys with excellent mechanical properties are widely used in various fields,and further improvement in their properties is essential to meet the requirements in new-generation advanced supercritical b...Heat-resistant alloys with excellent mechanical properties are widely used in various fields,and further improvement in their properties is essential to meet the requirements in new-generation advanced supercritical boilers,nuclear reactors,superheaters,and other new materials applications.To effectively enhance the comprehensive performance of heat-resistant alloys,second-phase particle strengthening has been widely studied,and in the face of different service envi-ronments of advanced heat-resistant steels,the selection of suitable second-phase particles is essential to maximize the performance of these alloys.To this end,three major types of reinforcing phases in heat-resistant alloys such as carbides,rare earth oxides,and intermetallic compounds are summarized.A comparative analysis of the precipitation behavior of the reinforcing phases with different types as well as the risks and means of controlling their use in service,is presented.Key parameters for the application of various types of second-phase particles in heat-resistant alloys are provided to support the design and preparation of new ultrahigh-performance heat-resistant alloys.展开更多
WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content o...WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness.展开更多
Polybrominated biphenyl ethers(PBDEs)and polycyclic aromatic hydrocarbons(PAHs)are commonly detected contaminants at e-waste recycling sites.Against the conventional wisdom that PBDEs and PAHs are highly immobile and ...Polybrominated biphenyl ethers(PBDEs)and polycyclic aromatic hydrocarbons(PAHs)are commonly detected contaminants at e-waste recycling sites.Against the conventional wisdom that PBDEs and PAHs are highly immobile and persist primarily in shallowsurface soils,increasing evidence shows that these compounds can leach into the groundwater.Herein,we compare the leachabilities of PBDEs vs.PAHs from contaminated soils collected at an e-waste recycling site in Tianjin,China.Considerable amounts of BDE-209(0.3–2 ng/L)and phenanthrene(42–106 ng/L),the most abundant PBDE and PAH at the site,are detected in the effluents of columns packed with contaminated soils,with the specific concentrations varying with hydrodynamic and solution chemistry conditions.Interestingly,the leaching potential of BDE-209 appears to be closely related to the release of colloidal mineral particles,whereas the leachability of phenanthrene correlates well with the concentration of dissolved organic carbon in the effluent,but showing essentially no correlation with the concentration of mineral particles.The surprisingly different trends of the leachability observed between BDE-209 and phenanthrene is counterintuitive,as PBDEs and PAHs often co-exist at e-waste recycling sites(particularly at the sites wherein incineration is being practiced)and share many similarities in terms of physicochemical properties.One possible explanation is that due to its extremely low solubility,BDE-209 predominantly exists in free-phase(i.e.,as solid(nano)particles),whereas the more soluble phenanthrene is mainly sorbed to soil organic matter.Findings in this study underscore the need to better understand the mobility of highly hydrophobic organic contaminants at contaminated sites for improved risk management.展开更多
An improved method of friction stir processing(FSP)was introduced for the processing of AZ91 magnesium alloy specimens.This novel process was called“friction stir vibration processing(FSVP)”.FSP and FSVP were utiliz...An improved method of friction stir processing(FSP)was introduced for the processing of AZ91 magnesium alloy specimens.This novel process was called“friction stir vibration processing(FSVP)”.FSP and FSVP were utilized to develop surface composites on the studied alloy while SiC nanoparticles were applied as second-phase particles.The effect of reinforcing SiC particles with different sizes(30 and 300 nm)on different characteristics of the composite surface was studied.The results indicated that the microstructure was refined and mechanical properties such as hardness,ductility,and strength were enhanced as FSVP was applied.Furthermore,it was concluded that the effect of reinforcing particles with a size of 30 nm on the microstructure and mechanical properties of the surface composite was more obvious than that of particles with a size of 300 nm.It was also found that mechanical properties and microstructure of FSV-processed specimens were improved as vibration frequency increased.The hardness value in the stir zone was about 157 MPa for the FSV-processed specimen at a vibration frequency of 50 Hz,while this value was around 116 MPa for the FSV-processed specimen at a vibration frequency of 25 Hz.展开更多
Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid ...Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid route and the solid-solid route.However,the formation of DCN structures in steel requires long processes and complex steps.So far,obtaining steel with coherent particle enhancement in a short time remains a bottleneck,and some necessary steps remain unavoidable.Here,we show a high-efficiency liquid-phase refining process reinforced by a dynamic magnetic field.Ti-Y-Mn-O particles had an average size of around(3.53±1.21)nm and can be obtained in just around 180 s.These small nanoparticles were coherent with the matrix,implying no accumulated dislocations between the particles and the steel matrix.Our findings have a potential application for improving material machining capacity,creep resistance,and radiation resistance.展开更多
Thermodynamic modeling is still themostwidely usedmethod to characterize aerosol acidity,a critical physicochemical property of atmospheric aerosols.However,it remains unclear whether gas-aerosol partitioning should b...Thermodynamic modeling is still themostwidely usedmethod to characterize aerosol acidity,a critical physicochemical property of atmospheric aerosols.However,it remains unclear whether gas-aerosol partitioning should be incorporated when thermodynamicmodels are employed to estimate the acidity of coarse particles.In this work,field measurements were conducted at a coastal city in northern China across three seasons,and covered wide ranges of temperature,relative humidity and NH_(3) concentrations.We examined the performance of different modes of ISORROPIA-II(a widely used aerosol thermodynamic model)in estimating aerosol acidity of coarse and fine particles.The M0 mode,which incorporates gas-phase data and runs the model in the forward mode,provided reasonable estimation of aerosol acidity for coarse and fine particles.Compared to M0,the M1 mode,which runs the model in the forward mode but does not include gas-phase data,may capture the general trend of aerosol acidity but underestimates pH for both coarse and fine particles;M2,which runs the model in the reverse mode,results in large errors in estimated aerosol pH for both coarse and fine particles and should not be used for aerosol acidity calculations.However,M1 significantly underestimates liquid water contents for both fine and coarse particles,while M2 provides reliable estimation of liquid water contents.In summary,our work highlights the importance of incorporating gas-aerosol partitioning when estimating coarse particle acidity,and thus may help improve our understanding of acidity of coarse particles.展开更多
The development of efficient,cost-effective catalysts for the oxygen reduction reaction(ORR)is crucial for advancing zinc-air batteries(ZABs).This study presents Fe_(4)N nanoparticles embedded in N-doped carbon nanofi...The development of efficient,cost-effective catalysts for the oxygen reduction reaction(ORR)is crucial for advancing zinc-air batteries(ZABs).This study presents Fe_(4)N nanoparticles embedded in N-doped carbon nanofibers(Fe_(4)N@CNF-NH_(3))as a highly efficient ORR catalyst.The Fe_(4)N@CNF-NH_(3)catalyst was synthesized via electrospinning,followed by high-temperature annealing in an NH_(3)atmosphere.This electrospinning technique ensured the uniform dispersion of Fe_(4)N nanoparticles within the carbon nanofibers(CNFs),preventing agglomeration and enhancing the availability of active sites.Structural and morphological analyses confirmed the formation of Fe_(4)N nanoparticles with a lattice spacing of 0.213 nm,surrounded by graphitic carbon structures that significantly improved the material’s conductivity and stability.Electrochemical tests demonstrated that Fe_(4)N@CNF-NH_(3)exhibited superior ORR activity,with a half-wave potential of 0.904 V,surpassing that of commercial Pt/C catalysts.This enhanced performance is attributed to the synergistic effects of Fe_(4)N nanoparticles and the conductive carbon framework,which facilitated efficient charge and mass transfer during the ORR process.Density functional theory calculations further revealed that the introduction of CNFs positively shifted the d-band center of Fe atoms,optimizing oxygen intermediate adsorption and lowering energy barriers for ORR.The practical applicability of Fe_(4)N@CNF-NH_(3)was validated through the assembly of both liquid-state and solid-state ZABs,which exhibited excellent cycling stability,high power density,and superior discharge voltage.This study offers a promising strategy for developing highly active,low-cost ORR catalysts and advances the potential for the commercialization of ZABs.展开更多
The morphological description of wear particles in lubricating oil is crucial for wear state monitoring and fault diagnosis in aero-engines.Accurately and comprehensively acquiring three-dimensional(3D)morphological d...The morphological description of wear particles in lubricating oil is crucial for wear state monitoring and fault diagnosis in aero-engines.Accurately and comprehensively acquiring three-dimensional(3D)morphological data of these particles has became a key focus in wear debris analysis.Herein,we develop a novel multi-view polarization-sensitive optical coherence tomography(PS-OCT)method to achieve accurate 3D morphology detection and reconstruction of aero-engine lubricant wear particles,effectively resolving occlusion-induced information loss while enabling material-specific characterization.The particle morphology is captured by multi-view imaging,followed by filtering,sharpening,and contour recognition.The method integrates advanced registration algorithms with Poisson reconstruction to generate high-precision 3D models.This approach not only provides accurate 3D morphological reconstruction but also mitigates information loss caused by particle occlusion,ensuring model completeness.Furthermore,by collecting polarization characteristics of typical metals and their oxides in aero-engine lubricants,this work comprehensively characterizes and comparatively analyzes particle polarization properties using Stokes vectors,polarization uniformity,and cumulative phase retardation,and obtains a three-dimensional model containing polarization information.Ultimately,the proposed method enables multidimensional information acquisition for the reliable identification of abrasive particle types.展开更多
Biocompatible amphiphilic nanoparticles(NPs)with tunable particle morphology and surface property are important for their applications as functional materials.However,previously developed methods to prepare amphiphili...Biocompatible amphiphilic nanoparticles(NPs)with tunable particle morphology and surface property are important for their applications as functional materials.However,previously developed methods to prepare amphiphilic NPs generally involve several steps,especially an additional step for surface modification,greatly hindering their largescale production and widespread applications.Here,a versatile one-step strategy is developed to prepare biocompatible amphiphilic dimer NPs with tunable particle morphology and surface property.The amphiphilic dimer NPs,which consist of a hydrophobic shellac bulb and a hydrophilic poly(lactic acid)(PLA)bulb with PLA-poly(ethylene glycol)(PEG)on the bulb surface,are prepared in a single step by controlled co-precipitation and self-assembly.Amphiphilic PLA-PEG/shellac dimer NPs demonstrate excellent tunability in particle morphology,thus showing good performances in controlling the interfacial curvature and emulsion type.In addition,temperatureresponsive PLA-poly(N-isopropyl acrylamide)(PNIPAM)/shellac dimer NPs are prepared following the same method and emulsions stabilized by them show temperature-triggered response.The applications of PLA-PEG-folic acid(FA)/shellac dimer NPs for drug delivery have also been demonstrated,which show a very good performance.The strategy of preparing the dimer NPs is green,scalable,facile and versatile,which provides a good platform for the design of dimer NPs with tunable particle morphology and surface property for diverse applications.展开更多
We review a 3d quantum gravity model, which incorporates massive spinning fields into the Euclidean path integral in a Chern-Simons formulation. Fundamental matter as defined in our previous preon model is recapped. B...We review a 3d quantum gravity model, which incorporates massive spinning fields into the Euclidean path integral in a Chern-Simons formulation. Fundamental matter as defined in our previous preon model is recapped. Both quantum gravity and the particle model are shown to be derivable from the supersymmetric 3d Chern-Simons action. Forces-Matter unification is achieved.展开更多
The acuurate prediction of the time-dependent mechanical behavior and deformation mechanisms of second-phase reinforced alloys under size effects is critical for the development of high-strength ductile metals and all...The acuurate prediction of the time-dependent mechanical behavior and deformation mechanisms of second-phase reinforced alloys under size effects is critical for the development of high-strength ductile metals and alloys for dynamic applications.However,solving their responses using high-fidelity numerical methods is computationally expensive and,in many cases,impractical.To address this issue,a dual-scale incremental variational formulation is proposed that incorporates the influence of plastic gradients on plastic evolution characteristics,integrating a strain-rate-dependent strain gradient plasticity model and including plastic gradients in the inelastic dissipation potential.Subsequently,two minimization problems based on the energy dissipation mechanisms of strain gradient plasticity,corresponding to the macroscopic and microscopic structures,are solved,leading to the development of a homogenization-based dual-scale solution algorithm.Finally,the effectiveness of the variational model and tangent algorithm is validated through a series of numerical simulations.The contributions of this work are as follows:first,it advances the theory of self-consistent computational homogenization modeling based on the energy dissipation mechanisms of plastic strain rates and their gradients,along with the development of a rigorous multi-level finite element method(FE2)solution procedure;second,the proposed algorithm provides an efficient and accurate method for evaluating the time-dependent mechanical behavior of second-phase reinforced alloys under strain gradient effects,exploring how these effects vary with the strain rate,and investigating their potential interactions.展开更多
Studying the contribution of regional transport to ultrafine particles(UFPs)and the deposition effect of nanoscale particles in human respiratory system is conducive to exploring the impact of atmospheric particles on...Studying the contribution of regional transport to ultrafine particles(UFPs)and the deposition effect of nanoscale particles in human respiratory system is conducive to exploring the impact of atmospheric particles on the environment and human health.Based on the data set of number concentration spectrum in the particle size range of 5.6–560 nm in the spring of Hefei,the Yangtze River Delta region obtained by a fast mobility particle sizer,the explosive growth characteristics,potential source identification and deposition flux analysis of UFPs were systematically studied.The results showed that the frequency of new particle formation(NPF)events during spring was 31.5%.SO_(2) and O_(3) contribute to NPF events.Daytime,higher temperature,stronger solar radiation and lower humidity were more conducive to the explosive growth of UFPs.In addition,regional transport of pollutants from the cities around Hefei played an important role in the accumulation mode particles,which were mainly affected by the land-source air mass from northwest Jiangsu(23.64%)and the sea-source air mass from the Yellow Sea(23.99%).It was worth noting that approximately 10,406 ng of UFPs enters the human respiratory system every day.Themain deposition area of 5.6–560 nm nanoscale particles was alveolar,5.6–400 nm is more likely to be deposited on alveolar,while nanoscale particles with particle size between 400 and 560 nm is more likely to be deposited on head airways.This study identified the deposition risk of nanoscale particles in the respiratory system under different particle sizes.展开更多
Although the strengthening and grain refinement effects of TiB_(2) particles on aluminum alloys have been extensively studied,their influence on casting behavior remains relatively underexplored.In this study,the infl...Although the strengthening and grain refinement effects of TiB_(2) particles on aluminum alloys have been extensively studied,their influence on casting behavior remains relatively underexplored.In this study,the influence of different addition amounts of submicron TiB_(2) particles on the microstructure,casting performance,and mechanical properties of an Al-Cu(ZL205A)alloy was systematically investigated.The introduction of TiB_(2) particles leads to significant grain refinement,transforming the microstructure from coarse grains to fine equiaxed grains by providing additional nucleation sites and inhibiting grain growth.SEM and TEM analyses reveal that the added submicron TiB_(2) particles exhibit minimal effect on the distribution of intermetallic phases or precipitates.Casting performance,as evaluated by spiral fluidity and hot tearing tests,shows notable improvements with TiB_(2) additions.At a TiB_(2) content of 3wt.%,the fluidity length increases by 20%,and the hot tearing susceptibility coefficient decreases by 29%.These enhancements are mainly due to the refined grain structure and the formation of interdendritic bridging in TiB_(2)-reinforced alloys.However,the overall enahncement in casting properties shows little variation across the TiB_(2) additions from 0.2wt.% to 3wt.%.Mechanical testing shows that the highest hardness and strength are achieved with a 1wt.%addition of TiB_(2) particles,primarily attributed to refined grain size and reinforcement of the aluminum matrix.Based on these findings,a TiB_(2) particle content of 1wt.%is recommended for optimizing both the casting performance and mechanical properties of the ZL205A alloy.展开更多
Aerosol particle pollution has become an increasing serious environmental problem,and urban vegetation plays a long-lasting and positive role in mitigating it.This study compared the particle capture abilities of tree...Aerosol particle pollution has become an increasing serious environmental problem,and urban vegetation plays a long-lasting and positive role in mitigating it.This study compared the particle capture abilities of trees,shrubs,and herbs,and examined the compositions and influence of aerosol particles accumulated on leaf functional traits.Retained particles primarily contained Ca^(2+),K^(+),SO_(4)^(2-),NO_(3)^(-)and NH_(4)^(+),indicating their anthropogenic origins.The leathery-leaved tree Osmanthus fragrans and the papery-leaved herb Alternanthera sessilis demonstrated the higher competence in particle accumulation than other plants,and leaf morphologic structures(e.g.,leaf grooves,trichomes,waxy layers,and stomata characteristics)were closely associated with particle capture by plant species.Particle retention negatively impacted stomata,impeding photosynthesis,and reducing transpiration.In response to particle accumulation,plants tended to decrease specific leaf area and adjust stomatal conductance.Both growth form and leaf texture significantly influenced the particle capture abilities of different plant species.The substantial contribution of plants,particularly herbs in the lower vegetation strata,to particle removal should not be overlooked.Vegetation with a tree-shrub-herb configuration excels at particle capture,offering potential advantages in mitigating particle pollution and enhancing ecological benefits.展开更多
The effect of intermetallic particles on the corrosion of 6061 aluminum alloy and its coating used in semiconductor processing systems was systematically studied via liquid and gas experiments and micromorphology char...The effect of intermetallic particles on the corrosion of 6061 aluminum alloy and its coating used in semiconductor processing systems was systematically studied via liquid and gas experiments and micromorphology characterization.The results revealed that a huge difference of corrosion resistance between imported and domestic 6061 aluminum alloys in HCl solution and gas acid mist experiments mainly was attributed to the different size and amount of Al_(15)(Fe,Mn)_(3)Si_(2).The corrosion resistance of domestic 6061 alloy in dry/wet semiconductor electronic special gas environments was worse than that of imported aluminum alloy,and there are great differences in the corrosion mechanism of 6061 alloy caused by the second phase in the two dry/wet environments.And the corrosion resistance of the hard anodized alumina film was closely related to the microscopic morphology of holes.The vertical and elongatedα-Al_(15)(Mn,Fe)_(3)Si_(2) phase was formed in the rolled aluminum alloy that has been rolled perpendicular to the surface of the substrate.Compared to the horizontal long hole,the longitudinal long holes generated by the verticalα-Al_(15)(Mn,Fe)_(3)Si_(2) phase will enable the corrosive medium to reach the substrate rapidly,which significantly weakens the corrosion resistance of the hard anodized film.展开更多
文摘In this study, the microstructure and second-phase particles in yttrium (0.05 wt.%and 0.8 wt.%) bearing Fe-10Ni-7Mn steels were characterized. The results of X-ray analysis as well as scanning electron microscopy coupled with energy dispersive X-ray spectroscopy indicated the formation of (Fe, Ni, Mn)17Y2 precipitates with hexagonal structure in a Fe-10Ni-7Mn-0.8Y (wt.%) alloy. Lattice parameters of these precipitates were calculated as follows:a=0.8485 nm and c=0.8274 nm. Formation of Y2O3 sub-micron particles was also confirmed in both yttrium bearing steels via electrolytic phase extraction method. The effect of these precipitates on the prior austenite grain size was investigated. The results revealed that these precipitates had an effective role in controlling the prior austenite grain size.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Ministry of ScienceICT and Future Planning(MSIP,South Korea)(No.2019R1A2C1085272)+1 种基金by the Materials and Components Technology Development Program of the Ministry of TradeIndustry and Energy(MOTIE,South Korea)(No.20011091)。
文摘This study investigates the effects of fine and coarse undissolved particles in a billet of the Mg–7 Sn–1 Al–1 Zn(TAZ711)alloy on the dynamic recrystallization(DRX)behavior during hot extrusion at low and high temperatures and the resultant microstructure and mechanical properties of the alloy.To this end,partially homogenized(PH)and fully homogenized(FH)billets are extruded at temperatures of250 and 450°C.The PH billet contains fine and coarse undissolved Mg_(2) Sn particles in the interdendritic region and along the grain boundaries,respectively.The fine particles(<1μm in size)retard DRX during extrusion at 250°C via the Zener pinning effect,and this retardation causes a decrease in the area fraction of dynamically recrystallized(DRXed)grains of the extruded alloy.In addition,the inhomogeneous distribution of fine particles in the PH billet leads to the formation of a bimodal DRXed grain structure with excessively grown grains in particle-scarce regions.In contrast,in the FH billet,numerous nanosized Mg_(2) Sn precipitates are formed throughout the material during extrusion at 250°C,which,in turn,leads to the formation of small,uniform DRXed grains by the grain-boundary pinning effect of the precipitates.When the PH billet is extruded at the high temperature of 450°C,the retardation effect of the fine particles on DRX is weakened by their dissolution in theα-Mg matrix and the increased extent of thermally activated grain-boundary migration.In contrast,the coarse Mg_(2) Sn particles in the billet promote DRX during extrusion through the particle-stimulated nucleation phenomenon,which results in an increase in the area fraction of DRXed grains.At both low and high extrusion temperatures,the extruded material fabricated using the PH billet,which contains both fine and coarse undissolved particles,has a lower tensile strength than that fabricated using the FH billet,which is virtually devoid of second-phase particles.This lower strength of the former is attributed mainly to the larger grains and/or absence of nanosized M2 Sn precipitates in it.
基金financially supported by the National Key Research and Development Program of China(No 2016YFB0700505)the China’s State Grid Corporation of Science and Technology Projects(No.SGRI-WD71-13-002)+1 种基金the National Natural Science Foundation of China(Nos.51571020 and 51371030)the Nationa High Technology Research and Development Program of China(No.2015AA034201)
文摘The selective abnormal growth of Goss grains in magnetic sheets of Fe-3%Si (grade Hi-B) induced by second-phase particles (AlN and MnS) was studied using a modified Monte Carlo Ports model. The starting microstructures for the simulations were generated from electron backscatter diffraction (EBSD) orientation imaging maps of recrystallized samples. In the simulation, second-phase particles were assumed to be randomly distributed in the initial microstructures and the Zener drag effect of particles on Goss grain boundaries was assumed to be selectively invalid because of the unique properties of Goss grain boundaries. The simulation results suggest that normal growth of the matrix grains stagnates because of the pinning effect of particles on their boundaries. During the onset of abnormal grain growth, some Goss grains with concave boundaries in the initial microstructure grow fast abnormally and other Goss grains with convex boundaries shrink and eventually disappear.
文摘The structure and electric properties of the mixed conductors of Li_(1+x)V_3O_8(x=0.1) containing dispersed second-phase α-Al_2O_3 particles have been studied in the paper. The total conductivity of the specimen containing 6m/o α-Al_2O_3 is five or six times as much as that of pure Li_(1+x)V_3O_8 (x=0.1) at room temperature. By the analyses of NMR and ESR, it is known that at low temperature, the transport activation energy of Li^+ ions reduced, the transport frequency of Li^+ ions are speeded up and thus ionic conductivity increased in the specimens containing α-Al_2O_3 particles. At high temperature, diffusion effect of α-Al_2O_3 on electronic transport becomes great, the enhancement of ionic conductivity caused by α-Al_2O_3 doesn't make up the decrease of electronic conductivity caused by the diffusion effect, so that total conductivity of the specimens containing DSPP is lower than that of pure Li_(1+x)V_3O_8(x=0.1). As a result, DSPP mainly increases ionic conductivity of the mixed conductors at room temperature.
文摘Several alloying elements involving Zr, Cu, Zn and Sc were added to Al-Mg sheet alloys in order to obtain an excellent combination of high strength and good high-temperature formability. Microstruc-tural examination showed that coarse intermetallic particles were formed in the microstructure and their amounts changed with variations of the alloying elements. During warm rolling of thermome-chanical treatments prior to warm deformation, the coarse particles initiated cracks, decreasing the warm formability. For healing the crack damage and further improving the warm formability, a process of hot isothermal press was developed and optimized to the sheet alloys. With this process, the biaxial stretch formability at 350℃ was improved by 22% for an aluminum alloy containing a large amount of coarse particles.
基金The authors express their gratitude to the National Science Foundation for Young Scientists of China(51704021)Key Research and Development Projects of Shandong Province(2021CXGC010)+1 种基金Key Research and Development Projects of Sichuan Province(021YFG0114)Fundamental Research Funds for the Central Universities(FRF-IDRY-20-015,FRF-TP-20-004A3,FRF-TP-19-030A2,and FRF-TP-16-079A1)for their kind financial support.
文摘Heat-resistant alloys with excellent mechanical properties are widely used in various fields,and further improvement in their properties is essential to meet the requirements in new-generation advanced supercritical boilers,nuclear reactors,superheaters,and other new materials applications.To effectively enhance the comprehensive performance of heat-resistant alloys,second-phase particle strengthening has been widely studied,and in the face of different service envi-ronments of advanced heat-resistant steels,the selection of suitable second-phase particles is essential to maximize the performance of these alloys.To this end,three major types of reinforcing phases in heat-resistant alloys such as carbides,rare earth oxides,and intermetallic compounds are summarized.A comparative analysis of the precipitation behavior of the reinforcing phases with different types as well as the risks and means of controlling their use in service,is presented.Key parameters for the application of various types of second-phase particles in heat-resistant alloys are provided to support the design and preparation of new ultrahigh-performance heat-resistant alloys.
基金Project(2021YFC2801904)supported by the National Key R&D Program of ChinaProject(KY10100230067)supported by the Basic Product Innovation Research Project,China+3 种基金Projects(52271130,52305344)supported by the National Natural Science Foundation of ChinaProjects(ZR2020ME017,ZR2020QE186)supported by the Natural Science Foundation of Shandong Province,ChinaProjects(AMGM2024F11,AMGM2021F10,AMGM2023F06)supported by the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai,ChinaProject(KY90200210015)supported by Leading Scientific Research Project of China National Nuclear Corporation(CNNC),China。
文摘WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness.
基金supported by the National Key Research and Development Program of China(No.2019YFC1804202)the National Natural Science Foundation of China(Nos.22020102004 and 22125603)+1 种基金Tianjin Municipal Science and Technology Bureau(No.21JCZDJC00280)the Fundamental Research Funds for the Central Universities,and the Ministry of Education of China(No.T2017002).
文摘Polybrominated biphenyl ethers(PBDEs)and polycyclic aromatic hydrocarbons(PAHs)are commonly detected contaminants at e-waste recycling sites.Against the conventional wisdom that PBDEs and PAHs are highly immobile and persist primarily in shallowsurface soils,increasing evidence shows that these compounds can leach into the groundwater.Herein,we compare the leachabilities of PBDEs vs.PAHs from contaminated soils collected at an e-waste recycling site in Tianjin,China.Considerable amounts of BDE-209(0.3–2 ng/L)and phenanthrene(42–106 ng/L),the most abundant PBDE and PAH at the site,are detected in the effluents of columns packed with contaminated soils,with the specific concentrations varying with hydrodynamic and solution chemistry conditions.Interestingly,the leaching potential of BDE-209 appears to be closely related to the release of colloidal mineral particles,whereas the leachability of phenanthrene correlates well with the concentration of dissolved organic carbon in the effluent,but showing essentially no correlation with the concentration of mineral particles.The surprisingly different trends of the leachability observed between BDE-209 and phenanthrene is counterintuitive,as PBDEs and PAHs often co-exist at e-waste recycling sites(particularly at the sites wherein incineration is being practiced)and share many similarities in terms of physicochemical properties.One possible explanation is that due to its extremely low solubility,BDE-209 predominantly exists in free-phase(i.e.,as solid(nano)particles),whereas the more soluble phenanthrene is mainly sorbed to soil organic matter.Findings in this study underscore the need to better understand the mobility of highly hydrophobic organic contaminants at contaminated sites for improved risk management.
基金Amirkabir University of Technology(AUT)Sharif University of TechnologyNational Elites Foundation of Iran for their support during this research.
文摘An improved method of friction stir processing(FSP)was introduced for the processing of AZ91 magnesium alloy specimens.This novel process was called“friction stir vibration processing(FSVP)”.FSP and FSVP were utilized to develop surface composites on the studied alloy while SiC nanoparticles were applied as second-phase particles.The effect of reinforcing SiC particles with different sizes(30 and 300 nm)on different characteristics of the composite surface was studied.The results indicated that the microstructure was refined and mechanical properties such as hardness,ductility,and strength were enhanced as FSVP was applied.Furthermore,it was concluded that the effect of reinforcing particles with a size of 30 nm on the microstructure and mechanical properties of the surface composite was more obvious than that of particles with a size of 300 nm.It was also found that mechanical properties and microstructure of FSV-processed specimens were improved as vibration frequency increased.The hardness value in the stir zone was about 157 MPa for the FSV-processed specimen at a vibration frequency of 50 Hz,while this value was around 116 MPa for the FSV-processed specimen at a vibration frequency of 25 Hz.
基金financially supported by the National Natural Science Foundation of China(No.51771125)the Sichuan Province Science and Technology Support Program(No.2020YFG0102)。
文摘Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid route and the solid-solid route.However,the formation of DCN structures in steel requires long processes and complex steps.So far,obtaining steel with coherent particle enhancement in a short time remains a bottleneck,and some necessary steps remain unavoidable.Here,we show a high-efficiency liquid-phase refining process reinforced by a dynamic magnetic field.Ti-Y-Mn-O particles had an average size of around(3.53±1.21)nm and can be obtained in just around 180 s.These small nanoparticles were coherent with the matrix,implying no accumulated dislocations between the particles and the steel matrix.Our findings have a potential application for improving material machining capacity,creep resistance,and radiation resistance.
基金supported by the National Natural Science Foundation of China (Nos.42022050 and 42277088)the Guangdong Basic and Applied Basic Research Fund Committee (Nos.2021A1515011248 and 2023A1515012010)the Guangdong Foundation for the Program of Science and Technology Research (No.2020B1212060053).
文摘Thermodynamic modeling is still themostwidely usedmethod to characterize aerosol acidity,a critical physicochemical property of atmospheric aerosols.However,it remains unclear whether gas-aerosol partitioning should be incorporated when thermodynamicmodels are employed to estimate the acidity of coarse particles.In this work,field measurements were conducted at a coastal city in northern China across three seasons,and covered wide ranges of temperature,relative humidity and NH_(3) concentrations.We examined the performance of different modes of ISORROPIA-II(a widely used aerosol thermodynamic model)in estimating aerosol acidity of coarse and fine particles.The M0 mode,which incorporates gas-phase data and runs the model in the forward mode,provided reasonable estimation of aerosol acidity for coarse and fine particles.Compared to M0,the M1 mode,which runs the model in the forward mode but does not include gas-phase data,may capture the general trend of aerosol acidity but underestimates pH for both coarse and fine particles;M2,which runs the model in the reverse mode,results in large errors in estimated aerosol pH for both coarse and fine particles and should not be used for aerosol acidity calculations.However,M1 significantly underestimates liquid water contents for both fine and coarse particles,while M2 provides reliable estimation of liquid water contents.In summary,our work highlights the importance of incorporating gas-aerosol partitioning when estimating coarse particle acidity,and thus may help improve our understanding of acidity of coarse particles.
基金supported by the National Natural Science Foundation of China(No.11904208the Project of Shandong Province Higher Educational Science and Technology Program(No.J18KB098).
文摘The development of efficient,cost-effective catalysts for the oxygen reduction reaction(ORR)is crucial for advancing zinc-air batteries(ZABs).This study presents Fe_(4)N nanoparticles embedded in N-doped carbon nanofibers(Fe_(4)N@CNF-NH_(3))as a highly efficient ORR catalyst.The Fe_(4)N@CNF-NH_(3)catalyst was synthesized via electrospinning,followed by high-temperature annealing in an NH_(3)atmosphere.This electrospinning technique ensured the uniform dispersion of Fe_(4)N nanoparticles within the carbon nanofibers(CNFs),preventing agglomeration and enhancing the availability of active sites.Structural and morphological analyses confirmed the formation of Fe_(4)N nanoparticles with a lattice spacing of 0.213 nm,surrounded by graphitic carbon structures that significantly improved the material’s conductivity and stability.Electrochemical tests demonstrated that Fe_(4)N@CNF-NH_(3)exhibited superior ORR activity,with a half-wave potential of 0.904 V,surpassing that of commercial Pt/C catalysts.This enhanced performance is attributed to the synergistic effects of Fe_(4)N nanoparticles and the conductive carbon framework,which facilitated efficient charge and mass transfer during the ORR process.Density functional theory calculations further revealed that the introduction of CNFs positively shifted the d-band center of Fe atoms,optimizing oxygen intermediate adsorption and lowering energy barriers for ORR.The practical applicability of Fe_(4)N@CNF-NH_(3)was validated through the assembly of both liquid-state and solid-state ZABs,which exhibited excellent cycling stability,high power density,and superior discharge voltage.This study offers a promising strategy for developing highly active,low-cost ORR catalysts and advances the potential for the commercialization of ZABs.
文摘The morphological description of wear particles in lubricating oil is crucial for wear state monitoring and fault diagnosis in aero-engines.Accurately and comprehensively acquiring three-dimensional(3D)morphological data of these particles has became a key focus in wear debris analysis.Herein,we develop a novel multi-view polarization-sensitive optical coherence tomography(PS-OCT)method to achieve accurate 3D morphology detection and reconstruction of aero-engine lubricant wear particles,effectively resolving occlusion-induced information loss while enabling material-specific characterization.The particle morphology is captured by multi-view imaging,followed by filtering,sharpening,and contour recognition.The method integrates advanced registration algorithms with Poisson reconstruction to generate high-precision 3D models.This approach not only provides accurate 3D morphological reconstruction but also mitigates information loss caused by particle occlusion,ensuring model completeness.Furthermore,by collecting polarization characteristics of typical metals and their oxides in aero-engine lubricants,this work comprehensively characterizes and comparatively analyzes particle polarization properties using Stokes vectors,polarization uniformity,and cumulative phase retardation,and obtains a three-dimensional model containing polarization information.Ultimately,the proposed method enables multidimensional information acquisition for the reliable identification of abrasive particle types.
基金supported by National Natural Science Foundation of China(No.22278352)National Key Research and Development Program of China(No.2021YFC3001100)+3 种基金Longyan City Science and Technology Plan Project(No.2020LYF17043)Longyan City Science and Technology Plan Project(No.2020LYF17042)ARC Discovery Project(No.DP200101238)and NHMRC Investigator Grant(No.APP2008698)supported by the Harvard Materials Research Science and Engineering Center(No.DMR2011754)。
文摘Biocompatible amphiphilic nanoparticles(NPs)with tunable particle morphology and surface property are important for their applications as functional materials.However,previously developed methods to prepare amphiphilic NPs generally involve several steps,especially an additional step for surface modification,greatly hindering their largescale production and widespread applications.Here,a versatile one-step strategy is developed to prepare biocompatible amphiphilic dimer NPs with tunable particle morphology and surface property.The amphiphilic dimer NPs,which consist of a hydrophobic shellac bulb and a hydrophilic poly(lactic acid)(PLA)bulb with PLA-poly(ethylene glycol)(PEG)on the bulb surface,are prepared in a single step by controlled co-precipitation and self-assembly.Amphiphilic PLA-PEG/shellac dimer NPs demonstrate excellent tunability in particle morphology,thus showing good performances in controlling the interfacial curvature and emulsion type.In addition,temperatureresponsive PLA-poly(N-isopropyl acrylamide)(PNIPAM)/shellac dimer NPs are prepared following the same method and emulsions stabilized by them show temperature-triggered response.The applications of PLA-PEG-folic acid(FA)/shellac dimer NPs for drug delivery have also been demonstrated,which show a very good performance.The strategy of preparing the dimer NPs is green,scalable,facile and versatile,which provides a good platform for the design of dimer NPs with tunable particle morphology and surface property for diverse applications.
文摘We review a 3d quantum gravity model, which incorporates massive spinning fields into the Euclidean path integral in a Chern-Simons formulation. Fundamental matter as defined in our previous preon model is recapped. Both quantum gravity and the particle model are shown to be derivable from the supersymmetric 3d Chern-Simons action. Forces-Matter unification is achieved.
基金Project supported by the National Natural Science Foundation of China(Nos.11922206,11702089,12272132)the Postgraduate Scientific Research Innovation Project of Hunan Province(No.CX20240388)。
文摘The acuurate prediction of the time-dependent mechanical behavior and deformation mechanisms of second-phase reinforced alloys under size effects is critical for the development of high-strength ductile metals and alloys for dynamic applications.However,solving their responses using high-fidelity numerical methods is computationally expensive and,in many cases,impractical.To address this issue,a dual-scale incremental variational formulation is proposed that incorporates the influence of plastic gradients on plastic evolution characteristics,integrating a strain-rate-dependent strain gradient plasticity model and including plastic gradients in the inelastic dissipation potential.Subsequently,two minimization problems based on the energy dissipation mechanisms of strain gradient plasticity,corresponding to the macroscopic and microscopic structures,are solved,leading to the development of a homogenization-based dual-scale solution algorithm.Finally,the effectiveness of the variational model and tangent algorithm is validated through a series of numerical simulations.The contributions of this work are as follows:first,it advances the theory of self-consistent computational homogenization modeling based on the energy dissipation mechanisms of plastic strain rates and their gradients,along with the development of a rigorous multi-level finite element method(FE2)solution procedure;second,the proposed algorithm provides an efficient and accurate method for evaluating the time-dependent mechanical behavior of second-phase reinforced alloys under strain gradient effects,exploring how these effects vary with the strain rate,and investigating their potential interactions.
基金supported by the National Natural Science Foundation of China(Nos.U21A2027,42207113,and 42407141)。
文摘Studying the contribution of regional transport to ultrafine particles(UFPs)and the deposition effect of nanoscale particles in human respiratory system is conducive to exploring the impact of atmospheric particles on the environment and human health.Based on the data set of number concentration spectrum in the particle size range of 5.6–560 nm in the spring of Hefei,the Yangtze River Delta region obtained by a fast mobility particle sizer,the explosive growth characteristics,potential source identification and deposition flux analysis of UFPs were systematically studied.The results showed that the frequency of new particle formation(NPF)events during spring was 31.5%.SO_(2) and O_(3) contribute to NPF events.Daytime,higher temperature,stronger solar radiation and lower humidity were more conducive to the explosive growth of UFPs.In addition,regional transport of pollutants from the cities around Hefei played an important role in the accumulation mode particles,which were mainly affected by the land-source air mass from northwest Jiangsu(23.64%)and the sea-source air mass from the Yellow Sea(23.99%).It was worth noting that approximately 10,406 ng of UFPs enters the human respiratory system every day.Themain deposition area of 5.6–560 nm nanoscale particles was alveolar,5.6–400 nm is more likely to be deposited on alveolar,while nanoscale particles with particle size between 400 and 560 nm is more likely to be deposited on head airways.This study identified the deposition risk of nanoscale particles in the respiratory system under different particle sizes.
文摘Although the strengthening and grain refinement effects of TiB_(2) particles on aluminum alloys have been extensively studied,their influence on casting behavior remains relatively underexplored.In this study,the influence of different addition amounts of submicron TiB_(2) particles on the microstructure,casting performance,and mechanical properties of an Al-Cu(ZL205A)alloy was systematically investigated.The introduction of TiB_(2) particles leads to significant grain refinement,transforming the microstructure from coarse grains to fine equiaxed grains by providing additional nucleation sites and inhibiting grain growth.SEM and TEM analyses reveal that the added submicron TiB_(2) particles exhibit minimal effect on the distribution of intermetallic phases or precipitates.Casting performance,as evaluated by spiral fluidity and hot tearing tests,shows notable improvements with TiB_(2) additions.At a TiB_(2) content of 3wt.%,the fluidity length increases by 20%,and the hot tearing susceptibility coefficient decreases by 29%.These enhancements are mainly due to the refined grain structure and the formation of interdendritic bridging in TiB_(2)-reinforced alloys.However,the overall enahncement in casting properties shows little variation across the TiB_(2) additions from 0.2wt.% to 3wt.%.Mechanical testing shows that the highest hardness and strength are achieved with a 1wt.%addition of TiB_(2) particles,primarily attributed to refined grain size and reinforcement of the aluminum matrix.Based on these findings,a TiB_(2) particle content of 1wt.%is recommended for optimizing both the casting performance and mechanical properties of the ZL205A alloy.
基金supported by the National Natural Science Foundation of China(No.31700475).
文摘Aerosol particle pollution has become an increasing serious environmental problem,and urban vegetation plays a long-lasting and positive role in mitigating it.This study compared the particle capture abilities of trees,shrubs,and herbs,and examined the compositions and influence of aerosol particles accumulated on leaf functional traits.Retained particles primarily contained Ca^(2+),K^(+),SO_(4)^(2-),NO_(3)^(-)and NH_(4)^(+),indicating their anthropogenic origins.The leathery-leaved tree Osmanthus fragrans and the papery-leaved herb Alternanthera sessilis demonstrated the higher competence in particle accumulation than other plants,and leaf morphologic structures(e.g.,leaf grooves,trichomes,waxy layers,and stomata characteristics)were closely associated with particle capture by plant species.Particle retention negatively impacted stomata,impeding photosynthesis,and reducing transpiration.In response to particle accumulation,plants tended to decrease specific leaf area and adjust stomatal conductance.Both growth form and leaf texture significantly influenced the particle capture abilities of different plant species.The substantial contribution of plants,particularly herbs in the lower vegetation strata,to particle removal should not be overlooked.Vegetation with a tree-shrub-herb configuration excels at particle capture,offering potential advantages in mitigating particle pollution and enhancing ecological benefits.
基金financially supported by the Program of the National Natural Science Foundation of China(Grant No.52371055)the Young Elite Scientist Sponsorship Program Cast(Grant No.YESS20200139)the Basic Scientific Research Project of Liaoning Provincial Department of Education(Grant No.JYTMS20230618)。
文摘The effect of intermetallic particles on the corrosion of 6061 aluminum alloy and its coating used in semiconductor processing systems was systematically studied via liquid and gas experiments and micromorphology characterization.The results revealed that a huge difference of corrosion resistance between imported and domestic 6061 aluminum alloys in HCl solution and gas acid mist experiments mainly was attributed to the different size and amount of Al_(15)(Fe,Mn)_(3)Si_(2).The corrosion resistance of domestic 6061 alloy in dry/wet semiconductor electronic special gas environments was worse than that of imported aluminum alloy,and there are great differences in the corrosion mechanism of 6061 alloy caused by the second phase in the two dry/wet environments.And the corrosion resistance of the hard anodized alumina film was closely related to the microscopic morphology of holes.The vertical and elongatedα-Al_(15)(Mn,Fe)_(3)Si_(2) phase was formed in the rolled aluminum alloy that has been rolled perpendicular to the surface of the substrate.Compared to the horizontal long hole,the longitudinal long holes generated by the verticalα-Al_(15)(Mn,Fe)_(3)Si_(2) phase will enable the corrosive medium to reach the substrate rapidly,which significantly weakens the corrosion resistance of the hard anodized film.