This paper presents a study on the motion response of a tension-leg platform(TLP) under first-and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave fo...This paper presents a study on the motion response of a tension-leg platform(TLP) under first-and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function(QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.展开更多
-In this paper, an analytical solution in the outer region of finite water depth is derived for the second-order diffraction potential, which gives a clear physical meaning of the wave transmission and reflection char...-In this paper, an analytical solution in the outer region of finite water depth is derived for the second-order diffraction potential, which gives a clear physical meaning of the wave transmission and reflection characteristics in the far field. A numerical method-simple Green's function technique-for calculating the second-order diffraction potential in the inner region is also described. Numerical results are provided for the second-order wave forces on a semi-submerged cylinder. It is found that the contribution of second-order diffraction potential to second-order wave forces is important. The effect of water depth and submerged depth on the wave force is also discussed.展开更多
A numerical model of wave force upon continuous cylinder structures with a large diameter using the boundary element method (BEM) is presented. A numerical model of reflecting wave upon continuous cylinders was establ...A numerical model of wave force upon continuous cylinder structures with a large diameter using the boundary element method (BEM) is presented. A numerical model of reflecting wave upon continuous cylinders was established on the basis of linear wave theory.The fundamental solution to the Helmholtz equation within an infinite strip area that explicitly satisfies two infinite parallel boundaries is used together with Radiation condition rather than the solution of an infinite area.According to the proposed theory and method,the computer programs have been composed in Visual C ++ Development Studio.Several examples show that the technique and its program are feasible and efficient.And the wave forces upon continuous cylinders can be decreased by as much as 14%~24% under a ratio of D/L= 0.09~0.19 compared with the square caissons.展开更多
The results of design and experiment of a submerged semi-circular breakwater at the Yangtze estuary show that the submerged structure will be unsafe when the general empirical wave force formula for semi-circular brea...The results of design and experiment of a submerged semi-circular breakwater at the Yangtze estuary show that the submerged structure will be unsafe when the general empirical wave force formula for semi-circular breakwater is used in design. Therefore, a new calculation method for the wave forces acting on a submerged semi-circular structure is given in this paper, in which the wave force acting on the inside circumference of semi-circular arch is included, and the phase modification coefficient in the general empirical formula is adjusted as well. The new wave force calculation method has been Verified by the results of seven related physical model tests and adopted in the design of the south esturary jetty of the first stage project of Deep Channel Improvement Project of the Yangtze River Estuary, the total jetty length being 17.5 km.展开更多
Numerical simulations are carried out for wave action on a submerged horizontal circular cylinder by means of a viscous fluid model, and it is focused on the examination of the discrepancies between the viscous fluid ...Numerical simulations are carried out for wave action on a submerged horizontal circular cylinder by means of a viscous fluid model, and it is focused on the examination of the discrepancies between the viscous fluid results and the potential flow solutions. It is found that the lift force resulted from rotational flow on the circular cylinder is always in anti-phase with the inertia force and induces the discrepancies between the results. The influence factors on the magnitude of the lift force, especially the correlation between the stagnation-point position and the wave amplitude, and the effect of the vortex shedding are investigated by further examination on the flow fields around the cylinder. The viscous numerical calculations at different wave frequencies showed that the wave frequency has also significant influence on the wave forces. Under higher frequency and larger amplitude wave action, vortex shedding from the circular cylinder will appear and influence the wave forces on the cylinder substantially.展开更多
For the computation of wave forces on structures, a B-spline expansion is applied to discretize the body surface, and represent the velocity potentials on the body surface. The expansion coefficients for the body geom...For the computation of wave forces on structures, a B-spline expansion is applied to discretize the body surface, and represent the velocity potentials on the body surface. The expansion coefficients for the body geometry are determined by the Least Square Method, and the coefficients for velocity potentials by the Galerkin method. The method can give continuous description of velocity potentials and their derivatives on the whole smooth body surface. The method has been implemented, and numerical results show that the method gives very accurate results and its convergence is fast.展开更多
A time-domain method is applied to simulate nonlinear wave diffraction around a surface piercing 3-D arbitrary body. The method involves the application of Taylor series expansions and the use of perturbation procedur...A time-domain method is applied to simulate nonlinear wave diffraction around a surface piercing 3-D arbitrary body. The method involves the application of Taylor series expansions and the use of perturbation procedure to establish the corresponding boundary value problems with respect to a time-independent fluid domain. A boundary element method based on B-spline expansion is used to calculate the wave field at each time step, and the free surface boundary condition is satisfied to the second order of wave steepness by a numerical integration in time. An artificial damping layer is adopted on the free surface for the removal of wave reflection from the outer boundary. As an illustration, the method is used to compute the second-order wave forces and run-up on a surface-piercing circular cylinder. The present method is found to be accurate, computationally efficient, and numerically stable.展开更多
The reflection coefficient and the total horizontal forces of regular waves acting on theperforated caisson are experimentally investigated. The empirical relationship between reflection coefficient and the ratio of t...The reflection coefficient and the total horizontal forces of regular waves acting on theperforated caisson are experimentally investigated. The empirical relationship between reflection coefficient and the ratio of the total horizontal forces acting on the perforated caisson to those on solid vertical walls with the relative chamber width, relative water depth and porosity of perforated wall, etc. are given. Moreover, the results of the ratio of the total horizontal forces are also compared with formulas given by Chinese Harbour Design Criteria and Takahashi, which may be useful for the practical engineering application.展开更多
Based on model tests, the lift and resultant forces on small square cylinders caused by waves (regular and irregular) and currents are analyzed in this paper. The lift and resultant force coefficients CL and Cf relate...Based on model tests, the lift and resultant forces on small square cylinders caused by waves (regular and irregular) and currents are analyzed in this paper. The lift and resultant force coefficients CL and Cf related to KC number and the effect of direction of wave propagation are also given, which may be useful for practical engineering application.展开更多
A complete semi-analytical solution is obtained for second-order diffraction of plane bichromatic waves by a fixed truncated circular column.The fluid domain is divided into interior and exterior regions.In the exteri...A complete semi-analytical solution is obtained for second-order diffraction of plane bichromatic waves by a fixed truncated circular column.The fluid domain is divided into interior and exterior regions.In the exterior region,the second-order velocity potential is expressed in terms of‘locked-wave’and‘free-wave’ components,both are solved using Fourier and eigenfunction expansions.The re- sulting‘locked wave’potential is expressed by one-dimensional Green's integrals with oscillating integrands.In order to increase computational efficiency,the far-field part of the integrals are carried out analytically.Solutions in both regions are matched on the interface by the potential and its normal derivative continuity conditions.Based on the present approach,the sum-and difference-frequency potentials are efficiently evaluated and are used to generate the quadratic transfer functions which correlates the incident wave spectrum with second-order forcing spectrum on the column.The sum-frequency QTFs for a TLP column are present,which are compared for some frequency pairs with those from a fully numerical procedure.Satisfactory agreement has been obtained.QTF spectra for a case study TLP column,generated using the semi-analytical solution are presented.Also given are the results for nonlinear wave field around the column.展开更多
A 2-D time-domain numerical coupled model is developed to obtain an efficient method for nonlinear wave forces on a fixed box-shaped ship in a harbor. The domain is divided into an inner domain and an outer domain. Th...A 2-D time-domain numerical coupled model is developed to obtain an efficient method for nonlinear wave forces on a fixed box-shaped ship in a harbor. The domain is divided into an inner domain and an outer domain. The inner domain is the area beneath the ship and the flow is described by the simplified Euler equations. The other area is the outer domain and the flow is defined by the higher-order Boussinesq equations in order to consider the nonlinearity of the wave motions. Along the interface boundaries between the inner domain and the outer domain, the volume flux is assumed to be continuous and the wave pressures are equal. Relevant physical experiment is conducted to validate the present model. It is shown that the numerical results agree with the experimental data. Compared with the coupled model with the flow in the inner domain governed by the Laplace equation, the present coupled model is more efficient and its solution procedure is more simple, which is particularly useful for the study on the effect of the nonlinear wave forces on a fixed box-shaped ship in a large harbor.展开更多
-Based on the extended Morison Equation and model tests, the in-line forces on small square cylinders caused by waves (regular and irregular) and currents are analyzed in detail in this paper. The hydrodynamic coeffic...-Based on the extended Morison Equation and model tests, the in-line forces on small square cylinders caused by waves (regular and irregular) and currents are analyzed in detail in this paper. The hydrodynamic coefficient CD and Cu related to KC number and the effect of direction of wave incidence are also given, which can be used in engineering practice.展开更多
In this paper, a numerical model is established for estimating the wave forces on a submerged horizontal circular cylinder. For predicting the wave motion, a set of two dimensional Navier Stokes equations is solved ...In this paper, a numerical model is established for estimating the wave forces on a submerged horizontal circular cylinder. For predicting the wave motion, a set of two dimensional Navier Stokes equations is solved numerically with a finite element method. In order to track the moving non linear wave surface boundary, the Navier Stokes equations are discretized in a moving mesh system. After each computational time step, the mesh is modified according to the changed wave surface boundary. In order to stabilize the numerical procedure, a three step finite element method is applied in the time integration. The water sloshing in a tank and wave propagation over a submerged bar are simulated for the first time to validate the present model. The computational results agree well with the analytical solution and the experimental data. Finally, the model is applied to the simulation of interaction between waves and a submerged horizontal circular cylinder. The effects of the KC number and the cylinder depth on the wave forces are studied.展开更多
Wave forces on two side-by-side boxes in close proximity under wave actions were analyzed using the OpenFOAM package.The upstream box heaved freely under wave actions,whereas the downstream box remained fixed.For comp...Wave forces on two side-by-side boxes in close proximity under wave actions were analyzed using the OpenFOAM package.The upstream box heaved freely under wave actions,whereas the downstream box remained fixed.For comparison,a configuration in which both boxes were fixed was also considered.The effects of the heave motion of the upstream box on the wave loads,including the horizontal wave forces,vertical wave forces,and moments on the boxes,were the focus of this study.Numerical analyses showed that all frequencies at which the maximum horizontal wave forces,maximum vertical wave forces,and maximum moment appeared are dependent on the heave motion of the upstream box and that the effects of the heave motion on these frequencies are different.Furthermore,these frequencies were observed to deviate from the corresponding fluid resonant frequency.Moreover,the heave motion of the upstream box reduced the wave forces acting on both boxes and altered the variation trends of the wave forces with the incident wave frequency.展开更多
This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The...This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The density interface displacements and the velocity potentials were solved to the second-order by an expansion approach used by Longuet-Higgins (1963) and Dean (1979) in the study of random surface waves and by Song (2004) in the study of second- order random wave solutions for internal waves in a two-layer fluid. The obtained results indicate that the first-order solutions are a linear superposition of many wave components with different amplitudes, wave numbers and frequencies, and that the amplitudes of first-order wave components with the same wave numbers and frequencies between the adjacent density interfaces are modulated by each other. They also show that the second-order solutions consist of two parts: the first one is the first-order solutions, and the second one is the solutions of the second-order asymptotic equations, which describe the second-order nonlinear modification and the second-order wave-wave interactions not only among the wave components on same density interfaces but also among the wave components between the adjacent density interfaces. Both the first-order and second-order solutions depend on the density and depth of each layer. It is also deduced that the results of the present work include those derived by Song (2004) for second-order random wave solutions for internal waves in a two-layer fluid as a particular case.展开更多
In the present research, the study of Song (2004) for random interfacial waves in two-layer fluid is extended to the case of fluids moving at different steady uniform speeds. The equations describing the random displa...In the present research, the study of Song (2004) for random interfacial waves in two-layer fluid is extended to the case of fluids moving at different steady uniform speeds. The equations describing the random displacements of the density interface and the associated velocity potentials in two-layer fluid are solved to the second order, and the wave-wave interactions of the wave components and the interactions between the waves and currents are described. As expected, the extended solutions include those obtained by Song (2004) as one special case where the steady uniform currents of the two fluids are taken as zero, and the solutions reduce to those derived by Sharma and Dean (1979) for random surface waves if the density of the upper fluid and the current of the lower fluid are both taken as zero.展开更多
The nonlinear wave forces on vertical cylinders induced by freak wave trains were experimentally investigated. A series of freak wave trains with different wave steepness were modeled in a wave flume. The correspondin...The nonlinear wave forces on vertical cylinders induced by freak wave trains were experimentally investigated. A series of freak wave trains with different wave steepness were modeled in a wave flume. The corresponding wave forces on vertical cylinders of different diameters were measured. The experimental wave forces were also compared with the predicted results based on Morison formula. Particular attentions were paid to the effects of wave steepness on the dimensionless peak forces, asymmetry characteristics of the impact forces and high-frequency force components. Wavelet-based analysis methods were employed in revealing the local energy structures and quadratic phase coupling in the freak wave forces.展开更多
A three-step finite element method (FEM) together with Large Eddy Simulation (LES) is applied to incompressible turbulent flow around seabed pipelines at relatively high Reynolds numbers. Both two dimensional and thre...A three-step finite element method (FEM) together with Large Eddy Simulation (LES) is applied to incompressible turbulent flow around seabed pipelines at relatively high Reynolds numbers. Both two dimensional and three-dimensional numerical simulation is carried out to determine the three-dimensional effect. The results of numerical simulation agree quite well with the wave forces acting on pipeline models measured in physical model test.展开更多
A previous study (Song. 2004. Geophys Res Lett, 31 (15):L15302) of the second-order solutions for random interracial waves is extended in a constant depth, two-layer fluid system with a rigid lid is extended into...A previous study (Song. 2004. Geophys Res Lett, 31 (15):L15302) of the second-order solutions for random interracial waves is extended in a constant depth, two-layer fluid system with a rigid lid is extended into a more general case of two-layer fluid with a top free surface. The rigid boundary condition on the upper surface is replaced by the kinematical and dynamical boundary conditions of a free surface, and the equations describing the random displacements of free surface, density-interface and the associated velocity potentials in the two-layer fluid are solved to the second order using the same expansion technology as that of Song (2004. Geophys Res Lett, 31 (15):L15302). The results show that the interface and the surface will oscillate synchronously, and the wave fields to the first-order both at the free surface and at the density-interface are made up of a linear superposition of many waves with different amplitudes, wave numbers and frequencies. The second-order solutions describe the second-order wave-wave interactions of the surface wave components, the interface wave components and among the surface and the interface wave components. The extended solutions also include special cases obtained by Thorpe for progressive interracial waves (Thorpe. 1968a.Trans R Soc London, 263A:563~614) and standing interracial waves (Thorpe. 1968b. J Fluid Mech, 32:489-528) for the two-layer fluid with a top free surface. Moreover, the solutions reduce to those derived for random surface waves by Sharma and Dean (1979.Ocean Engineering Rep 20) if the density of the upper layer is much smaller than that of the lower layer.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51239008 and 51279130)
文摘This paper presents a study on the motion response of a tension-leg platform(TLP) under first-and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function(QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.
文摘-In this paper, an analytical solution in the outer region of finite water depth is derived for the second-order diffraction potential, which gives a clear physical meaning of the wave transmission and reflection characteristics in the far field. A numerical method-simple Green's function technique-for calculating the second-order diffraction potential in the inner region is also described. Numerical results are provided for the second-order wave forces on a semi-submerged cylinder. It is found that the contribution of second-order diffraction potential to second-order wave forces is important. The effect of water depth and submerged depth on the wave force is also discussed.
基金Supported by National Natural Science Foundation of China(No.5990 90 0 5) National High Performance Computing Foundation of
文摘A numerical model of wave force upon continuous cylinder structures with a large diameter using the boundary element method (BEM) is presented. A numerical model of reflecting wave upon continuous cylinders was established on the basis of linear wave theory.The fundamental solution to the Helmholtz equation within an infinite strip area that explicitly satisfies two infinite parallel boundaries is used together with Radiation condition rather than the solution of an infinite area.According to the proposed theory and method,the computer programs have been composed in Visual C ++ Development Studio.Several examples show that the technique and its program are feasible and efficient.And the wave forces upon continuous cylinders can be decreased by as much as 14%~24% under a ratio of D/L= 0.09~0.19 compared with the square caissons.
文摘The results of design and experiment of a submerged semi-circular breakwater at the Yangtze estuary show that the submerged structure will be unsafe when the general empirical wave force formula for semi-circular breakwater is used in design. Therefore, a new calculation method for the wave forces acting on a submerged semi-circular structure is given in this paper, in which the wave force acting on the inside circumference of semi-circular arch is included, and the phase modification coefficient in the general empirical formula is adjusted as well. The new wave force calculation method has been Verified by the results of seven related physical model tests and adopted in the design of the south esturary jetty of the first stage project of Deep Channel Improvement Project of the Yangtze River Estuary, the total jetty length being 17.5 km.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51490672 and 51761135011)the financial supports by the National Natural Science Foundation of China(Grant No.51490673)the Petro China Innovation Foundation(Grant No.2016D-5007-0601)
文摘Numerical simulations are carried out for wave action on a submerged horizontal circular cylinder by means of a viscous fluid model, and it is focused on the examination of the discrepancies between the viscous fluid results and the potential flow solutions. It is found that the lift force resulted from rotational flow on the circular cylinder is always in anti-phase with the inertia force and induces the discrepancies between the results. The influence factors on the magnitude of the lift force, especially the correlation between the stagnation-point position and the wave amplitude, and the effect of the vortex shedding are investigated by further examination on the flow fields around the cylinder. The viscous numerical calculations at different wave frequencies showed that the wave frequency has also significant influence on the wave forces. Under higher frequency and larger amplitude wave action, vortex shedding from the circular cylinder will appear and influence the wave forces on the cylinder substantially.
基金National Natural Science Foundation of China under the Grant No.19732004
文摘For the computation of wave forces on structures, a B-spline expansion is applied to discretize the body surface, and represent the velocity potentials on the body surface. The expansion coefficients for the body geometry are determined by the Least Square Method, and the coefficients for velocity potentials by the Galerkin method. The method can give continuous description of velocity potentials and their derivatives on the whole smooth body surface. The method has been implemented, and numerical results show that the method gives very accurate results and its convergence is fast.
基金The project was financially supported by the National Natural Science Foundation of China under the Grant No. 19732004 the National Science Fund for Distinguished Young Scholars under the Grant No. 50029002
文摘A time-domain method is applied to simulate nonlinear wave diffraction around a surface piercing 3-D arbitrary body. The method involves the application of Taylor series expansions and the use of perturbation procedure to establish the corresponding boundary value problems with respect to a time-independent fluid domain. A boundary element method based on B-spline expansion is used to calculate the wave field at each time step, and the free surface boundary condition is satisfied to the second order of wave steepness by a numerical integration in time. An artificial damping layer is adopted on the free surface for the removal of wave reflection from the outer boundary. As an illustration, the method is used to compute the second-order wave forces and run-up on a surface-piercing circular cylinder. The present method is found to be accurate, computationally efficient, and numerically stable.
基金The present work was financially supported by the Joint Fund of the National Natural Science Foundation of China the Hong Kong Science Research Bureau under contract No.49910161985 the Research Fund for the Development of Harbor Engineering Desig
文摘The reflection coefficient and the total horizontal forces of regular waves acting on theperforated caisson are experimentally investigated. The empirical relationship between reflection coefficient and the ratio of the total horizontal forces acting on the perforated caisson to those on solid vertical walls with the relative chamber width, relative water depth and porosity of perforated wall, etc. are given. Moreover, the results of the ratio of the total horizontal forces are also compared with formulas given by Chinese Harbour Design Criteria and Takahashi, which may be useful for the practical engineering application.
文摘Based on model tests, the lift and resultant forces on small square cylinders caused by waves (regular and irregular) and currents are analyzed in this paper. The lift and resultant force coefficients CL and Cf related to KC number and the effect of direction of wave propagation are also given, which may be useful for practical engineering application.
文摘A complete semi-analytical solution is obtained for second-order diffraction of plane bichromatic waves by a fixed truncated circular column.The fluid domain is divided into interior and exterior regions.In the exterior region,the second-order velocity potential is expressed in terms of‘locked-wave’and‘free-wave’ components,both are solved using Fourier and eigenfunction expansions.The re- sulting‘locked wave’potential is expressed by one-dimensional Green's integrals with oscillating integrands.In order to increase computational efficiency,the far-field part of the integrals are carried out analytically.Solutions in both regions are matched on the interface by the potential and its normal derivative continuity conditions.Based on the present approach,the sum-and difference-frequency potentials are efficiently evaluated and are used to generate the quadratic transfer functions which correlates the incident wave spectrum with second-order forcing spectrum on the column.The sum-frequency QTFs for a TLP column are present,which are compared for some frequency pairs with those from a fully numerical procedure.Satisfactory agreement has been obtained.QTF spectra for a case study TLP column,generated using the semi-analytical solution are presented.Also given are the results for nonlinear wave field around the column.
基金supported by the National Natural Science Foundation of China(Grant Nos.50809008 and59979002)the Hong Kong Research Council (HKU7171/06E)+1 种基金the Open Foundation of Hunan Province Key Lab-oratory of Water & Sediment Science and Water Hazard Prevention (Grant No.2008SS04)the Dalian Science and Technology Foundation (Grant No.2007J23JH027)
文摘A 2-D time-domain numerical coupled model is developed to obtain an efficient method for nonlinear wave forces on a fixed box-shaped ship in a harbor. The domain is divided into an inner domain and an outer domain. The inner domain is the area beneath the ship and the flow is described by the simplified Euler equations. The other area is the outer domain and the flow is defined by the higher-order Boussinesq equations in order to consider the nonlinearity of the wave motions. Along the interface boundaries between the inner domain and the outer domain, the volume flux is assumed to be continuous and the wave pressures are equal. Relevant physical experiment is conducted to validate the present model. It is shown that the numerical results agree with the experimental data. Compared with the coupled model with the flow in the inner domain governed by the Laplace equation, the present coupled model is more efficient and its solution procedure is more simple, which is particularly useful for the study on the effect of the nonlinear wave forces on a fixed box-shaped ship in a large harbor.
文摘-Based on the extended Morison Equation and model tests, the in-line forces on small square cylinders caused by waves (regular and irregular) and currents are analyzed in detail in this paper. The hydrodynamic coefficient CD and Cu related to KC number and the effect of direction of wave incidence are also given, which can be used in engineering practice.
文摘In this paper, a numerical model is established for estimating the wave forces on a submerged horizontal circular cylinder. For predicting the wave motion, a set of two dimensional Navier Stokes equations is solved numerically with a finite element method. In order to track the moving non linear wave surface boundary, the Navier Stokes equations are discretized in a moving mesh system. After each computational time step, the mesh is modified according to the changed wave surface boundary. In order to stabilize the numerical procedure, a three step finite element method is applied in the time integration. The water sloshing in a tank and wave propagation over a submerged bar are simulated for the first time to validate the present model. The computational results agree well with the analytical solution and the experimental data. Finally, the model is applied to the simulation of interaction between waves and a submerged horizontal circular cylinder. The effects of the KC number and the cylinder depth on the wave forces are studied.
基金the National Key Research and Development Program(Grant No.2017YFC1404200)the National Natural Science Foundation of China(Grant Nos.51911530205 and 51809039)+4 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20201455)the Natural Science Foundation of the Jiangsu Higher Education Institutions(Grant No.20KJD170005)the Qing Lan Project of Jiangsu Universities.This work is also partially supported by UK EPSRC(Grant No.EP/T026782/1)the Royal Academy of Engineering(Grant No.UKCIAPP/73)the Royal Society(Grant No.IEC\NSFC\181321).
文摘Wave forces on two side-by-side boxes in close proximity under wave actions were analyzed using the OpenFOAM package.The upstream box heaved freely under wave actions,whereas the downstream box remained fixed.For comparison,a configuration in which both boxes were fixed was also considered.The effects of the heave motion of the upstream box on the wave loads,including the horizontal wave forces,vertical wave forces,and moments on the boxes,were the focus of this study.Numerical analyses showed that all frequencies at which the maximum horizontal wave forces,maximum vertical wave forces,and maximum moment appeared are dependent on the heave motion of the upstream box and that the effects of the heave motion on these frequencies are different.Furthermore,these frequencies were observed to deviate from the corresponding fluid resonant frequency.Moreover,the heave motion of the upstream box reduced the wave forces acting on both boxes and altered the variation trends of the wave forces with the incident wave frequency.
基金Project supported by the National Science Fund for Distinguished Young Scholars (Grant No 40425015), the Cooperative Project of Chinese Academy Sciences and the China National 0ffshore oil Corporation ("Behaviours of internal waves and their roles on the marine structures") and the National Natural Science Foundation of China (Grant No10461005).
文摘This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The density interface displacements and the velocity potentials were solved to the second-order by an expansion approach used by Longuet-Higgins (1963) and Dean (1979) in the study of random surface waves and by Song (2004) in the study of second- order random wave solutions for internal waves in a two-layer fluid. The obtained results indicate that the first-order solutions are a linear superposition of many wave components with different amplitudes, wave numbers and frequencies, and that the amplitudes of first-order wave components with the same wave numbers and frequencies between the adjacent density interfaces are modulated by each other. They also show that the second-order solutions consist of two parts: the first one is the first-order solutions, and the second one is the solutions of the second-order asymptotic equations, which describe the second-order nonlinear modification and the second-order wave-wave interactions not only among the wave components on same density interfaces but also among the wave components between the adjacent density interfaces. Both the first-order and second-order solutions depend on the density and depth of each layer. It is also deduced that the results of the present work include those derived by Song (2004) for second-order random wave solutions for internal waves in a two-layer fluid as a particular case.
文摘In the present research, the study of Song (2004) for random interfacial waves in two-layer fluid is extended to the case of fluids moving at different steady uniform speeds. The equations describing the random displacements of the density interface and the associated velocity potentials in two-layer fluid are solved to the second order, and the wave-wave interactions of the wave components and the interactions between the waves and currents are described. As expected, the extended solutions include those obtained by Song (2004) as one special case where the steady uniform currents of the two fluids are taken as zero, and the solutions reduce to those derived by Sharma and Dean (1979) for random surface waves if the density of the upper fluid and the current of the lower fluid are both taken as zero.
基金financially supported by the National Natural Science Foundation of China(Grant No.51779141)the China Postdoctoral Science Foundation(Grant No.2018M630996)the State Key Laboratory of Ocean Engineering(Grant No.1710)
文摘The nonlinear wave forces on vertical cylinders induced by freak wave trains were experimentally investigated. A series of freak wave trains with different wave steepness were modeled in a wave flume. The corresponding wave forces on vertical cylinders of different diameters were measured. The experimental wave forces were also compared with the predicted results based on Morison formula. Particular attentions were paid to the effects of wave steepness on the dimensionless peak forces, asymmetry characteristics of the impact forces and high-frequency force components. Wavelet-based analysis methods were employed in revealing the local energy structures and quadratic phase coupling in the freak wave forces.
基金Part of results of a project financially supported by the State Key Laboratory of Coastal and Offshore Engineering of Dalian University of Technology
文摘A three-step finite element method (FEM) together with Large Eddy Simulation (LES) is applied to incompressible turbulent flow around seabed pipelines at relatively high Reynolds numbers. Both two dimensional and three-dimensional numerical simulation is carried out to determine the three-dimensional effect. The results of numerical simulation agree quite well with the wave forces acting on pipeline models measured in physical model test.
基金supported by the National Science Foundation for Distinguished Young Scholars of China under contract No.40425015the Cooperative Project of Chinese Academy Sciences and the China National 0ffshore 0il Corporation("Behaviours of internal waves and their roles on the marine stuctures").
文摘A previous study (Song. 2004. Geophys Res Lett, 31 (15):L15302) of the second-order solutions for random interracial waves is extended in a constant depth, two-layer fluid system with a rigid lid is extended into a more general case of two-layer fluid with a top free surface. The rigid boundary condition on the upper surface is replaced by the kinematical and dynamical boundary conditions of a free surface, and the equations describing the random displacements of free surface, density-interface and the associated velocity potentials in the two-layer fluid are solved to the second order using the same expansion technology as that of Song (2004. Geophys Res Lett, 31 (15):L15302). The results show that the interface and the surface will oscillate synchronously, and the wave fields to the first-order both at the free surface and at the density-interface are made up of a linear superposition of many waves with different amplitudes, wave numbers and frequencies. The second-order solutions describe the second-order wave-wave interactions of the surface wave components, the interface wave components and among the surface and the interface wave components. The extended solutions also include special cases obtained by Thorpe for progressive interracial waves (Thorpe. 1968a.Trans R Soc London, 263A:563~614) and standing interracial waves (Thorpe. 1968b. J Fluid Mech, 32:489-528) for the two-layer fluid with a top free surface. Moreover, the solutions reduce to those derived for random surface waves by Sharma and Dean (1979.Ocean Engineering Rep 20) if the density of the upper layer is much smaller than that of the lower layer.