期刊文献+
共找到8,059篇文章
< 1 2 250 >
每页显示 20 50 100
An improved convolution perfectly matched layer for elastic second-order wave equation 被引量:3
1
作者 Yang Ling-Yun Wu Guo-Chen +1 位作者 Li Qing-Yang Liang Zhan-Yuan 《Applied Geophysics》 SCIE CSCD 2021年第3期317-330,432,共15页
A convolution perfectly matched layer(CPML)can efficiently absorb boundary reflection in numerical simulation.However,the CPML is suitable for the first-order elastic wave equation and is difficult to apply directly t... A convolution perfectly matched layer(CPML)can efficiently absorb boundary reflection in numerical simulation.However,the CPML is suitable for the first-order elastic wave equation and is difficult to apply directly to the second-order elastic wave equation.In view of this,based on the first-order CPML absorbing boundary condition,we propose a new CPML(NCPML)boundary which can be directly applied to the second-order wave equation.We first systematically extend the first-order CPML technique into second-order wave equations,neglecting the space-varying characteristics of the partial damping coefficient in the complex-frequency domain,avoiding the generation of convolution in the time domain.We then transform the technique back to the time domain through the inverse Fourier transform.Numerical simulation indicates that the space-varying characteristics of the attenuation factor have little influence on the absorption effect and increase the memory at the same time.A number of numerical examples show that the NCPML proposed in this study is effective in simulating elastic wave propagation,and this algorithm is more efficient and requires less memory allocation than the conventional PML absorbing boundary. 展开更多
关键词 Convolutional perfectly matched layer absorbing boundary conditions second-order elastic wave equation numerical simulation
在线阅读 下载PDF
P-and S-wavefield simulations using both the firstand second-order separated wave equations through a high-order staggered grid finite-difference method
2
作者 Chao-ying Bai Xin Wang Cai-xia Wang 《Earthquake Science》 2013年第2期83-98,共16页
In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this... In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this, especially when the velocity field is complex. A useful approach in multi-component analysis and modeling is to directly solve the elastic wave equations for the pure P- or S-wavefields, referred as the separate elastic wave equa- tions. In this study, we compare two kinds of such wave equations: the first-order (velocity-stress) and the second- order (displacement-stress) separate elastic wave equa- tions, with the first-order (velocity-stress) and the second- order (displacement-stress) full (or mixed) elastic wave equations using a high-order staggered grid finite-differ- ence method. Comparisons are given of wavefield snap- shots, common-source gather seismic sections, and individual synthetic seismogram. The simulation tests show that equivalent results can be obtained, regardless of whether the first-order or second-order separate elastic wave equations are used for obtaining the pure P- or S-wavefield. The stacked pure P- and S-wavefields are equal to the mixed wave fields calculated using the corre- sponding first-order or second-order full elastic wave equations. These mixed equations are computationallyslightly less expensive than solving the separate equations. The attraction of the separate equations is that they achieve separated P- and S-wavefields which can be used to test the efficacy of wave decomposition procedures in multi-com- ponent processing. The second-order separate elastic wave equations are a good choice because they offer information on the pure P-wave or S-wave displacements. 展开更多
关键词 Finite-difference method Staggeredgrid First-order separate elastic wave equation second-order separate elastic wave equation Multiple arrival tracking
在线阅读 下载PDF
The Evolution Equation for Second-order Internal Solitary Waves in Stratified Fluids of Great Depth
3
作者 程友良 《Advances in Manufacturing》 SCIE CAS 1997年第2期130-134,共5页
By using perturbation methods, the evolution equation is derived for the second-order internal solitarywaves in stratified fluids of great depth, which is a kind of inhomogeneous linearized Belljamin-Ono equation.
关键词 internal solitary waves stratified fluid inhomogeneous linearized Benjamin-Ono equation
在线阅读 下载PDF
Anti-periodic solutions to a class of second-order evolution equations
4
作者 张莉娜 薛星美 《Journal of Southeast University(English Edition)》 EI CAS 2003年第4期432-436,共5页
In this paper we discuss the anti-periodic problem for a class of abstractnonlinear second-order evolution equations associated with maximal monotone operators in Hilbertspaces and give some new assumptions on operato... In this paper we discuss the anti-periodic problem for a class of abstractnonlinear second-order evolution equations associated with maximal monotone operators in Hilbertspaces and give some new assumptions on operators. We establish the existence and uniqueness ofanti-periodic solutions, which improve andgeneralize the results that have been obtained. Finally weillustrate the abstract theory by discussing a simple example of an anti-periodic problem fornonlinear partial differential equations. 展开更多
关键词 maximal monotone operator anti-periodic solution poincare inequality second-order evolution equations
在线阅读 下载PDF
In an Ocean or a River:Bilinear Auto-Backlund Transformations and Similarity Reductions on an Extended Time-Dependent(3+1)-Dimensional Shallow Water Wave Equation 被引量:1
5
作者 GAO Xin-yi 《China Ocean Engineering》 2025年第1期160-165,共6页
With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic... With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic computation,we find out,on one hand,a set of bilinear auto-Backlund transformations,which could connect certain solutions of that equation with other solutions of that equation itself,and on the other hand,a set of similarity reductions,which could go from that equation to a known ordinary differential equation.The results in this paper depend on all the oceanic variable coefficients in that equation. 展开更多
关键词 OCEAN RIVER extended time-dependent(3+1)-dimensional shallow water wave equation bilinear auto-Bäcklund transformation similarity reduction symbolic computation
在线阅读 下载PDF
On the monotonicity of limit wave speed to a perturbed gKdV equation
6
作者 WEN Zhen-shu SHI Tian-yu 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第1期207-212,共6页
This paper deals with the monotonicity of limit wave speed c0(h)to a perturbed g KdV equation.We show the decrease of c0(h)by combining the analytic method and the numerical technique.Our results solve a special case ... This paper deals with the monotonicity of limit wave speed c0(h)to a perturbed g KdV equation.We show the decrease of c0(h)by combining the analytic method and the numerical technique.Our results solve a special case of the open question presented by Yan et al.,and the method potentially provides a way to study the monotonicity of c0(h)for general m∈N^(+). 展开更多
关键词 the perturbed gKdV equation with m=5 traveling waves limit wave speed MONOTONICITY
在线阅读 下载PDF
Dynamical analysis and localized waves of the n-component nonlinear Schrödinger equation with higher-order effects
7
作者 Yu Lou Guoan Xu 《Chinese Physics B》 2025年第3期204-213,共10页
Under investigation is the n-component nonlinear Schrödinger equation with higher-order effects,which describes the ultrashort pulses in the birefringent fiber.Based on the Lax pair,the eigenfunction and generali... Under investigation is the n-component nonlinear Schrödinger equation with higher-order effects,which describes the ultrashort pulses in the birefringent fiber.Based on the Lax pair,the eigenfunction and generalized Darboux transformation are derived.Next,we construct several novel higher-order localized waves and classified them into three categories:(i)higher-order rogue waves interacting with bright/antidark breathers,(ii)higher-order breather fission/fusion,(iii)higherorder breather interacting with soliton.Moreover,we explore the effects of parameters on the structure,collision process and energy distribution of localized waves and these characteristics are significantly different from previous ones.Finally,the dynamical properties of these solutions are discussed in detail. 展开更多
关键词 n-component nonlinear Schrödinger equation with higher-order effects generalized Darboux transformation localized waves soliton BREATHER rogue wave
原文传递
Peaked traveling wave solutions of the modified highly nonlinear Novikov equation
8
作者 LI Hui-jun WEN Zhen-shu LI Shao-yong 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第2期375-394,共20页
In this paper,we focus on peaked traveling wave solutions of the modified highly nonlinear Novikov equation by dynamical systems approach.We obtain a traveling wave system which is a singular planar dynamical system w... In this paper,we focus on peaked traveling wave solutions of the modified highly nonlinear Novikov equation by dynamical systems approach.We obtain a traveling wave system which is a singular planar dynamical system with three singular straight lines,and derive all possible phase portraits under corresponding parameter conditions.Then we show the existence and dynamics of two types of peaked traveling wave solutions including peakons and periodic cusp wave solutions.The exact explicit expressions of two peakons are given.Besides,we also derive smooth solitary wave solutions,periodic wave solutions,compacton solutions,and kink-like(antikink-like)solutions.Numerical simulations are further performed to verify the correctness of the results.Most importantly,peakons and periodic cusp wave solutions are newly found for the equation,which extends the previous results. 展开更多
关键词 modified highly nonlinear Novikov equation bifurcation dynamics peakons periodic cusp wave solutions
在线阅读 下载PDF
New exact traveling wave solutions of the coupled Boussinesq equations
9
作者 Mingyue Wang Youhe Zhou Jizeng Wang 《Theoretical & Applied Mechanics Letters》 2025年第2期108-114,共7页
The Boussinesq equations,pivotal in the analysis of water wave dynamics,effectively model weakly nonlinear and long wave approximations.This study utilizes the complete discriminant system within a polynomial approach... The Boussinesq equations,pivotal in the analysis of water wave dynamics,effectively model weakly nonlinear and long wave approximations.This study utilizes the complete discriminant system within a polynomial approach to derive exact traveling wave solutions for the coupled Boussinesq equation.The solutions are articulated through soliton,trigonometric,rational,and Jacobi elliptic functions.Notably,the introduction of Jacobi elliptic function solutions for this model marks a pioneering advancement.Contour plots of the solutions obtained by assigning values to various parameters are generated and subsequently analyzed.The methodology proposed in this study offers a systematic means to tackle nonlinear partial differential equations in mathematical physics,thereby enhancing comprehension of the physical attributes and dynamics of water waves. 展开更多
关键词 Coupled Boussinesq equations Exact traveling wave solutions Complete discriminant system Polynomial method
在线阅读 下载PDF
2D Laplace–Fourier domain acoustic wave equation modeling with an optimal finite-difference method
10
作者 Wang Jing-Yu Fan Na +4 位作者 Chen Xue-Fei Zhong Shou-Rui Li Bo-Yu Li Dan Zhao Gang 《Applied Geophysics》 2025年第1期119-131,234,共14页
Laplace–Fourier(L-F)domain finite-difference(FD)forward modeling is an important foundation for L-F domain full-waveform inversion(FWI).An optimal modeling method can improve the efficiency and accuracy of FWI.A fl e... Laplace–Fourier(L-F)domain finite-difference(FD)forward modeling is an important foundation for L-F domain full-waveform inversion(FWI).An optimal modeling method can improve the efficiency and accuracy of FWI.A fl exible FD stencil,which requires pairing and centrosymmetricity of the involved gridpoints,is used on the basis of the 2D L-F domain acoustic wave equation.The L-F domain numerical dispersion analysis is then performed by minimizing the phase error of the normalized numerical phase and attenuation propagation velocities to obtain the optimization coefficients.An optimal FD forward modeling method is finally developed for the L-F domain acoustic wave equation and applied to the traditional standard 9-point scheme and 7-and 9-point schemes,where the latter two schemes are used in discontinuous-grid FD modeling.Numerical experiments show that the optimal L-F domain FD modeling method not only has high accuracy but can also be applied to equal and unequal directional sampling intervals and discontinuous-grid FD modeling to reduce computational cost. 展开更多
关键词 Laplace-Fourier domain 2D acoustic wave equation finite difference and optimization coefficients
在线阅读 下载PDF
Symmetry of traveling wave solutions for a Camassa–Holm type equation with higher-order nonlinearity
11
作者 Wenguang Cheng Ji Lin 《Communications in Theoretical Physics》 2025年第7期14-18,共5页
We are concerned with a Camassa-Holm type equation with higher-order nonlinearity including some integrable peakon models such as the Camassa-Holm equation,the Degasperis-Procesi equation,and the Novikov equation.We s... We are concerned with a Camassa-Holm type equation with higher-order nonlinearity including some integrable peakon models such as the Camassa-Holm equation,the Degasperis-Procesi equation,and the Novikov equation.We show that all the horizontal symmetric waves for this equation must be traveling waves.This extends the previous results for the Camassa-Holm and Novikov equations. 展开更多
关键词 Camassa-Holm type equation with higher-order nonlinearity traveling waves weak solutions
原文传递
Localized waves for a complex nonisospectral nonpotential sine-Gordon equation
12
作者 Song-lin Zhao Xiao-hui Feng 《Communications in Theoretical Physics》 2025年第9期16-23,共8页
The nonisospectral effectλ_t=α(t)λsatisfied by spectral parameterλopens up a new scheme for constructing localized waves to some nonlinear partial differential equations.In this paper,we perform this effect on a c... The nonisospectral effectλ_t=α(t)λsatisfied by spectral parameterλopens up a new scheme for constructing localized waves to some nonlinear partial differential equations.In this paper,we perform this effect on a complex nonisospectral nonpotential sine-Gordon equation by the bilinearization reduction method.From an integrable nonisospectral Ablowitz–Kaup–Newell–Segur equation,we construct some exact solutions in double Wronskian form to the reduced complex nonisospectral nonpotential sine-Gordon equation.These solutions,including soliton solutions,Jordan-block solutions and interaction solutions,exhibit localized structure,whose dynamics are analyzed with graphical illustration.The research ideas and methods in this paper can be generalized to other negative order nonisospectral integrable systems. 展开更多
关键词 complex nonisospectral nonpotential sine-Gordon equation bilinear reduction method double Wronskian solutions localized waves
原文传递
Blow-Up Phenomena for a Non-Homogeneously Strongly Damped Wave Equation with Riemann-Liouville Fractional Integral
13
作者 XIANG Chang-yong DUAN Ji-song LONG Qun-fei 《Chinese Quarterly Journal of Mathematics》 2025年第3期304-312,共9页
We investigate the blow-up effect of solutions for a non-homogeneous wave equation u_(tt)−∆u−∆u_(t)=I_(0+)^(α)(|u|^(p))+ω(x),where p>1,0≤α<1 andω(x)with∫_(R)^(N)ω(x)dx>0.By a way of combining the argum... We investigate the blow-up effect of solutions for a non-homogeneous wave equation u_(tt)−∆u−∆u_(t)=I_(0+)^(α)(|u|^(p))+ω(x),where p>1,0≤α<1 andω(x)with∫_(R)^(N)ω(x)dx>0.By a way of combining the argument by contradiction with the test function techniques,we prove that not only any non-trivial solution blows up in finite time under 0<α<1,N≥1 and p>1,but also any non-trivial solution blows up in finite time underα=0,2≤N≤4 and p being the Strauss exponent. 展开更多
关键词 Finite time blow-up Non-homogeneously strongly damped wave equation Riemann-Liouville fractional integral Strauss exponent
在线阅读 下载PDF
Internal-multiple-elimination with application to migration using two-way wave equation depth-extrapolation scheme
14
作者 Jia-Chun You Gu-Lan Zhang +2 位作者 Xing-Guo Huang Xiang-Wen Li Jun-Xing Cao 《Petroleum Science》 2025年第1期178-192,共15页
Internal multiple interference,affecting both seismic data processing and interpretation,has been observed for long time.Although great progress has been achieved in developing a variety of internal-multiple-eliminati... Internal multiple interference,affecting both seismic data processing and interpretation,has been observed for long time.Although great progress has been achieved in developing a variety of internal-multiple-elimination(IME)methods,how to increase accuracy and reduce cost of IME still poses a significant challenge.A new method is proposed to effectively and efficiently eliminate internal multi-ples,along with its application in internal-multiple-eliminated-migration(IMEM),addressing this issue.This method stems from two-way wave equation depth-extrapolation scheme and associated up/down wavefield separation,which can accomplish depth-extrapolation of both up-going and down-going wavefields simultaneously,and complete internal-multiple-elimination processing,adaptively and effi-ciently.The proposed method has several features:(1)input data is same as that for conventional migration:source signature(used for migration only),macro velocity model,and receiver data,without additional requirements for source/receiver sampling;(2)method is efficient,without need of iterative calculations(which are typically needed for most of IME algorithms);and(3)method is cost effective:IME is completed in the same depth-extrapolation scheme of IMEM,without need of a separate pro-cessing and additional cost.Several synthesized data models are used to test the proposed method:one-dimensional model,horizontal layered model,multi-layer model with one curved layer,and SEG/EAGE Salt model.Additionally,we perform a sensitivity analysis of velocity using smoothed models.This analysis reveals that although the accuracy of velocity measurements impacts our proposed method,it significantly reduces internal multiple false imaging compared to traditional RTM techniques.When applied to actual seismic data from a carbonate reservoir zone,our method demonstrates superior clarity in imaging results,even in the presence of high-velocity carbonate formations,outperforming conven-tional migration methods in deep strata. 展开更多
关键词 Internal multiple elimination Two-way wave equation depth-extrapolation scheme Up/down wavefield separation MIGRATION
原文传递
NONLINEAR WAVE TRANSITIONS AND THEIR MECHANISMS OF THE(2+1)-DIMENSIONAL KORTEWEG-DE VRIES-SAWADA-KOTERA-RAMANI EQUATION
15
作者 Haolin WANG Shoufu TIAN Tiantian ZHANG 《Acta Mathematica Scientia》 2025年第4期1405-1437,共33页
In this work,we study wave state transitions of the(2+1)-dimensional Kortewegde Vries-Sawada-Kotera-Ramani(2KdVSKR)equation by analyzing the characteristic line and phase shift.By converting the wave parameters of the... In this work,we study wave state transitions of the(2+1)-dimensional Kortewegde Vries-Sawada-Kotera-Ramani(2KdVSKR)equation by analyzing the characteristic line and phase shift.By converting the wave parameters of the N-soliton solution into complex numbers,the breath wave solution is constructed.The lump wave solution is derived through the long wave limit method.Then,by choosing appropriate parameter values,we acquire a number of transformed nonlinear waves whose gradient relation is discussed according to the ratio of the wave parameters.Furthermore,we reveal transition mechanisms of the waves by exploring the nonlinear superposition of the solitary and periodic wave components.Subsequently,locality,oscillation properties and evolutionary phenomenon of the transformed waves are presented.And we also prove the change in the geometrical properties of the characteristic lines leads to the phenomena of wave evolution.Finally,for higher-order waves,a range of interaction models are depicted along with their evolutionary phenomena.And we demonstrate that their diversity is due to the fact that the solitary and periodic wave components produce different phase shifts caused by time evolution and collisions. 展开更多
关键词 the(2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani equation characteristic line transformed nonlinear waves phase shift collision
在线阅读 下载PDF
An N-breather solution and hybrid solutions of rogue wave and breather for complex mKdV equation
16
作者 Wenjing Hu Hasi Gegen 《Chinese Physics B》 2025年第7期160-173,共14页
A compact Grammian form for N-breather solution to the complex m Kd V equation is derived using the bilinear Kadomtsev–Petviashvili hierarchy reduction method.The propagation trajectory,period,maximum points,and peak... A compact Grammian form for N-breather solution to the complex m Kd V equation is derived using the bilinear Kadomtsev–Petviashvili hierarchy reduction method.The propagation trajectory,period,maximum points,and peak value of the 1-breather solution are calculated.Additionally,through the asymptotic analysis of 2-breather solution,we show that two breathers undergo an elastic collision.By applying the generalized long-wave limit method,the fundamental and second-order rogue wave solutions for the complex m Kd V equation are obtained from the 1-breather and 2-breather solutions,respectively.We also construct the hybrid solution of a breather and a fundamental rogue wave for the complex m Kd V equation from the 2-breather solution.Furthermore,the hybrid solution of two breathers and a fundamental rogue wave as well as the hybrid solution of a breather and a second-order rogue wave for the complex m Kd V equation are derived from the 3-breather solution via the generalized long-wave limit method.By controlling the phase parameters of breathers,the diverse phenomena of interaction between the breathers and the rogue waves are demonstrated. 展开更多
关键词 complex mKdV equation hybrid solutions of breather and rogue wave KP hierarchy reduction method generalized long-wave limit method
原文传递
Unconditionally Superconvergence Error Analysis of an Energy-Stable and Linearized Galerkin Finite Element Method for Nonlinear Wave Equations
17
作者 Huaijun Yang 《Communications on Applied Mathematics and Computation》 2025年第4期1264-1281,共18页
In this paper,a linearized energy-stable scalar auxiliary variable(SAV)Galerkin scheme is investigated for a two-dimensional nonlinear wave equation and the unconditional superconvergence error estimates are obtained ... In this paper,a linearized energy-stable scalar auxiliary variable(SAV)Galerkin scheme is investigated for a two-dimensional nonlinear wave equation and the unconditional superconvergence error estimates are obtained without any certain time-step restrictions.The key to the analysis is to derive the boundedness of the numerical solution in theH^(1)-norm,which is different from the temporal-spatial error splitting approach used in the previous literature.Meanwhile,numerical results are provided to confirm the theoretical findings. 展开更多
关键词 Unconditionally superconvergence error estimate Nonlinear wave equation Linearized energy-stable scalar auxiliary variable(SAV)Galerkin scheme
在线阅读 下载PDF
Approximate Controllability of Second-Order Neutral Stochastic Differential Equations with Infinite Delay and Poisson Jumps 被引量:4
18
作者 PALANISAMY Muthukumar CHINNATHAMBI Rajivganthi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第5期1033-1048,共16页
The modelling of risky asset by stochastic processes with continuous paths, based on Brow- nian motions, suffers from several defects. First, the path continuity assumption does not seem reason- able in view of the po... The modelling of risky asset by stochastic processes with continuous paths, based on Brow- nian motions, suffers from several defects. First, the path continuity assumption does not seem reason- able in view of the possibility of sudden price variations (jumps) resulting of market crashes. A solution is to use stochastic processes with jumps, that will account for sudden variations of the asset prices. On the other hand, such jump models are generally based on the Poisson random measure. Many popular economic and financial models described by stochastic differential equations with Poisson jumps. This paper deals with the approximate controllability of a class of second-order neutral stochastic differential equations with infinite delay and Poisson jumps. By using the cosine family of operators, stochastic analysis techniques, a new set of sufficient conditions are derived for the approximate controllability of the above control system. An example is provided to illustrate the obtained theory. 展开更多
关键词 Approximate controllability Hilbert space Poisson jumps second-order neutral stochas-tic differential equations semigroup theory.
在线阅读 下载PDF
ON GLOBAL MEROMORPHIC SOLUTIONS OF SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS WITH MEROMORPHIC COEFFICIENTS 被引量:1
19
作者 孔荫莹 孙道椿 《Acta Mathematica Scientia》 SCIE CSCD 2013年第2期423-429,共7页
The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory ... The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory of such equations. 展开更多
关键词 second-order linear differential equations global meromorphic solutions mero-morphic continuation
在线阅读 下载PDF
High-Order Local Discontinuous Galerkin Algorithm with Time Second-Order Schemes for the Two-Dimensional Nonlinear Fractional Diffusion Equation 被引量:1
20
作者 Min Zhang Yang Liu Hong Li 《Communications on Applied Mathematics and Computation》 2020年第4期613-640,共28页
In this article,some high-order local discontinuous Galerkin(LDG)schemes based on some second-order θ approximation formulas in time are presented to solve a two-dimen-sional nonlinear fractional diffusion equation.T... In this article,some high-order local discontinuous Galerkin(LDG)schemes based on some second-order θ approximation formulas in time are presented to solve a two-dimen-sional nonlinear fractional diffusion equation.The unconditional stability of the LDG scheme is proved,and an a priori error estimate with O(h^(k+1)+At^(2))is derived,where k≥0 denotes the index of the basis function.Extensive numerical results with Q^(k)(k=0,1,2,3)elements are provided to confirm our theoretical results,which also show that the second-order convergence rate in time is not impacted by the changed parameter θ. 展开更多
关键词 Two-dimensional nonlinear fractional difusion equation High-order LDG method second-orderθscheme Stability and error estimate
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部